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Fast super-resolved reconstructions in fluorescence
random illumination microscopy (RIM)

April 1, 2024 - Guillaume Giroussens, Simon Labouesse, Marc Allain, Thomas Mangeat, Lorry Mazzella,
Loı̈c le Goff, Anne Sentenac, and Jérôme Idier

Abstract—Random Illumination Microscopy (RIM) is a re-
cent super-resolved fluorescence imaging technique in which
the sample is recovered iteratively by matching the empirical
variance of low-resolution images obtained from random speckle
illuminations, with the expected variance model. RIM was
shown theoretically to achieve a two-fold resolution gain and its
performances have proven very robust to deteriorated imaging
conditions. However, the reconstruction algorithm suffers from a
slow convergence that prevents the method from being used to its
full potential. Here, we show that a simple, non-iterative, linear
deconvolution of the empirical standard-deviation image using an
appropriate kernel can provide a super-resolved reconstruction
of the sample. This first estimate can be further improved with
a new accelerated iterative strategy which convergence speed
is about two orders of magnitude better than that of variance
matching.

Index Terms—Multi-illumination imaging, High-resolution,
Cutoff frequency, Second-order statistics, Optical microscopy

I. INTRODUCTION

In standard fluorescence microscopy, the light intensity
recorded by the camera, y, can be modeled as the convolution
of a point spread function (PSF) h with the product of the
sample fluorescence density ρ and an excitation function E:

y = h⊗ (ρE), (1)

where ⊗ stands for the convolution operator, either in two
or three spatial dimensions. The free-space light propagation
from the sample to the camera prevents the wavefield high fre-
quencies from reaching the detector [1, Sec. 3.3.4]. As a result,
h has necessarily a bounded Fourier support (denoted by DPSF

in the following). In a two-dimensional imaging configuration
(when the sample is assumed to be infinitively thin along the
optical axis), DPSF is a disk of radius 2NA/λ where NA is
the numerical aperture of the microscope objective and λ the
wavelength of the fluorescence light. When accounting for the
third dimension, DPSF becomes akin to a solid torus with
pointy edges. It keeps the same radius, with maximal height
about NA2/(2λ) and a missing cone as we move toward the
zero transverse frequency [1, Sec. 5.4].
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When the illumination E is spatially uniform, as in stan-
dard wide-field microscopy, it is clear from (1) that the
spatial frequencies of the sample that can be recovered from
the microscope image are limited to DPSF. Super-resolution
microscopy [2] refers to any technique that can estimate
frequency components of the sample beyond DPSF. The issue
of super-resolution imaging can thus be stated as: how can
the frequency components of the sample beyond DPSF be
recovered from images that are limited to DPSF?

The main answers belong to the instrumental super-
resolution category [3]. Compared to standard wide-field imag-
ing, these methods imply a modification of the acquisition
strategy, so that the acquired data contain information beyond
DPSF. In this paper, we put aside other possibilities that would
rely on a priori or learned models of the sample fluorescence
density to extrapolate the missing spatial frequencies of the
fluorophore density from a wide-field image. Indeed, the resort
to learned models in super-resolution fluorescence microscopy
is a growing tendency, but it is generally considered as an
add-on to instrumental super-resolution, rather than as a stand-
alone possibility [4].

Instrumental super-resolution fluorescence microscopy tech-
niques make use of multiple diffraction-limited images of
the sample under different inhomogeneous excitations of the
fluorescence. The easiest way to generate various excitation is
by using series of known, inhomogeneous illumination pattern,
like a rotated or translated periodic light grid in Structured
Illumination Microscopy (SIM), or a scanned focused beam for
Image Scanning Microscopy (ISM). The illumination pattern
being also diffraction limited, at most a two-fold improvement
is achieved by solving a linear system.

On the other hand, considering the stochastic response of
the fluorophores, one can model the excitation function E as
a sparse function, located precisely on the active fluorophores.
In this case, there is no theoretical upper bound to the
achieved resolution, but data processing becomes generally
more complex, involving additional a priori information on
the sparsity of the sample. For instance, Single Molecule
Localization Methodes (SMLM) generally relies on a sparse
hypothesis. Other methods, such as Super Resolution Optical
Fluctuation (SOFI) microscopy, rely on image statistics, but
the use of higher orders compromises the quantitative property
of the technique, as the signal from the brightest emitters is
over-amplified.

In between these two approaches, the Random Illumination
Microscopy (RIM) technique consists in illuminating the sam-
ple with unknown speckle patterns, eliminating the constraint
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of precisely knowing or estimating them, as it is the case in
blind-SIM or speckle SIM techniques [5], [6]. RIM remains
a quantitative method by retrieving the frequency components
of the sample from the statistics of the recorded images. RIM
being a linear structured illumination method, it has at most
a two-fold resolution improvement, which can be achieved in
practice [7], [8].

In the existing RIM method [9], the fluorescence density
estimate is computed iteratively so as to minimize the dis-
tance between the empirical (experimental) variance and the
expected (asymptotic) variance model (which is a quadratic
function of ρ). This variance-matching solver (RIM-VAR) is
robust but its slow convergence impairs the recovery of the
highest spatial frequencies that should be accessible with RIM.
This issue is particularly detrimental for large-scale problems
because RIM-VAR does not even converge within a realistic
computational time. As a result, RIM-VAR has only been
implemented in a simplified two-dimensional configuration
where only the thin slice of the sample located at the focal
plane of the microscope is accounted for in the reconstruction.

The implementation of a full three-dimensional (3D) RIM
approach requires a faster and computationally more efficient
solver. More generally, such a solver is pivotal as a building-
block for a high-throughput RIM method, hence for the future
dissemination of RIM.

In this paper, we present two novel RIM reconstruction
methods. The first one, RIM-CF, is a fast non-iterative linear
deconvolution method of the standard-deviation image, which
provides a super-resolved estimate of the sample. This estimate
can be used as the initial guess for RIM-STD, an iterative
standard deviation matching algorithm that converges much
faster than RIM-VAR. RIM-STD speeds up the reconstruction
process, typically by two orders of magnitude.

The article is organized as follows. Section II presents
the minimal theoretical background for understanding RIM,
as well as a summary of the variance matching procedure
RIM-VAR introduced in [9]. Section III introduces RIM-
CF, an approximate closed-form, non iterative estimator of
the sample. Then, Section IV proposes an iterative inversion
scheme based on the standard deviation of the images. Finally,
Section V provides comparisons between RIM-CF, RIM-STD
and RIM-VAR on 1D, 2D and 3D synthetic data, as well as
on 3D experimental images.

II. PRINCIPLES OF RANDOM ILLUMINATION MICROSCOPY

This first section introduces the notations, assumptions and
basic principles of RIM and summarizes the main features of
RIM-VAR, the variance matching procedure presented in [9]
and used in all existing RIM implementations.

A. Modeling and theoretical resolution bound for RIM
Let us consider M images (z1, . . . , zM ) of the sample

ρ, acquired following model (1) using M distinct random
(typically, fully developed speckled) illuminations Em. Each
observation zm is also plagued by some noise εm, supposed to
be additive, so that the true acquisition model for any image
is given by

zm = h⊗ (ρEm) + εm. (2)

This convolution model is general enough to encompass both
2D and 3D acquisition cases1. For the sake of simplicity, we
shall assume that the following (standard) properties hold for
the random quantities in (2):

• E and ε are mutually independent and second-order
stationary;

• The auto-correlation functions of E and ε, denoted here-
after γE and γε, are real-valued and known a priori (see
for instance [10, Chap. 4] for a justification).

From Eq. 2, we deduce that each acquisition zm is sensitive
to the sample frequencies within the domain2

DSR = DPSF ⊖Dspec. (3)

With a sufficient number of known speckle illuminations,
using simple arguments based on linear (Fourier) analysis, we
can prove that all the frequencies of the sample within DSR

are identifiable. However, because RIM works with unknown
illuminations, the situation is theoretically (what frequencies
can be retrieved?) and practically (how can we retrieve them?)
more complex [7], [11], [8]. The natural way to address these
questions is through the image statistics, and more specifically
through the image variance:

vz(r; ρ) = vs(r; ρ) + vε (4)

with vs the contribution of the speckle excitation to the
variance, and vε the contribution of the instrumental (e.g.,
camera) noise. Furthermore, vs can be written as

vs(r; ρ) =

∫∫
t(r − x, r − x′)ρ(x)ρ(x′) dx dx′ (5)

with the following kernel

t(x,x′) = h(x)h(x′)γE(x− x′). (6)

Clearly, the pivotal quantity vs is a quadratic (nonlinear)
mapping of the unknown sample ρ. This nonlinear relationship
does not allow us to directly identify the frequency compo-
nents of ρ. However, it has been proven that, when γE = h, the
frequency components of the sample are in bijection with the
frequency components of the variance [8], and can be retrieved
without bias through numerical iterative optimization [11]. In
this situation, RIM can be essentially considered as a linear
system, fully characterized by a convolution kernel that is the
inverse Fourier transform of the indicator function over DSR;
in the noise-free case, the retrieved sample and the true sample
are indeed identical within the super-resolved domain DSR.
Nevertheless, the computation of vs is a challenge: (5) is

a convolution over 4 or 6 spatial dimensions (in 2D or 3D,
respectively), making its numerical evaluation cumbersome.
To decrease the computational burden, one can note that t is
a positive definite operator that can be decomposed as,

t(x,x′) =
∑

n≥1 λnψn(x)ψn(x
′) (7)

1In the latter case, the acquisition of a 3D data stack zm (i.e., the scan of
the fluorescent signal along the optical axis) must be performed with a static
3D speckle illumination setup. See Sec. V-D for more details.

2⊖ stands for the Minkowski difference : A⊖B := {a−b | a ∈ A, b ∈ B},
i.e., the cross-correlation of the two domains.
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where {ψn |n ≥ 1} is a countable family of orthogonal
functions with

∫
|ψn(x)|2dx = 1, and {λn}n≥1 are real num-

bers ordered by decreasing magnitude, with limn→∞ λn = 0,
see e.g., [12] and Appendix B-A, Eq. (27). Eq. (7) is a
decomposition into a sum of separable functions. Inserting it
into (5) provides an equivalent formulation for the variance
via a sum of squared convolution integrals [8]

vs(·; ρ) =
∑
n≥1

(un ⊗ ρ)
2 (8)

with un =
√
λnψn. Although this reformulation does not

reduce per se the computational burden, an approximation of
the variance vs can be obtained by truncating the sum (8) to
the first K leading terms, which is equivalent to using a low
rank approximation of the original kernel. The quality of tK ,
the approximation of t using the first K eigenvectors, can be
assessed by computing the energy ratio of the operators:

τK =
∥tK∥22
∥t∥22

=

∑K
k=1 λ

2
k∑∞

k=1 λ
2
k

. (9)

For the 2D epi-fluorescence microscope setting, we checked
numerically that τ10 > 1 − 10−6. This computational trick
allows us to compute the image variance at a cost of
O(KN log(N)) arithmetic operations.

B. Variance matching algorithm, RIM-VAR [9]

Since RIM-VAR will serve as a baseline comparison with
the new methods proposed in this paper, it is useful to
introduce its main features and drawbacks. RIM-VAR consists
in minimizing the cost functional

Q(ρ ; µ) = ∥v̂z(r)− vz(r; ρ)∥22 + µ ∥ρ(r)∥22 . (10)

In the right hand-side (r.h.s.) of (10), the first term is a
discrepancy measure between the variance model vs computed
using (8) and the empirical variance v̂s computed from the set
of speckled images. The second term is a zero-order Tikhonov
regularization, with µ its parameter tuning the precision vs.
robustness-to-noise trade-off one expects in the retrieved sam-
ple [13, Sec. 4], [14, Sec. 5.6]. This criterion is then minimized
with an iterative conjugate-gradient approach, for which an
exact step-size can be calculated since the restriction of Q to
any line is a 4th-order scalar polynomial.

1) A preprocessing of the raw speckled images: Another
important feature of RIM-VAR lays in the preprocessing of
the data. We applied to each speckled image a Wiener-type
pre-filter defined in the Fourier domain as:

g̃ =
h̃∗

|h̃|2 + η
(11)

where “ ·̃ ” denotes the Fourier transform and η > 0 is a
regularization parameter. Note that the support of g̃ is DPSF.
This preprocessing amounts to replacing the microscope point
spread function h by h ⊗ g and the noise variance, γε(0) by
(g ⊗ γε ⊗ g)(0). This pre-filtering has three major interests.
First it narrows the image PSF by enhancing the weight of
its high frequencies. Second, it reduces the influence of the

noise [14, Chap. 5]: it suppresses the noise frequency compo-
nents outside the OTF support, and it simultaneously prevents
the detrimental amplification of the frequency components of
the noise close to the limit of the OTF support. This latter
effect relies on the tuning of the parameter η, which is then
mainly determined by the noise level. Third, the spectral
decomposition of the pre-filtered variance model appeared
to converge more rapidly than that of the standard variance.
Applying RIM-VAR to the pre-filtered microscope images is
straightforward with the above changes on the microscope PSF
and noise variance. This pre-processing was applied to all RIM
acquisitions as it significantly improved the final resolution in
the sample estimate provided by RIM-VAR.

2) Limit of RIM-VAR: Even if RIM-VAR is now routinely
used to produce super-resolved images of biological samples,
see for instance [9], [15]–[17], it was observed in many exam-
ples that it suffers from slow convergence. Indeed, the number
of iterations (and associated computation time) required to
reach convergence is so high that an early stopping of the
iterations is usually needed. This results in a resolution gain
that is often not optimal since the high frequencies of the
sample (that should be retrieved with RIM) have not reached
convergence yet. Note that such a convergence issue often
happens with unscaled gradient-based iterations, which tend
to restore the low-frequency components of the object first,
whereas the high-frequency components are only very slowly
retrieved [18, Sec. 5], [14, Sec. 6.5], [19]. This effect is detri-
mental to the performances of RIM, especially in 3D imaging.
In the following, we present two novel inversion schemes
which significantly accelerate the reconstruction process.

III. A NON-ITERATIVE ESTIMATOR, RIM-CF

Although the spectral decomposition (8) was introduced
first as a computational trick, it provides key insights into
the structure of the second-order statistics of the images and
it paves the way towards a simple non-iterative estimator of
the sample. As we underlined in the previous section, the
eigenvalues {λn} are expected to decrease as n grows. The
Perron-Frobenius theorem [20, p.18] ensures that the largest
eigenvalue λ1 is of multiplicity one, so that the first eigen-
vector u1 is dominant in the decomposition (8). To estimate
the quality of the rank-one approximation, we numerically
computed (9) for classical microscopes in epi-fluorescence
and found that this indicator is close to 0.9, i.e., the first
eigenvector in the spectral decomposition of t accounts for
90% of its total energy. We thus propose to approximate the
variance with the first term of the decomposition,

vs(·; ρ) ≈ (u1 ⊗ ρ)
2
. (12)

To take the square root of this equation and obtain a lineariza-
tion of the RIM problem, we prove in Appendix B-A that u1 is
a real non-negative function, so we can safely rewrite Eq. (12)
as

σs(r; ρ) ≈ (u1 ⊗ ρ) (r). (13)

At this point, it is worth noting that the pre-filtering of the
speckled images introduced in II-B1 generally breaks the
positivity assumption for u1, and especially in the case of
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the Wiener-type pre-filter defined by (11). Such a choice of
pre-filter is thus a priori inappropriate for the non-iterative
method.

Under the approximation (13), the incoherent RIM micro-
scope can be understood as a linear (spatially invariant) system
equipped with a PSF given by u1. The frequency components
of the sample might then be retrieved within the support of
the Fourier transform of u1. The following proposition ensures
that this frequency support extends beyond the diffraction
limit.

Proposition 1 Let ũ1 be the Fourier transform of u1 [the
eigenvector associated with λ1 in the spectral decomposi-
tion (7)]. Under standard assumptions (see A1 − A7 in
Appendix A), ũ1 is a non-negative function whose support
is exactly DSR.

Proof: See Appendix B-B.

Proposition 1 is particularly fruitful for 3D RIM because the
bandwidth associated with u1 fills the so-called missing cone,
which otherwise prevents the optical sectioning [1, Sec.5.4].
This result then explains the optical sectioning property of

the image standard deviation as proposed in the Dynamic
Speckle Illumination (DSI) approach presented in [21], [22].
With knowledge of the convolution kernel u1, we can leverage
on (13) to further improve the sample estimate over DSI. More
specifically, we define our closed-form RIM estimator, RIM-
CF, as

ρ̂ = F−1

(
ũ1

|ũ1|2 + µ
F(σ̂s)

)
, (14)

where F and F−1 stand, respectively, for the Fourier trans-
form and its inverse. RIM-CF is basically a non-iterative
regularized deconvolution (performed in the Fourier domain)
of the empirical standard deviation derived from (4)

σ̂s(r) = (max {0, v̂z(r)− vε})
1
2 (15)

with v̂z the empirical variance built from the set of microscope
images zm,m = 1, . . . ,M ; in this latter relation, the max
function is required because the fluctuations in the empirical
statistic v̂z(r) may lead to negative values when vε is sub-
tracted (if vε is unknown, one may use the technique proposed
in [11, Sec. IV]). The (Tikhonov) regularization parameter
µ > 0 is adjusted to get the expected regularity using RIM-
CF [14, Sec. 5.6].

Before concluding this section, some important remarks can
be made about the expected performance of the method. Let
us recall first that RIM-CF is an approximate solution for the
quadratic integral equation (5). Whereas the RIM-STD solver
(see next section) computes an exact solution that is unbiased
for the frequency components of the sample inside DSR, such a
property is lost for RIM-CF. An important consequence is that
the resolution in RIM-CF is spatially variable. Interestingly, we
also found that this spatial resolution is locally driven by the
spatial density of fluorescent sources. This effect is illustrated
by considering first a single pointwise fluorescent emitter. In
this simple case, it is easy to derive from (5) that

vs(r) = I20h
2(r) =⇒ σs(r) = I0h(r). (16)

with I0 the average speckle intensity. Because the standard-
deviation is proportional to h in this case, no super-resolution
is expected from RIM-CF (since it relies on a linear decon-
volution of σs). Now, let us consider a pair of fluorescent
emitters. The variance now reads

vs(r) = γE(r0)h
(
r − r0

2

)
h
(
r + r0

2

)
+ · · ·

I20
[
h2
(
r − r0

2

)
+ h2

(
r + r0

2

)] (17)

with r0 the separating distance. When the two emitters are well
separated, the PSFs located in r0

2 and −r0

2 have almost dis-
joint supports, so the standard-deviation becomes proportional
to h

(
r − r0

2

)
+ h

(
r + r0

2

)
. The encountered situation is that

of two isolated emitters, for which RIM-CF cannot provide
any super-resolution. Things change if the emitters get closer,
so that the first term in the right-hand side of (17) cannot be
neglected and the two squared PSF in the second term interact.
These interactions are significant when r0 is comparable to the
resolution limit of the microscope. In this case, a resolution
enhancement arises, both in the standard deviation and in RIM-
CF, see Fig. 7 and 8 in the supplemental. The same effect
can be observed with a random set of N separated emitters:
RIM-CF is found more resolved where the density of emitters
is locally the highest. In other words, the resolving power of
RIM-CF is locally variable, and it is higher where it matters the
most. The supplementary section gives a detailed presentation
of this effect.

In summary, RIM-CF is expected to provide more resolution
with higher density samples, and no superresolution with iso-
lated emitters. Obviously, even in a favorable scenario, RIM-
CF remains based on the approximation (12) and modeling
errors deteriorate the resolution gain, e.g., RIM-CF cannot
reach the theoretical resolution limit one can expect from RIM
in a noise-free setting. An iterative solver, based on a more
accurate model is required to reach this limit.

IV. AN ACCELERATED ITERATIVE ESTIMATOR, RIM-STD

The RIM-CF estimator presented in the previous section is
based on an approximate modeling of the standard deviation
of the speckled images. To further improve the reconstruction,
it may be interesting to get back to a more accurate model
of the asymptotic standard deviation, i.e., many terms in the
spectral decomposition of the kernel t given in (7). In this
case, a direct inversion is not possible. Yet, bearing in mind
the quasi-linear behavior of the standard deviation with respect
to the sample, an iterative reconstruction based on a standard
deviation matching procedure is expected to converge quickly
and by all means faster than the variance-matching approach.
Note that replacing the variance by the standard deviation is
comparable to adopting an amplitude-based criterion rather
than an intensity-based one in a phase retrieval (PR) problem,
as recommended in [23], [24], for instance. Indeed, the RIM
reconstruction problem shares some common features with PR.
The similarities and differences between both problems are
detailed in Appendix D.
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The standard deviation matching algorithm, RIM-STD, it-
eratively estimates the sample so as to minimize a discretized
form of the cost functional

J(ρ ; µ) =
1

2
∥σ̂z(r)− σz(r ; ρ)∥22 +

µ

2
∥ρ(r)∥22 . (18)

The minimization of J is obtained using a preconditioned (or,
scaled) conjugate-gradient technique, as detailed below. A key
point of the algorithm lays in the preconditioning which allows
a spectacular improvement of the convergence speed while
requiring minimal computation time.

A. Numerical implementation of RIM-STD

The practical implementation of RIM-STD starts with an
explicit discretization of the continuous problem at hand, see
Appendix C-A for details. Let Diag(·) be a diagonal matrix
built from a vector, and diag(·) be a column vector extracted
from the main diagonal of a matrix. We also use the notation
BCCB(·) to define a Block Circulant with Circulant Blocks
(BCCB) matrix with an input vector as its first row [13,
Chap. 4]. Once discretized, the observation model (2) reads

zm = HDiag(Em)ρ+ εm (19)

where the unknown fluorescence map ρ, the mth microscope
image zm and the random quantities Em and εm are all N -
dimensional vectors. For the sake of simplicity, we adopt a
circular convolution model H = BCCB(h).

The N ×N covariance matrix reads

Γz(ρ) = Γs(ρ) + vεI (20)

where the first term in the r.h.s. is the covariance matrix
associated with the random illumination

Γs(ρ) = HDiag(ρ)ΓEDiag(ρ)H (21)

with ΓE = BCCB(γE) the covariance matrix associated with
the second-order stationary random vectors Em. The second
term in the r.h.s. is the identity matrix I scaled by a scalar
variance vε ≥ 0 since it is the covariance of the assumed white
CCD readout noise. These covariance matrices play the role of
a model in our fitting strategy, hence the explicit dependency
on the (unknown) sample ρ in our notations. Finally, the
discretized version of the variance equation (4) reads

vz(ρ) = vs(ρ) + vε with vs = diag (Γs) . (22)

The computation of the (super-resolved) solution then relies
on the iterative (and local) minimization of a criterion derived
from (18)

J(ρ ; µ) =
1

2
∥σ̂z − σz(ρ)∥22 +

µ

2
∥ρ∥22 (23)

where ∥ · ∥2 is the usual Euclidian norm in RN , σ̂z is the
empirical standard deviation of the stack of M microscope im-
ages and σz(ρ) is the (pointwise) square-root of the expected
variance vector given in (22). To derive the latter quantity, we
stress that the actual computation of Γs is not needed. Instead,
we provide a low-rank approximation of vs(ρ) directly from
the spectral decomposition of a matrix operator that is analog
to the kernel t(·, ·) given in (6). See Appendix C-A for details.

In order to minimize (23), we adopt a nonlinear conjugate-
gradient (NGC) method, which is an effective, reference
tool to tackle large-scale nonlinear least-square problems [18,
Sec. 5.2]. In addition, the NGC iterations can be appropri-
ately “scaled” with a preconditioning matrix to accelerate the
convergence [18, p.118]. In the framework of RIM-STD, we
propose to rely on a preconditioning matrix S that is BCCB
and non-negative definite (NND), cf. Appendix C where such
a choice is justified with respect to the Hessian matrix.
Indeed, we would obtain the same preconditioner using a
Majorization-Minimization (MM) construction, following the
lines of [25, Sec. III.B], once adapted to RIM according to
Appendix D.

Starting from a given initial guess ρ0 ∈ RN , the updated
sample estimate ρk is given by

ρk+1 = ρk + αkdk k = 1, 2, . . . (24)

with

dk =

{
−(S+ µIN )−1gk if k = 0,
−(S+ µIN )−1gk + βkdk−1 otherwise (25)

where gk is the gradient of (23) evaluated at the current
estimate ρk, αk is the current step-length and S is the BCCB
preconditioner that is invariant over the course of iterations.
We adopt the Polak-Ribière conjugation formula (PR+) [18,
p.122] for the conjugation factor βk:

βk = max

(
(gk − gk−1)

tSgk
gtk−1Sgk−1

, 0

)
. (26)

The expression of the gradient gk, of the precondtioner S and
the derivation of the step-length αk, are given in Appendix C.

Since this NCG scheme only fulfills a local convergence
property, the initialization step must be carefully considered.
For instance, with a sample that consists in a pair of pointwise
emitters, we extensively tested randomly chosen initial points
without any sign constraint. Some of them converged to dis-
tinct critical points, which were presumably local minimizers.
Whereas most of these local solutions were not very different
from the global one, some of them were indeed spurious
solutions associated with relatively high criterion values. In
the same situation, all randomly chosen, non-negative initial
points converged to the global minimizer. Whereas we have
no formal proof to support that spurious local minima can be
avoided with any specific initialization3, non-negative initial
points were found effective in all the practical cases we tested
so far, be they simulated or real. Specifically, the non-iterative
estimator RIM-CF proposed in the previous section is a natural
initial point.

3From the structure of model (5), we derive that criterion (23) is symmetric
about ρ = 0, which is a local maximizer (hence not an appropriate start for
the algorithm). It follows that if ρ̂ is a local minimizer, then −ρ̂ is. When the
algorithm is started with an unsigned random initial guesses, this structural
symmetry is probably at the origin of the spurious minima that are found by
the iteration. Finally, we recall that model (5) is insensitive to any frequency
component of ρ outside the frequency domain DSR := DPSF ⊖ Dspec.
Thus, the gradient of the STD-fitting is also insensitive to those frequency
components and any frequency component outside DSR in the initial guess
will be ultimately suppressed by the algorithm provided that µ > 0 (which
is required in practice).
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The memory resource required to build the update (24) is
clearly seen from (26): we only need to store and perform
convolutions with s such that S = BCCB(s). This is done in
O(N logN) operations via the Fast Fourier Transform (FFT).

With the low-rank approximation described above, RIM-
STD benefits from a reasonably low computational burden per
iteration. Actually, this algorithm has a similar computational
cost per iteration than RIM-VAR, but it requires far fewer
iterations to reach convergence as seen in the next section.

V. RESULTS

In this section, we compare the three different reconstruction
strategies RIM-VAR, RIM-CF and RIM-STD on synthetic
data. Hereafter, we only consider imaging configurations in
which Dspec = DPSF so that the sample frequencies should,
in theory, be recovered in DSR = DPSF ⊖ DPSF, (which
corresponds to the Fourier support of h2).

A. 1D simulation
We first illustrate the convergence issue of RIM-VAR and

RIM-STD on a toy, one-dimensional (1D) problem where
the sample is a Dirac and DPSF = [−νPSF, νPSF] where
νPSF = 2/λ with λ the wavelength of the fluorescent light.
We display the recovered Fourier spectrum of the sample
for different number of the iterations of RIM-VAR or RIM-
STD. Furthermore, it is clear that the convergence speed of
RIM-VAR is too low to produce the full resolution gain
(DSR = [−2νPSF, 2νPSF]), even after thousands of itera-
tions. In comparison, RIM-STD reaches the theoretical super-
resolution bound in less than 100 iterations. Generally, the
computation time of RIM-STD to reach convergence is two
orders of magnitude lower than that of RIM-VAR.

Finally, we recall after our analysis in Sec. III that well-
separated point-wise florescent emitters are somewhat patho-
logical cases for our non iterative method RIM-CF. With
a single emitter, actually, RIM-CF cannot provide a better
estimate than a deconvoluted wide-field. For this reason, the
RIM-CF estimate is not shown in Fig. 1.

B. 2D simulation
Then, we analyse the resolution gain of the novel re-

construction schemes RIM-CF and RIM-STD. Fig. 2 dis-
plays the 2D reconstructions of a star-like pattern performed
from asymptotical (noise-free) standard deviation images using
RIM-CF and RIM-STD. For a 256×256 image, on a standard
desktop computer4, RIM-CF is obtained in about 0.01 seconds,
while RIM-STD about 3.5 seconds (100 iterations to reach
convergence). RIM-VAR reaches the same resolution level as
RIM-STD but with a significantly larger computation time
(about 450 seconds). The comparison with the deconvolution
of the wide-field image shows unambiguously the resolution
gain brought by the iterative and non-iterative versions.

In this ideal noise-free configuration, the error model in
RIM-CF takes its toll and RIM-CF is significantly less re-
solved than RIM-STD. Interestingly, we note that the recon-
struction of RIM-CF is better when the microscope images

44 CPUs, Intel(R) Xeon(R) CPU E5-1607 v3 @ 3.10GHz, 16 GB of RAM

(a)
RIM-VAR

(b)
RIM-STD

Fig. 1. (a)-(b) Resolution gain of RIM-VAR and RIM-STD (with pre-filtering)
as a function of the iteration number, on a toy 1D problem involving a single
pointwise emitter, with DPSF = Dspec = [−νPSF, νPSF], so DSR =
[−2νPSF, 2νPSF]. The function ρ̃ being symmetric, we only represent its
positive frequency components. The portion in dark gray is beyond 2νPSF,
i.e., out of reach for RIM.

are pre-filtered according to (11), even though the positivity
of u1 is not granted in that case (hence the derivation of (13)
from (12)). The absence of visible artefacts in this non-ideal
case can be explained by the fact that u1 is nearly non-
negative.

C. 3D Simulation

For the last simulation, we consider a synthetic 3D sample
made of micro-tubules [26], see Fig. 3. Here we show RIM-
CF, RIM-STD and RIM-VAR in both transverse and axial
reconstructions. We consider reconstructions produced from
the asymptotic variance image and from an empirical (using
1000 speckled images) variance image. In this 3D context, as
predicted by the analysis in [7], RIM should provide optical
sectioning since the accessible sample Fourier domain DSR =
DPSF⊖DPSF does not exhibit any missing cone [1, Sec. 5.4].
For this data stack 512× 256× 128, the computation time for
RIM-CF is around 0.6 seconds, while for both RIM-STD and
RIM-VAR, the computation time is 25 seconds, corresponding
to the time it took for RIM-STD to reach convergence. Both
these iterative approaches start from a constant initial guess
showing that RIM-STD dramatically outperforms RIM-VAR
in term of convergence speed. Different observations can be
drawn from Fig. 3.

On asymptotic data, RIM-STD achieves RIM theoretical
resolution bounds Fig. 3(b) both in the transverse and axial
directions. RIM-CF Fig. 3(e) is not as efficient but it improves
signifciantly the sample estimation as compared to the wide-
field deconvolution or the raw standard deviation image,
Fig. 3(c,d).
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Ground Truth Deconvolved widefield

RIM-CF RIM-STD

Fig. 2. Proof of the super-resolution induced by RIM in a 2D asymptotical
noiseless case. The dashed and solid circular arcs indicate the resolution level
achievable with a cutoff frequency νPSF (RMSE=1.06 · 10−1) and 2νPSF

(RMSE reference), respectively. For the RIM-CF reconstruction the lower left
part is without data pre-filtering (RMSE=1.21·10−1) and the upper-right part
with (RMSE=8.21 ·10−2). RIM-VAR yields the same reconstruction as RIM-
STD (RMSE=1.41 ·10−2), albeit with an increased reconstruction time (3.5s
against 450s)

A more realistic simulation was also performed with the
reconstruction of a fluorescence map from an empirical vari-
ance statistics built from 1,000 noisy speckled images. Each
microscope image was plagued by an additive Gaussian white
noise with zero mean and in order to simulate Poisson fluctu-
ations, its variance was chosen equal to the expected signal in
a given pixel. The integrated SNR on a single image was set
to 30 dB. For this more realistic situation, RIM-STD exhibits
a loss of resolution compared to the asymptotic regime, while
RIM-CF is minimally affected, see Fig. 3(f,g). Actually, and
contrary to the asymptotic regime (see Fig. 2 and Fig. 3(b,e)),
RIM-CF and RIM-STD now reach comparable results in terms
of quality, see Fig. 3(f,g). A possible explanation is that with
RIM-STD, the frequency components mostly impacted by the
noise in the reconstruction are the one close to the limit of the
super-resolved domain DSR. The same frequency components
happen to be poorly approximated with the rank-one approx-
imation and RIM-CF would be unable to retrieve them even
in a noiseless setting, see Fig. 2(c,d). As such, the addition
of noise (in a reasonable quantity) primarily affects frequency
components that are inaccessible to RIM-CF, so that RIM-
CF reconstructions are less subject to deterioration compared
to the one of RIM-STD. In order to deepen our analysis,
we performed a mono-dimensional Monte-Carlo simulation of
RIM-CF and RIM-STD, which is presented as supplementary
material. The same conclusion can be drawn out from it: RIM-
STD is clearly superior to RIM-CF in ideal conditions, but
the difference in quality between the two methods gradually

decreases under noisy, non asymptotic configurations.
Finally, we recall that we used a constant (spatially uniform)

initialization to run the iterative solvers. Such an initial guess
is totally agnostic with respect to the sample to retrieve, thus
setting a suited ground to assess if the frequency components
that should be retrieved are actually retrieved during the course
of the iterations. This is an important aspect of our compar-
ison because RIM-VAR fails to converge properly with this
initialization, at least when we address the full 3D problem,
i.e., in a frontal way instead of building a sub-optimal “slice-
by-slice” solution as in [9]. This situation is clearly shown in
Fig. 3(c,h). Here, RIM-VAR was started with a constant initial
guess and run for the computation time required by RIM-STD
to converge. The reconstruction achieved by RIM-VAR in this
case produces almost no super-resolution5. This pathological
behavior of RIM-VAR is precisely what motivated us to
propose RIM-STD and RIM-CF.

D. Experimental Validation

Finally, we propose to reconstruct a real 3D fluorescent
sample to further illustrate that RIM-CF and RIM-STD are
efficient means to produce super-resolution in the three dimen-
sions. The test sample consists in a set of isolated fluorescent
beads, 100 nm in diameter, hovering above a dense fluorescent
layer (which is a continuous deposit of 100 nm fluorescent
beads). The beads are immersed in an optical glue with an
optical index of n ≈ 1.5. The microscope is mounted with
a ×82.5 objective of numerical aperture 1.21, and in epi-
fluorescence to perform the illumination and the collection
of the light through the same optics. The speckle illumination
is generated by shining a 535 nm laser through a transparent
diffuser (a series of speckle illuminations is simply produced
by shifting the diffuser). For each speckle illumination, we
performed a 3D acquisition using remote focusing [27] to
scan along the optical axis the fluorescence map generated by
a static 3D speckle illumination. For this purpose, a tunable
lens is added to the optical setup, in order to remotely change
the position of the object focal plane. This strategy yields
an acquisition mode that is fully consistent with the 3D
observation model (2).

A set of 200 3D microscope images was generated under
speckle illuminations. The (3D) empirical variance derived
from these acquisitions was further used as an input for RIM-
CF, RIM-VAR and RIM-STD. The various reconstructions
produced for this sample are shown in Fig. 4. In particular, we
see that the (deconvolved) widefield and the standard deviation
strongly differ in their ability to produce optical sectioning (a
situation that is actually consistent with Proposition 1). With
RIM-CF, the quality of the sample estimate can be further
improved from the standard deviation, at a minimal additional
computing cost. Ultimately, both iterative procedures RIM-
VAR and RIM-STD provide an even larger improvement,

5We note that RIM-VAR in [9] was initialized with the empirical-variance
image. This initialization provides the solver with an estimate for the fre-
quency components of the sample lying beyond the cutoff frequency enforced
by the OTF, i.e., this initial guess provides some super-resolution which is
further refined by RIM-VAR.
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XY
(a) (b) (c) (d)↑y→x

(e) (f) (g) (h)

XZ
(a) (b) (c) (d)↑z→x

(e) (f) (g) (h)

Fig. 3. RIM simulation with an object representing microtubules (cf. [26]). The top and bottom halves represent XY and XZ cuts, respectively. (a) Ground truth.
(b) Ground-truth bandwidth limited image, matching the reconstruction of the asymptotical, standard deviation with RIM-STD. (c) Average of M = 1000
speckled microscope images (RMSE=1.14).(d) Empirical standard deviation of the same M = 1000 speckled images. (RMSE=0.66) (e) Non iterative
estimation RIM-CF, with the asymptotic standard deviation (case corresponding to M = ∞, RMSE=0.32). (f,g,h) Reconstruction with RIM-CF (RMSE=0.42),
RIM-STD (RMSE=0.32) and RIM-VAR (RMSE=0.68) respectively, from the empirical standard deviation image shown in (d). In all simulations, we set
Dspec = DPSF, so the identifiability domain is DSR = DPSF ⊖DPSF.

while the latter achieves faster convergence, reducing com-
putation times from minutes to seconds and hours to minutes.
The presence of Gibbs oscillations is also noticeable in the
RIM-VAR and RIM-STD reconstructions. The phenomenon is
inherent with the fact that RIM cannot recover any frequency
component from the sample outside DSR, but the oscillations
are eventually producing negative values in the reconstructed
sample. A positivity constraint added in the RIM-STD solver
could prevent this effect, but this would also introduce some

bias in the retrieved spectrum. Finally, we also note the
presence of oscillations close to the lateral border of the
sample. These oscillations are induced by our implementation
via BCCB matrices of the convolution operator, see Sec. IV-A.
These border artifacts could be circumvented by implementing
more realistic boundary assumptions [28].

VI. CONCLUSION

In this paper, we have shown that the standard deviation of mi-
croscope images obtained under random speckle illumination
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Deconvolved Widefield

↑z
→x

Standard Deviation

RIM-CF (≈ 0.6s)

RIM-STD (20 it. ≈ 140s)

RIM-VAR (20 it. ≈ 180s)

RIM-VAR (100 it. ≈ 860s)

5 µm

Deconv. WF

Standard Dev.

RIM-CF

RIM-STD (20 It.)

RIM-VAR (20 It.)

RIM-VAR (100 It.)
↑y
→x

Fig. 4. 3D reconstruction on experimental data. The sample consists of fluorescent beads above a uniform fluorescent layer. The total field of view is roughly
40µm×40µm×6µm and the data stack is 1024×1024×70 pixels. All image have their contrast level calculated on the whole value range of the considered
region of interest.

is essentially similar to conventional wide-field images but
with a ”super-resolved OTF”, covering a frequency domain
twice as large as that of the original microscope.

This result leads to RIM-CF, a reconstruction strategy
based on a specific linearization of the RIM reconstruction
problem. RIM-CF is a fast, FFT-based inversion of the stan-
dard deviation that provides a super-resolved estimate of the
sample. However, because it is based on an approximation, this
estimator cannot achieves the maximal theoretical resolution
gain for RIM. To further improve the resolution gain, we also
developed an iterative estimator based on a standard deviation
matching procedure. We have shown that this novel algorithm,
RIM-STD, is able to provide a resolution gain that is close
to the one expected in ideal conditions, with less than one

hundred iterates. This fast convergence is due to the quasi-
linear behavior of the image standard deviation with respect
to the sample, and the use of an appropriate preconditioner.
We believe that the speed and the performances of RIM-STD
and RIM-CF are major assets for extending the applicability of
RIM and its ease of use. In particular, RIM-CF and RIM-STD
are methods of choice for three-dimensional imaging.

APPENDIX A
ADOPTED ASSUMPTIONS

The scope of this paper is restricted to incoherent imaging,
which implies the following standard assumptions concerning
the quantities in the observation model (2)
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A1) ρ is both integrable and square-integrable and takes finite,
real non-negative values over Rd.

A2) h is a (real-valued) non-negative, symmetric function that
is non-zero almost everywhere.

A3) h has a finite energy, which implies the existence of its
Fourier transform h̃.

A4) h̃ is a non-negative function with a bounded support
DPSF := {x ∈ Rd | h̃(x) ̸= 0}.

A5) E and ε are mutually independent and second-order
stationary.

A6) The auto-correlation functions of E and ε, denoted here-
after γE and γε, are real-valued positive functions known
a priori (see for instance [10, Chap. 4] for a justification).

A7) The support Dspec of the Fourier transform of γE (i.e.,
of the spectral energy density) is bounded and such that
Dspec ⊆ DPSF.

We note that assumptions A1-A2 are specific to the case of
incoherent imaging, and are then slightly more restrictive than
the ones given in [7, Sec. II], i.e., the main identification results
of RIM [7, Prop. 3] and [8, Th. 2] hold here.

APPENDIX B
PROPERTIES OF EIGENVECTOR u1

A. Positivity

In order to prove that u1 is positive, let us first define an
integral operator associated with kernel t introduced in (6):

T : Φ 7→
∫
t(x,x′)Φ(x′) dx′. (27)

Lemma 1 below shows that T has many good properties.
In particular, it is a compact self-adjoint operator, so the
spectral theorem [29, Chap. 3] applies. Hence, T can be
decomposed on the orthonormal basis of its eigenvectors via
a decomposition of its kernel t, i.e., there exists a countable
family {ψn |n ≥ 1} such that

t(x,x′) =
∑
n≥1

λnψn(x)ψn(x
′) (28)

where ψn is an orthogonal basis of eigenvectors for the
operator T and λn are the associated eigenvalues. Since
the operator is self-adjoint, {λn}n≥1 are real-valued. The
eigenvalues, ordered by decreasing magnitude, are such that
the limit of the sequence is zero as n grows to infinity.

The Krein-Rutman theorem can be used in order to prove
the positivity of u1 :=

√
λ1ψ1. For the sake of completeness,

this theorem is stated below with our notations.

Theorem 1 [20, Th. 19.2]. Let X be a Banach space and
K ⊆ X a convex cone so that K ⊖K is dense in X (K is a
total cone). Let T : X 7→ X be a positive (i.e., T (K) ⊆ K)
compact operator with a positive spectral radius r(T ). Then
r(T ) is an eigenvalue of T and the associated eigenvector lies
within K \ {0}.

In what follows, we check that the assumptions of the Krein-
Rutman theorem hold for the integral operator (27). Let us
first review the key properties of kernel t defined in (6).

Lemma 1 t : Rd × Rd 7→ R is symmetric, i.e., t(x, x′) =
t(x′, x), and it is strictly positive almost everywhere. Fur-
thermore, we have

∫∫
|t(x′, x′)|2 dx dx′ <∞.

Proof: With the assumptions on h and γE in mind (see
A2 and A6 in Appendix A, the first part of the lemma are
direct consequences of the definition of the kernel given in (6).
Finally, E being a second-order stationary process (A5), its
auto-correlation is such that |γE(x)| ≤ γE(0) < ∞, i.e., γE
is bounded. The assumption h ∈ L2(Rd) then leads to t ∈
L2(Rd × Rd), which completes the proof.

We are now in position to prove that Theorem 1 applies. In
particular,

1) Let X = L2(Rd) be the set of square integrable
functions over Rd. X is an Hilbert space, and thus is
also a Banach space. Let K be the set of non-negative
functions in X . K is a total cone since K ⊖ K = X
as any function is the difference of its positive and
negative parts: f = f+ − f− with f+ = max(0, f) and
f− = −min(0, f), both being non-negative functions.

2) As a consequence of Lemma 1, T is an endomorphism
of L2(Rd).

3) Since t is a symmetric kernel, T is self-adjoint and can
be decomposed on a countable basis of eigenvectors.

4) Consequently, the spectral radius of T is by definition
r(T ) := sup{|λn| | n > 1}. Without loss of generality,
the eigenvalues can be ordered by decreasing magnitude,
so that r(T ) = |λ1| ≥ 0. Furthermore, for Hilbert-
Schmidt operators, the energy of the kernel is finite and
given by ∥t∥22 =

∑
n≥1 λ

2
n. In particular, |λ1| > 0 when

∥t∥2 > 0, which is the case according to Lemma 1.
5) Finally, t being a non-negative integral kernel, T is

a positive operator. Jointly with the previous point,
this ensures that λ1 > 0. In addition, since T is an
endomorphism, any L2 function applied to T is also in
an L2, which implies T (K) ⊂ K.

The conditions in Theorem 1 being met, the first eigenvector
u1 :=

√
λ1ψ1 is in K \ {0}, i.e., it is a non-negative function.

Let us stress that we were not able to show the desirable
property that the spectral radius is associated to a single eigen-
vector. In a finite-dimensional setting (i.e., when t is a matrix),
such a result holds as a consequence of the Perron-Frobenius
theorem. In the infinite-dimensional setting, a stronger version
of the Krein-Rutman theorem would be necessary, but the
existing ones (e.g., [20, Chap.6]) do not apply to the L2(R)-
space considered here.

B. Proof of Proposition 1

Here, we prove that the Fourier support of u1 is exactly
DSR. We first note that ũn := F(un) are the eigenvectors of
an integral operator, with a kernel given by

t̃(ν,ν′) =

∫∫
t(x,x′)e−2iπ(ν·x−ν′·x′) dx dx′. (29)

Inserting (6) into (29) leads to

t̃(ν,ν′) =

∫
h̃(ξ − ν)h̃(ξ − ν′)γ̃E(ξ) dξ. (30)
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When h̃ and γ̃E are positive (as it is the case here, see
Appendix A), t̃ is also positive and the non-negativity of
ũ1 follows from the Krein-Rutman theorem with arguments
similar to the ones used in Appendix B-A. We can now show
the following result.

Lemma 2 For all ν, the support of f̃ν : ν′ 7→ t̃(ν,ν′) is

Df̃ν
=
(
Dspec ∩ ({ν} ⊕ DPSF)

)
⊖DPSF.

Proof: According to (30), f̃ν is the correlation between
h̃ and g̃ν : ξ 7→ γE(ξ)h̃(ξ − ν), given ν ∈ Rd. The support
of g̃ν is the intersection of the supports of γE and h̃(· − ν):

Dg̃ν = Dspec ∩ ({ν} ⊕ DPSF).

Then, as f̃ν is the correlation of two non-negative functions
h̃ and g̃ν , its support is the Minkowski difference (i.e., cross-
correlation) Dg̃ν ⊖DPSF, hence the result.

The following corollary is a direct consequence of Lemma 2.

Corollary 1 We have
(i) ∀ν /∈ DSR, Dspec ∩ ({ν} ⊕ DPSF) = ∅, so Df̃ν

= ∅.
(ii) Dspec ⊆ DPSF (see assumption A7 in App. A)

=⇒ Dspec ∩ ({0} ⊕ DPSF) = Dspec, so Df̃0
= DSR.

We can now proceed to the proof of Proposition 1. First, we
have

∀ν,
[
T̃ ũ1

]
(ν) = λ1ũ1(ν) =

∫
t̃(ν,ν′)ũ1(ν

′) dν′. (31)

as a direct implication that ũ1 is an eigenvector of integral
operator T̃ . Then, we consider first the case ν /∈ DSR: we
already noticed from Corollary 1(i) that the kernel of this
integral is uniformly zero, as its support is empty. Since λ1
is not zero, (31) leads to ∀ν /∈ DSR, ũ1(ν) = 0. In particular,
this means that the support of ũ1 (denoted Dũ1

in the sequel)
is such that Dũ1

⊆ DSR.
Now that we established that Dũ1

is smaller than DSR, we
aim at showing that ũ1 cannot vanish inside DSR. Let ν0 ∈
DSR be such that ũ1(ν0) = 0. Then, we have from (31)

λ1ũ1(ν0) =

∫
t̃(ν0,ν

′)ũ1(ν
′) dν′ = 0.

As both t̃ and ũ1 are positive functions, this implies that ũ1
must vanish wherever the function f̃ν0

: ν′ 7→ t̃(ν0,ν
′) is not

zero. Following Lemma 2, this means that ũ1 vanishes on the
domain Df̃ν0

. We now prove the following result.

Lemma 3 ∀ν0 ∈ DSR, we have 0 ∈ Df̃ν0
.

Proof: By definition of DSR given by (3), ∃ ξ1 ∈
DPSF, ξ2 ∈ Dspec such that ν0 = ξ1 − ξ2 ∈ DSR, or
equivalently

0 = (ν0 − ξ1) + ξ2. (32)

We then deduce that
1) With h real (assumption A2), DPSF is symmetric and

−ξ1 ∈ DPSF, so (ν0 − ξ1) ∈ {ν0} ⊕ DPSF.

2) With γE real (assumption A6), Dspec is symmetric and
−ξ2 ∈ Dspec. As a consequence, (ν0 − ξ1) = −ξ2 ∈
Dspec.

3) A7 =⇒ Dspec ⊆ DPSF, so −ξ2 ∈ DPSF.
We have (ν0 − ξ1) ∈ Dspec ∩ ({ν0} ⊕ DPSF) according to
1) and 2), and (−ξ2) ∈ DPSF according to 3). Since (32) is
equivalent to

0 = (ν0 − ξ1)− (−ξ2), (33)

by definition of Df̃ν0
, (33) is equivalent to 0 ∈ Df̃ν0

.

If ũ1 vanishes over the domain Df̃ν0
, we have in particular

ũ1(0) = 0 since 0 ∈ Df̃ν0
from the lemma above. We can now

use the same derivation with ν0 = 0. Then, Corollary 1(ii)
yields that ũ1 vanishes over DSR, which contradicts the fact
that ũ1 is the first eigenvector of a nonzero integral operator.
Thus, there is no frequency ν0 ∈ DSR such that ũ1(ν0) = 0,
and DSR ⊆ Dũ1

.
Since Dũ1

⊆ DSR and DSR ⊆ Dũ1
, we have Dũ1

= DSR.

APPENDIX C
NUMERICAL IMPLEMENTATION OF RIM-STD

A. Discretization of the problem

Let us discretize a d-dimensional space variable r ∈ Rd

on a regular grid G. This grid consists in N elements (i.e.,
segments, pixels or voxels) indexed by their spatial coordinate
vector rn, n = 0, . . . , N−1. For any band-limited function f :
Rd → R, the N element vector f :=

(
f(r1), . . . , f(rN )

)t
defines a lossless sampling of f as long as each discretization
step meets the Nyquist criterion. In a similar way, any kernel
t : Rd×Rd → R can be discretized to provide N×N matrices.
In particular, it is easy to discretize kernel (6) as a definite
non-negative matrix

T = Diag(h)ΓE Diag(h) (34)

with h the discrete version of the PSF h and ΓE =
BCCB(γE), a BCCB matrix defined by the auto-correlation
of the speckle. After introducing shifting matrices Pn, per-
forming circular shifts so that pixel n is now at position
1, the discretized version of the variance (4) reads vz =
(vz;1, . . . , vz;N )t with vz;n := vz(rn) given by

vz;n = ρtPt
nTPnρ+ vε = ρ

tTnρ+ vε (35)

with Tn := Pt
nTPn. For the sake of notational convenience,

we will drop the subscript z hereafter. Matrix T can be
decomposed on its basis of eigenvectors {ψ1, . . . , ψN} as

T =

K∑
k=1

λkψkψ
t
k =

K∑
k=1

uku
t
k (36)

where K ≤ N is the rank of T, λ1, . . . , λK > 0, Tψk =
λkψk, and uk =

√
λkψk. Using the shift properties of the

eigenvectors of Tn, the variance vector can be given the
following expression

v =

K∑
k=1

(Ukρ)⊙ (Ukρ) + vε (37)
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with Uk = BCCB(uk) and ⊙ the Hadamard (e.g., entry-wise)
product. This equation is the discretized counterpart of (8).
Criterion J given in (23) then reads

J(ρ) =
1

2

N∑
n=1

(
σn(ρ)− σ̂n

)2
+
µ

2
∥ρ∥22 (38)

with σn(ρ) = (ρtTnρ + vε)
1
2 and σ̂n :=

√
v̂n. We recall

that in practice, a reduced-rank approximation of T is usually
performed with ten to twenty eigenvectors, resulting in a fast
yet accurate evaluation of (35).

B. Computation of the gradient

We have

∂J

∂ρ
=

N∑
n=1

∂σn
∂ρ

(ρ)
(
σn(ρ)− σ̂n

)
+ µρ

=

N∑
n=1

((
1− σ̂n

σn(ρ)

)
Tnρ

)
+ µρ. (39)

=

K∑
k=1

[
Ut

kUkρ⊙ σ(ρ)− σ̂
σ(ρ)

]
+ µρ, (40)

The division in this expression is done entrywise. We recall
that thanks to the contribution of the electronic noise, it is
guarantee that σ(ρ) only has non zero entries, so the gradient
is well defined. Furthermore all operations involved in this
computation can be done entry-wise in either the direct or the
Fourier space, so the computation can be done efficiently.

C. Specification of a preconditioner

Differentiating expression (39) yields the Hessian matrix:

H(ρ) =

N∑
n=1

(
σn(ρ)− σ̂n
σn(ρ)

Tn − σ̂nTnρρ
tTn

σn(ρ)3

)
+ µIN

= S+ µIN −
N∑
n

σ̂n
σn(ρ)

( 1

vn(ρ)
Tnρρ

tTn +Tn

)
with S :=

∑N
n=1 Tn. For our problem, we stress that H(ρ)

may not be NND. Moreover, its size prevents a priori its
direct use in any Newton or quasi-Newton scheme. Matrix S
is nevertheless NND (as a sum of NND matrices). Moreover,
we have S = BCCB(s) with

s̃ =

K∑
k=1

|ũk|2. (41)

As a consequence, matrix S+µIN is a positive definite BCCB
matrix, and thus a natural candidate to be a preconditioner,
yielding a scaling of the gradient at an O(N log(N)) com-
plexity.

D. Stepsize computation

We propose to use a line-search backtracking strategy to
find a suitable step αk for iteration (24). In order to grant
convergence of the PCG iteration, we ensure that the stepsize
meets the standard Armijo-Goldstein condition through back-
tracking [18]. The initial step of the backtracking subroutine is
given by a 1D Newton step along the current descent direction

ᾱk =
W ′

k(0)

W ′′
k (0)

(42)

with Wk(α) = J(ρk + αdk). Such an initial step being
often accepted by the Armijo rule, the average number of
backtracking iterations is limited over the whole minimization
process. Furthermore, this step can be given a closed-form
expression. This computation is straighforward, and yields the
following expression for the initial step:

ᾱ =

∑N
n=1Bn

(
1− σ̂n

σn

)
+ µdtρ∑N

n=1

(
An − B2

n

σn

)(
1− σ̂n

σn

)
+

B2
n

σn
+ µ||d||2

. (43)

With

An = dtTnd (44)
Bn = dtTnρ (45)

Using the decomposition of T0, the whole set of An and
Bn can be computed with an O(N logN) complexity, leaving
of the overall complexity of the algorithm unchanged.

APPENDIX D
PARALLELS BETWEEN RIM AND PHASE RETRIEVAL

A common expression for phase retrieval (PR) problems
found in the literature is

y2n = |a†
nx|2 (46)

in the noiseless version (cf. [23], [30]–[32]). If we restrict our
attention to real-valued problems, an,x ∈ RN and we have

y2n = xtAnx, (47)

An = ana
t
n being a rank-one NND matrix. For RIM, the

noiseless variance model reads

σ2
n = ρtTnρ (48)

where Tn is an NND matrix whose rank is usually K ≪ N .
Clearly, this relation retains the quadratic structure of the PR
problem with the rank-one condition removed. Indeed, RIM
falls within the category of Generalized Phase Retrieval (GPR)
problems, according to [33], [34]. since RIM-CF makes use
of a rank-one approximation for Tn, it is formally identical to
a real-valued, non-negative (and thus trivially solved) instance
of a PR problem.

A standard question in PR and GPR problems is to ensure
that the measurement elements An are sufficiently diverse to
ensure that the solution is unique (up to a factor of modulus
one). Recent contributions focus on random measurement
operators to provide such a diversity with a high probability.
However, this cannot be applied to RIM, since in the latter
case, the available data correspond to Fourier measurements
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at the output of an optical system. As a consequence, identi-
fiability results are rather to be derived in a specific way, as
explored in [7], [11].
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edition, 2001.
[30] R. Balan, P. Casazza, and D. Edidin, “On signal reconstruction without

phase”, Appl. Comput. Harmon. Anal., vol. 20, no. 3, pp. 345–356,
2006.

[31] Y. Shechtman, Y. Eldar, O. Cohen, H. Chapman, J. Miao, and M. Segev,
“Phase retrieval with application to optical imaging”, IEEE Sig. Proc.
Mag., vol. 32, no. 3, pp. 87–109, 2015.

[32] E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval via wirtinger
flow: Theory and algorithms”, IEEE Trans. Inf. Theory, vol. 61, no. 4,
pp. 1985–2007, 2015.

[33] Y. Wang and Z. Xu, “Generalized phase retrieval: Measurement number,
matrix recovery and beyond”, Appl. Comput. Harmon. Anal., vol. 47,
no. 2, pp. 423–446, 2019.

[34] M. Huang, Y. Rong, Y. Wang, and Z. Xu, “Almost everywhere
generalized phase retrieval”, Appl. Comput. Harmon. Anal., vol. 50,
pp. 16–33, 2021.

[35] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, 2nd
edition, 1996.



14

Supplemental
APPENDIX E

PARTICULAR CASE OF POINT-WISE SOURCES

The study of respectively a single source and a pair of source is of particular interest since it can be done analytically.

A. Case of a single emitter

First, let us focus on the case of a single fluorescence source, i.e., such that the sample reads ρ(r) = δ(r). In this case, one
can directly compute the asymptotic variance of the image by using (5). This yields, after taking the standard deviation:

vs(r) = γE(0)h
2(r) =⇒ σ(r) =

√
γE(0)h(r) (49)

Two remarks can be made about this equality.
The first concerns the lack of super-resolution capabilities possible with RIM-CF, as in this particular case, the standard

deviation contains no frequencies outside of DPSF. In this case, a linear deconvolution, for instance the RIM-CF estimation
(14), will not be able to retrieve any useful information beyond DPSF. Even worse, in the case of RIM-CF, the spectrum of
u1 does not match that of h on DPSF, and RIM-CF has a slightly worse resolution than a deconvolved widefield. This lack
of super-resolution capacity from the RIM-CF approximation is displayed on the Fig. E-A. In a noisy configuration, RIM-CF
would perform even worse, because of the unnecessary enhancement of noise frequencies existing beyond DPSF.
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Fig. 5. Illustration of the lack of super-resolution of RIM-CF compared to a widefield deconvolution in the case of a single isolated source

Even in the case of a single emitter, it should be noted that the iterative estimators (RIM-STD and RIM-VAR), manage to
retrieve the sample with improved resolution (see Fig. 6). This can be explained considering the results of [11], stating the
variance of object is entirely defined by the frequencies of the object on DSR, and that no two different positive objects yield
the same variance.

The second remark deals with the meaning of the approximation (13), in this particular case:

u1 ≈ h. (50)

It is somewhat surprising, since the PSF is approximated by a function with a larger Fourier support. In this regard, considering
the full rank variance expression (51) with only a single source yields another remarkable equality:

h2 =
∑
n≥1

u2n ⇒ h =

(∑
n≥1

u2n

) 1
2

(51)

It is known from Proposition 1 that the first term of this sum u1, has a Fourier support DSR ⊃ DPSF. As such, the inclusion
of all the other terms must cancel out all frequencies beyond DPSF. This phenomenon is illustrated on Fig. 6, showing the
convergence of (51) to h as an increasing number of eigenvectors are considered.

B. Case of multiple emitters

The previous discussion may let us think that if an object mainly consists of single emitters, the RIM-CF method will not be
able to produce an improvement in resolution. However, such an analysis supposes a linear relationship between the standard
deviation and the sample, which is not the case. In fact the resolution capability of RIM-CF highly depends on the local density
of the sample (see Fig 8), performing better when the sample density is moderately high.
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Fig. 6. Convergence of square root of the sum of the squared eigenvectors to h.

To understand this phenomenon, let us consider the simplest case of a pair of emitters separated by a distance r0, so that
ρ(r) = δ(r − r0

2 ) + δ(r − r0

2 ). In that case the variance can once again be computed exactly, leading to:

vs(r) = γE(r0)× h
(
r − r0

2

)
h
(
r +

r0
2

)
+ I20

[
h2
(
r − r0

2

)
+ h2

(
r +

r0
2

)]
(52)

We note the presence of a correlation term γE(r0)h(r − r0

2 )h(r + r0

2 ). When the sources are far apart, they do not interact
with each other, and can thus be seen as single emitters, and no super-resolution is possible from RIM-CF (see Fig. 7). This is
further justified by the fact, that when the correlation term is negligible, the standard deviation of images is well approximated
by:

σs(r) ≈ h⊗
[
δ(r − r0

2
) + δ2(r − r0

2
)
]
, (53)

and the standard deviation is once again simply the convolution of the sample with the PSF.
On the other hand, when the distance between the beads is close to the diffraction limit, and the correlation term does not

simplify anymore. In this case, the presence of a high frequency interaction enables an improved resolution from RIM-CF.
When there are more than two beads, several correlation terms appear in the variance, leading to an even more complex

analysis of the situation. In this case, the resolution gain of RIM-CF depends on the local density of the sample, and is
hopefully higher in denser regions. To illustrate this, we consider a 2D problem, where the sample consists of N = 50
fluorophores randomly spread within a disk of radius r, so that the sample density is given by d = N

πr2 . Fig. 8 compares a
deconvolved widefield image with both RIM-CF and RIM-STD reconstructions for various density levels. We can observe here
that RIM-STD leads to the same resolution gains, whatever the sample density.

APPENDIX F
MONTE CARLO SIMULATIONS

Let us resort to Monte-Carlo simulations (MC) to investigate the behavior of our iterative and non-iterative RIM estimators.
To prevent an inevitable explosion of the total simulation time, we use a 1D “chirp” function (i.e., the 1D equivalent of the
spoke-pattern shown in Fig. 2) that reads

ρ(r) =
1

2
+

1

2
cos
(
2πf0r

2
)

where f0 = 30 controls the frequency domain spanned by the chirp. A total of N = 1024 points evenly sampled over the
domain r ∈ [−1, 1] are computed, resulting in a symmetric numerical object ρ ∈ RN

+ (the symmetry also helps to mitigate
circular boundary effects that may arise from replacing FT by FFT in the reconstruction methods).

We also consider a 1D imager model whose OTF h̃ =W †h is a discretized triangle function —a rather standard assumption,
see [35, Chap. 6]. The cutoff frequency of the OTF is set to fc = 40, so that iterative methods using noise-free (i.e., asymptotical)
statistics should retrieve the chirp perfectly.

In order to get statistically meaningful results, we consider 2.500 reconstructions of the same object from independent
datasets, all generated from the (discretized) RIM observation model given in (19)6. Each reconstruction first requires the
generation of a series of M = 500 (1D) microscope observations {zm}Mm=1 obtained from an identical number of random

6In the 1D case, BCCB matrices are simply circulant matrices.
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Fig. 7. Evolution of the transverse (above) and axial (below) resolution as a function of the separation distance between a pair of point-wise emitters.

speckle illuminations {Em}Mm=1. The autocorrelation function of the illuminations is set to γE = E2
0 × h, with E0 ∈ R+

the expected value of the illuminations and h the PSF of the microscope (a setting consistent with a standard fluorescence
microscope working in epi-illumination, see for instance [10]); the expected illumination is set to E0 =

√
20 for the whole

experiment. Finally, each image zm is plagued with additive Gaussian noise, with a variance of γε = 25. Fig. 9 shows some
intermediate quantities generated in one simulation, namely one acquisition zm, as well as the statistics derived7 from the
M = 500 observations in the current dataset.

The results of the MC simulation are given for several values of the regularization parameter µ in Figs. 10 and 11, respectively
for RIM-CF and RIM-STD, with the truncature level K = 10. Let us recall that a given tuning of µ achieves a reconstruction
quality within a bias vs. variance tradeoff [13, Chap. 4]. We can then identify three distinct regimes in these results. When µ
is too low (e.g., µ < 10−2 here), the retrieved solutions are subject to a large amplification of the various sources of noise; in
this situation, we note that the iterative estimates remain almost free of bias. When µ is too large (e.g., µ ≥ 100 here), over-
regularization is killing the noise amplification at the expense of a severe loss in the maximal resolution. For both estimators,
the reconstruction variance is then small, but the bias is large. Finally, when the value of µ is intermediate, the fluctuation and
the bias in the estimates are kept “under control”. In such a case, the iterative reconstruction RIM-STD shows almost no bias
and achieves a lower variance than RIM-CF.

Similarly, Figs. 12 and 13 represent the proposed estimators applied after the data pre-filtering procedure proposed in
Sec. II-B1. Raw images have then been convolved with the filter g defined by (11), with η = 10−5. As a result, the triangular
OTF has been nearly inverted on its domain, so the equivalent OTF h ⊗ g is a top-hat function with an unchanged cutoff
frequency. In this case, the iterative algorithm RIM-STD yields comparable results, both with and without pre-filtering. This
is not surprising since the main goal of pre-filtering is to increase the convergence speed of the algorithm by increasing the
sensitivity to higher frequency components. Finally, we note that performing RIM-CF (see Figs. 5 and 7) with pre-whitened
data provides an overall improvement of the solution.

7Because the object is symmetric, the data and reconstructions of the chirp shown hereafter are given over half the simulated domain r ∈ [0, 1]
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Fig. 9. Illustration of the simulation environment. The top image represents a speckled measurement before and after the addition of the noise. The bottom
image represents both the empirical and model variances used within RIM-VAR, in the case where 500 speckles have been generated. It is noticable that the
empirical variance is roughly the speckled variance shifted by a fixed amount (here, roughly 25), corresponding precisely to the variance of the additive noise
pledging the data. With 500 speckles, there remains significant differences between the empirical variance and the model variance.
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Fig. 10. Statistical result of Monte-Carlo reconstruction with RIM-CF.
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Fig. 12. Statistical result of Monte-Carlo reconstruction with RIM-CF, after data pre-filtering
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Fig. 13. Statistical result of Monte-Carlo reconstruction with RIM-STD, after data pre-filtering


