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Fast super-resolved reconstructions in fluorescence
random illumination microscopy (RIM)

June 21, 2023 - Guillaume Giroussens, Simon Labouesse, Marc Allain, Thomas Mangeat, Anne Sentenac,
and Jérôme Idier, Member, IEEE

Abstract—Random Illumination Microscopy (RIM) is a re-
cent super-resolved fluorescence imaging technique in which
the sample is recovered iteratively by matching the empirical
variance of low-resolution images obtained under random speck-
led illuminations with the expected variance model. RIM was
shown theoretically to achieve a two-fold resolution gain and its
performances have proven very robust to deteriorated imaging
conditions. However, the reconstruction algorithm suffers from
a slow convergence which can prevent the method from being
used to its full potential. Here, we show that a simple, non-
iterative, linear deconvolution of the empirical standard-deviation
image using an appropriate kernel can be sufficient to obtain
a satisfactory super-resolved reconstruction of the sample. This
first estimate can be further improved with a new accelerated
iterative strategy which convergence speed is about two orders
of magnitude better than that of variance matching.

Index Terms—Multi-illumination imaging, High-resolution,
Cutoff frequency, Second-order statistics, Optical microscopy

I. INTRODUCTION

In fluorescence microscopy, the light intensity recorded
by the camera, y, can be modeled as the convolution of a
point spread function (PSF) h with the product of the sample
fluorescence density ρ with an excitation function E (which
depends on the illumination and on the quantum nature of the
fluorophores):

y = h⊗ (ρE), (1)

where ⊗ stands for the convolution operator, either in two
or three spatial dimensions. The free-space light propagation
from the sample to the camera prevents the wavefield high
frequencies from reaching the detector [1, Sec. 3.3.4]. As a
result, h has necessarily a bounded Fourier support (denoted
by DPSF in the following). In a two-dimensional imaging con-
figuration (when the sample is assumed to be infinitively thin
along the optical axis), DPSF is a disk of radius 2NA/λ where
NA is the numerical aperture of the microscope objective and
λ the wavelength of the fluorescent light. When accounting for
the third dimension, DPSF becomes a solid torus of the same
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radius, with maximal height about NA2/2λ and a missing cone
as we move toward the zero transverse frequency [1, Sec. 5.4].

When the excitation E is spatially uniform, as in standard
wide-field microscopy, it is clear from (1) that the spatial
frequencies of the sample that can be recovered from the image
are limited to DPSF. The issue of super-resolution imaging can
thus be stated in this way: how can we recover frequencies
of the sample beyond DPSF from images that are frequency
limited to DPSF?

The main answers belongs to the instrumental super-
resolution category [2]. Compared to standard wide-field imag-
ing, they imply non-trivial modifications of the acquisition
process, so that the acquired data contain information beyond
DPSF. In this paper, we put aside other possibilities that would
rely on a priori or learned models of the sample fluorescence
density to extrapolate the missing spatial frequencies of the
fluorophore density from a wide-field image. Indeed, the resort
to learned models in super-resolution fluorescence microscopy
is a growing tendency, but it is generally considered as an add-
on to instrumental super-resolution, in order to simplify or to
improve the post-processing step, rather than as a stand-alone
possibility [3].

All instrumental super-resolution fluorescence microscopy
techniques make use of multiple diffraction-limited images of
the sample under different inhomogeneous excitations of the
fluorescence and processing (numerically or analogically) the
data to form a super-resolved reconstruction of the sample.
The basic idea is that the modulation of the fluorescence
by the non-uniform excitations brings into DPSF some of
the frequency components of the sample that were outside
DPSF. Super-resolved methods in fluorescence microscopy fall
essentially in two categories depending on either the fluores-
cence excitation is assumed known or unknown [4]. The first
ones, such as Stimulated Emission Depletion (STED) confocal
microscopy, Image Scanning Microscopy (ISM) or Structured
Illumination Microscopy (SIM) yield super-resolved images
that are linearly linked to the sample with a well defined
resolution gain. Yet, they require the knowledge and thus the
stringent control of the excitations which may be experimen-
tally challenging. The second ones, such as Super-resolution
Optical Fluctuation Imaging (SOFI) or Single Molecule Lo-
calization Methods (SMLM) are simpler to implement, as the
excitations are minimally controlled, but their reconstructions,
based on a non-linear manipulation of the data and often using
a priori information on the sample, are usually more difficult
to interpret. A notable exception in this category is the recent
Random Illumination Microscopy (RIM) which, by exciting
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the sample with random speckled light, is able to provide
super-resolved images that are linearly linked to the sample
with a well defined resolution gain, comparable to that of SIM
[5], [6].

In practice, RIM consists in recording multiple images
under different realizations of speckled illumination patterns
obtained, for example, by passing a laser beam through a
rotating diffuser. In the existing version of RIM, the super-
resolved image is formed from the variance of these low-
resolution speckled images [7]. More precisely, the fluores-
cence density ρ is estimated iteratively so as to minimize the
distance between the empirical (experimental) variance and the
expected (asymptotic) variance model. This variance model
is a quadratic functional of ρ and involves the speckle auto-
correlation. If this auto-correlation function corresponds to the
point-spread function of the microscope, we established that
a bijection exists between the variance image and the sample
frequencies in the super-resolved domain DSR = DPSF⊖DPSF

[6]. Indeed, a two-fold resolution gain was observed on
calibrated samples and spectacular super-resolved images were
obtained on fixed and live biological samples [8].

However, while robust and successful, RIM variance-
matching reconstruction scheme suffers from slow conver-
gence and many iterations are necessary to recover the sample
highest spatial frequencies in DSR. This issue appears as a ma-
jor drawback especially for three-dimensional imaging. In this
paper, we propose to facilitate and extend RIM applicability.
First, we recall the main features of RIM variance-matching
technique. Then, we derive a direct and simple inversion
technique that is able to provide, under some approximations,
a rapid super-resolved estimate of the sample. Last, we amelio-
rate this reconstruction with a novel iterative estimator based
on the standard deviation of the images. We show that the
standard-deviation matching algorithm converges much faster
than the variance matching technique.

II. PRINCIPLES OF RANDOM ILLUMINATION MICROSCOPY

In this first section, we introduce the notations, assumptions
and basic principles of RIM and recall the main features of
the variance matching procedure that is used presently to build
the sample super-resolved image.

A. Modeling and theoretical resolution bound for RIM

Let us consider M images (z1, . . . , zM ) of the sample
ρ, acquired following model (1) using M distinct random
(typically, fully developed speckled) illuminations Em. Each
observation zm is also plagued by some noise εm, supposed to
be additive, so that the true acquisition model for any image
is given by

zm = h⊗ (ρEm) + εm. (2)

For the sake of simplicity, we shall assume that the following
(standard) properties hold for the random quantities in (2):

• E and ε are mutually independent and second-order
stationary.

• The auto-correlation functions of E and ε, denoted here-
after γE and γε, are real-valued and known a priori (see
for instance [7, Chap. 4] for a justification).

Then, the covariance function of the observations (2) reads

γz(r, r
′; ρ) = γs(r, r

′; ρ) + γε(r − r′). (3)

The covariance induced by the modulation with random illu-
minations alone is given by

γs(r, r
′; ρ) =∫∫

h(r − x)ρ(x)γE(x− x′)ρ(x′)h(r′ − x′) dx dx′ (4)

which is a quadratic (nonlinear) mapping of the unknown
sample ρ. This nonlinear relationship prevents a priori a direct
identification of the frequency components of ρ. However, it
has been proved that, provided the support of the Fourier
transform of γE (i.e., of the energy spectral density of E)
belongs to Dspec ⊆ DPSF, any spatial frequency components
of the sample inside1

D′
SR := Dspec ⊖Dspec (5)

can be unambiguously defined from the data covariance matrix
[5, Proposition 3].

More recently, it has been shown further that the full
covariance was not required: the sample frequencies in the
domain (5) can also unambiguously be defined from the data
variance γs(r, r; ρ) alone [6].

In the present implementations of RIM, the super-resolved
image of the sample is obtained iteratively using RIM-VAR,
a variance-matching approach2. Let us first recall its main
features.

B. A variance matching algorithm, RIM-VAR

RIM-VAR consists in minimizing (using a conjugate gradi-
ent technique) the cost functional

Q(ρ ; µ) = ∥v̂s(r)− vs(r; ρ)∥22 + µ ∥ρ(r)∥22 (6)

where ∥ · ∥2 is the usual norm for the L2 (square integrable
functions) space. The variance model

vz(r; ρ) ≡ γz(r, r; ρ) = vs(r; ρ) + vε (7)

with vε ≡ γε(0) is derived from (3). In the right hand-side
(r.h.s.) of (6), the first term is a discrepancy measure between
the variance model vs and the empirical variance v̂s computed
from the set of speckled images, the second term is a zero-
order Tikhonov regularization, with µ its parameter tuning the
precision vs. robustness-to-noise tradeoff one expects in the
retrieved sample [9, Sec. 4], [10, Sec. 5.6].

1The notation ⊖ (resp. ⊕) stands for the Minkowski difference (resp. sum)
between two sets:

A⊖B = {a− b | a ∈ A, b ∈ B}.

2The RIM-VAR reconstruction algorithm is accessible from the repository
https://github.com/teamRIM/tutoRIM under the name AlgoRIM.
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1) Fast computation for the variance model: A first diffi-
culty in the implementation of RIM-VAR is the computation
of the model output vs for the different estimates of ρ. Indeed,
vs(r; ρ) involves a quadruple (in 2D) or sextuple (in 3D)
integral that is not numerically tractable as it stands,

vs(r; ρ) =

∫∫
t(r − x, r − x′)ρ(x)ρ(x′) dx dx′ (8)

with the following kernel

t(x,x′) = h(x)h(x′)γE(x− x′). (9)

This major issue was solved by observing that t is a positive
definite operator that can be decomposed as,

t(x,x′) =
∑

n≥1 λnψn(x)ψn(x
′) (10)

where {ψn |n ≥ 1} is a countable family of orthogonal func-
tions with

∫
|ψn(x)|2 dx = 1, and {λn}n≥1 are real numbers

ordered by decreasing magnitude, with limn→∞ λn = 0, see
e.g., [11] and Appendix B-A, Eq. (27). The decomposition (10)
can be inserted into (8) to provide an equivalent formulation
for the variance via as a sum of squared convolution inte-
grals [6]

vs(·; ρ) =
∑
n≥1

(un ⊗ ρ)
2 (11)

with un =
√
λnψn. Although this reformulation does not

reduce per se the computational burden, an approximation of
the variance vs can be obtained by truncating the sum (11)
to the first K leading terms. We found that K ≈ 10 was
generally sufficient to provide an accurate enough variance
estimation [8], [12] with a dramatically reduced computation
time.

2) A preprocessing of the raw speckled images: Another
important feature of RIM-VAR lays in the preprocessing of
the data. We applied to each speckled image a Wiener-type
pre-filter defined in the Fourier domain as:

g̃ =
h̃∗

|h̃|2 + η
(12)

where “ ·̃ ” denotes the Fourier transform and η > 0 is a
regularization parameter. Note that the support of g̃ is DPSF.
This preprocessing amounts to replacing the microscope point
spread function h by h ⊗ g and the noise variance, γε(0) by
(g⊗γε⊗g)(0). This pre-filtering has three major interests. First
it narrows the image point spread function by enhancing the
weight of its high frequencies. Second, it reduces the influence
of noise by discarding all the noise Fourier components laying
outside DPSF. Third, the spectral decomposition of the pre-
filtered variance model appeared to converge more rapidly than
that of the standard variance.

Applying RIM-VAR to the pre-filtered microscope images
is straightforward with the above changes on the microscope
point spread function and noise variance. This preprocessing
was applied systematically to all RIM applications and signif-
icantly improved the final resolution of the sample reconstruc-
tion.

3) Limit of RIM-VAR: RIM-VAR is now routinely used to
produce super-resolved images of biological samples, see for
instance [8], [13]–[15]. However, it was observed in many
examples that RIM-VAR suffered from slow convergence.
Indeed, the number of iterations (and associated computation
time) required to reach convergence is so high that an early
stopping of the iterations is usually needed. This results in
a resolution gain that is often not optimal since the high
frequencies of the sample (that should be retrieved with
RIM) have not reached convergence yet. Note that such a
convergence issue often happens with unscaled gradient-based
iterations, which tend to restore the low-frequency components
of the object first, whereas the high-frequency components are
much slowly retrieved [16, Sec. 5], [10, Sec. 6.5], [17]. This
effect is detrimental to the performances of RIM, especially
in 3D imaging.

In the following, we present two novel inversion schemes
which significantly accelerate the reconstruction process.

III. A NON-ITERATIVE ESTIMATOR, RIM-CF

The spectral decomposition (11) of the variance paves the
way towards a simple non-iterative estimator of the sample. As
we underlined in the previous section, the eigenvalues {λn}
are expected to decrease as n grows. The Perron-Frobenius
theorem [18, p.18] ensures that the largest eigenvalue λ1 is of
multiplicity one so that the first eigenvector u1 is dominant in
the decomposition (11). We have observed numerically that,
for a classical imaging configuration (epi-fluorescence, NA
close to one), ∥u1∥22 / ∥t∥

2
2 ≈ 0.9 i.e., the contribution of the

first eigenvector accounts for nearly 90% of the energy of the
kernel (9). We thus propose to approximate the variance with
the first term of the decomposition,

vs(·; ρ) ≈ (u1 ⊗ ρ)
2
. (13)

To take the square root of this equation and obtain a lineariza-
tion of the RIM problem, we prove in Appendix B-A that u1 is
a real non-negative function, so we can safely rewrite Eq. (13)
as

σs(r; ρ) ≈ (u1 ⊗ ρ) (r). (14)

At this point, it is worth noting that the pre-filtering of
the speckled images breaks the positivity assumption for u1,
unless the pre-filter g is itself a non-negative function, which
is not the case of the Wiener-type pre-filter defined by (12).
Such a choice of pre-filter is thus a priori inappropriate for
the non-iterative method, but not redhibitory in practice.

Under the approximation (14), the incoherent RIM mi-
croscope can be understood as a linear (spatially invariant)
system equipped with a point spread function given by u1.
The frequency components of the sample might then be
retrieved within the support of the Fourier transform of u1.
The following proposition ensures that this frequency support
extends beyond the diffraction limit.

Property 1 Let ũ1 be the Fourier transform of u1 [the eigen-
vector associated with λ1 in the spectral decomposition (10)].
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Under the assumptions given in Appendix A, ũ1 is a non-
negative function whose support is given by

DSR = DPSF ⊖Dspec. (15)

Proof: See Appendix B-B.
Our mathematical analysis shows that, in first approxima-

tion, and provided Dspec = DPSF, the standard deviation
of speckled images can be modeled as the convolution of
the sample with a super-resolved point-spread function whose
Fourier support is that of h2, (i.e., without missing cone in
3D). This result explains the optical sectioning property of the
image standard deviation as proposed in the Dynamic Speckle
Illumination (DSI) approach presented in [19], [20].

Here, thanks to our knowledge of the convolution kernel u1,
we can leverage on (14) to further improve the sample estimate
over DSI. More specifically, we define our closed-form RIM
estimator, RIM-CF, as

ρ̂ = F−1

(
ũ1

|ũ1|2 + µ
F(σ̂s)

)
, (16)

where F and F−1 stand, respectively, for the Fourier trans-
form and its inverse. RIM-CF is basically a non-iterative
regularized deconvolution (performed in the Fourier domain)
of the empirical standard-deviation derived from (7)

σ̂s(r) = (max {0, v̂z(r)− vε})
1
2 (17)

with v̂z the empirical variance built from the set of microscope
images {zm}m; in this latter relation, the max function is
required because the fluctuations in the empirical statistic
v̂z(r) may lead to negative values when vε is subtracted (if
vε is unknown, one may use the technique proposed in [12,
Sec. IV]). The (Tikhonov) regularization parameter µ > 0 is
adjusted to get the expected regularity using RIM-CF [10,
Sec. 5.6].

IV. AN ACCELERATED ITERATIVE ESTIMATOR, RIM-STD

The RIM-CF estimator presented in the previous section is
based on an approximate modeling of the standard deviation
of the speckled images. To further improve the reconstruction,
it may be interesting to get back to a more accurate model
of the asymptotic standard deviation, i.e., many terms in the
spectral decomposition of the kernel t given in (10). In this
case, a direct inversion is not possible. Yet, bearing in mind the
quasi-linear behavior of the standard-deviation with respect to
the sample, an iterative reconstruction based on a standard-
deviation matching procedure is expected to converge quickly
and by all means faster than the variance-matching approach.
Note that replacing the variance by the standard deviation is
comparable to adopting an amplitude-based criterion rather
than an intensity-based one in a phase retrieval (PR) problem,
as recommended in [21], [22], for instance. Indeed, the RIM
reconstruction problem shares some common features with PR.
The similarities and differences between both problems are
detailed in Appendix D.

The standard-deviation matching algorithm, RIM-STD, it-
eratively estimates the sample so as to minimize a discretized
form of the cost functional

J(ρ ; µ) =
1

2
∥σ̂z(r)− σz(r ; ρ)∥22 +

µ

2
∥ρ(r)∥22 . (18)

The minimization of J is obtained using a preconditioned (or,
scaled) conjugate-gradient technique, as detailed below. A key
point of the algorithm lays in the preconditioning which allows
a spectacular improvement of the convergence speed while
requiring minimal computation time.

A. Numerical implementation of RIM-STD

The practical implementation of RIM-STD starts with an
explicit discretization of the continuous problem at hand, see
Appendix C-A for details. Let Diag(·) a diagonal matrix built
from a vector, and diag(·) a column vector extracted from the
main diagonal of a matrix. We also use the notation BCCB(·)
to define a Block Circulant with Circulant Blocks (BCCB)
matrix with an input vector as its first row [9, Chap. 4]. Once
discretized, the observation model (2) reads

zm = HDiag(Em)ρ+ εm (19)

where the unknown fluorescence map ρ, the mth microscope
image zm and the random quantities Em and εm are all N -
dimensional vectors. For the sake of simplicity, we adopt a
circular convolution model H = BCCB(h).

The N ×N covariance matrix corresponding to (3) reads

Γz(ρ) = Γs(ρ) + vεI (20)

where the first term in the r.h.s. is the covariance matrix
associated with the random illumination

Γs(ρ) = HDiag(ρ)ΓEDiag(ρ)H (21)

with ΓE = BCCB(γE) the covariance matrix associated with
the second-order stationary random vectors Em. The second
term in the r.h.s. is the identity matrix I scaled by a scalar
variance vε ≥ 0 since it is the covariance of the assumed white
CCD readout noise. These covariance matrices play the role of
a model in our fitting strategy, hence the explicit dependency
on the (unknown) sample ρ in our notations. Finally, the
discretized version of the variance equation (7) reads

vz(ρ) = vs(ρ) + vε with vs = diag (Γs) . (22)

The computation of the (super-resolved) solution then relies
on the iterative (and local) minimization of a criterion derived
from (18)

J(ρ ; µ) =
1

2
∥σ̂z − σz(ρ)∥22 +

µ

2
∥ρ∥22 (23)

where ∥ · ∥2 is the usual Euclidian norm in RN , σ̂z is the
empirical standard deviation of the stack of M microscope im-
ages and σz(ρ) is the (pointwise) square-root of the expected
variance vector given in (22). To derive the latter quantity, we
stress that the actual computation of Γs is not needed. Instead,
and in a strategy similar to the one developed in Sec. II-B1,
we provide a low-rank approximation of vs(ρ) directly from
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the spectral decomposition of a matrix operator that is analog
to the kernel t(·, ·) given in (9). See Appendix C-A for details.

In order to minimize (23), we adopt a nonlinear conjugate-
gradient (NGC) method, which is an effective, reference
tool to tackle large-scale nonlinear least-square problems [16,
Sec. 5.2]. In addition, the NGC iterations can be appropri-
ately “scaled” with a preconditioning matrix to accelerate the
convergence [16, p.118]. In the framework of RIM-STD, we
propose to rely on a preconditioning matrix S that is BCCB
and non-negative definite (NND), cf. Appendix C where such
a choice is justified with respect to the Hessian matrix.
Indeed, we would obtain the same preconditionner using a
Majorization-Minimization (MM) construction, following the
lines of [23, Sec. III.B], once adapted to RIM according to
Appendix D.

Starting from a given initial guess ρ0 ∈ RN , the updated
sample estimate ρk is given by

ρk+1 = ρk + αkdk k = 1, 2, . . . (24)

with

dk =

{
−(S+ µIN )−1gk if k = 0,
−(S+ µIN )−1gk + βkdk−1 otherwise (25)

where gk is the gradient of (23) evaluated at the current
estimate ρk, αk is the current step-length and S is the BCCB
preconditioner that is invariant over the course of iterations.
We adopt the Polak-Ribière conjugaison formula (PR+) [16,
p.122] for the conjugaison factor βk:

βk = max

(
(gk − gk−1)

tSgk
gtk−1Sgk−1

, 0

)
. (26)

The expression of the gradient gk, of the precondtioner S and
the derivation of the step-length αk, are given in Appendix C.

Since this NCG scheme only fulfills a local convergence
property, the initialization step must be carefully considered.
For instance, with a sample that consists in a pair of pointwise
emitters, we extensively tested randomly chosen initial points
without any sign constraint. Some of them converged to dis-
tinct critical points, which were presumably local minimizers.
Whereas most of these local solutions were not very different
from the global one, some of them were indeed spurious
solutions associated with relatively high criterion values. In
the same situation, all randomly chosen, non-negative initial
points converged to the global minimizer. Whereas we have
no formal proof to support that spurious local minima can be
avoided with any specific initialization3, non-negative initial
points were found effective in all the practical cases we tested
so far, be they simulated or real. Specifically, the non-iterative

3From the structure of model (8), we derive that criterion (23) is symmetric
about ρ = 0, which is a local maximizer (hence not an appropriate start for
the algorithm). It follows that if ρ̂ is a local minimizer, then −ρ̂ is. When
the algorithm is started with unsigned random initial-guesses, this structural
symmetry is probably at the origin of the spurious minima that are found by
the iteration. Finally, we recall that model (8) is insensitive to any frequency
component of ρ outside the frequency domain DSR := DPSF ⊖ Dspec.
Thus, the gradient of the STD-fitting is also insensitive to those frequency
components and any frequency component outside DSR in the initial-guess
will be ultimately suppressed by the algorithm provided that µ > 0 (which
is required in practice).

estimator RIM-CF proposed in the previous section is a natural
initial point.

The memory ressource required to build the update (24)
is clearly seen from (26): we need to store and manipulate
the BCCB matrix S and two (N -dimensional) successive
gradients. Matrix-vector products involving S (like the ones
in (25) and (26)) are performed in O(N logN) operations via
the Fast Fourier Transform (FFT), and the storage of S boils
down to an N -dimensional vector precomputed beforehand.

With the low-rank approximation described above, RIM-
STD benefits from a reasonably low computational burden per
iteration. Actually, this algorithm has a similar computational
cost per iteration than RIM-VAR, but it requires far fewer
iterations to reach convergence as seen in the next section.

V. RESULTS IN SIMULATION

In this section, we compare the three different reconstruction
strategies RIM-VAR, RIM-CF and RIM-STD on synthetic
data. Hereafter, we only consider imaging configurations in
which Dspec = DPSF so that the sample frequencies should,
in theory, be recovered in DSR = DPSF ⊖ DPSF, (which
corresponds to the Fourier support of h2).

We first illustrate the convergence issue of RIM-VAR and
RIM-STD on a toy, one-dimensional (1D) problem where
the sample is a Dirac and DPSF = [−νPSF, νPSF] where
νPSF = 2/λ with λ the wavelength of the fluorescent light.
We display the recovered Fourier spectrum of the sample
for different number of the iterations of RIM-VAR or RIM-
STD. It is clear from Fig. 1 that the convergence speed
of RIM-VAR is too low to produce the full resolution gain
(DSR = [−2νPSF, 2νPSF]), even after thousands of iterations.
In comparison, RIM-STD reaches the resolution limit in less
than 100 iterations. Generally, the computation time of RIM-
STD to reach convergence is two orders of magnitude lower
than that of RIM-VAR.

Then, we analyse the resolution gain of the novel re-
construction schemes RIM-CF and RIM-STD. Fig. 2 dis-
plays the 2D reconstructions of a star-like pattern performed
from asymptotical (noise-free) standard-deviation images us-
ing RIM-CF and RIM-STD. For a 256 × 256 image, on a
standard desktop computer4, RIM-CF is obtained in about 0.01
seconds, while RIM-STD about 3.5 seconds (100 iterations to
reach convergence). The comparison with the deconvolution of
the wide-field image shows unambiguously the resolution gain
brought by the iterative and non-iterative versions. However,
in this ideal noiseless configuration, the error model in RIM-
CF takes its toll and RIM-CF is significantly less resolved
than RIM-STD. Interestingly, we note that the reconstruction
of RIM-CF is better when the microscope images are pre-
filtered according to (12), even though the positivity of u1 is
not granted in that case (hence the derivation of (14) from
(13)). The absence of visible artefacts in this non-ideal case
can be explained by the fact that u1 is nearly non-negative.

Last, we consider a synthetic 3D sample made of micro-
tubules [24] and we compare RIM-CF, RIM-STD and RIM-
VAR transverse and axial reconstructions produced from the

44 CPUs, Intel(R) Xeon(R) CPU E5-1607 v3 @ 3.10GHz, 16 GB of RAM
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(a)
RIM-VAR

(b)
RIM-STD

Fig. 1. (a)-(b) Resolution gain of RIM-VAR and RIM-STD (with pre-filtering)
as a function of the iteration number, on a toy 1D problem involving a single
pointwise emitter, with DPSF = Dspec = [−νPSF, νPSF], so DSR =
[−2νPSF, 2νPSF]. The function ρ̃ being symmetric, we only represent its
positive frequency components. The portion in dark gray is beyond 2νPSF,
i.e., out of reach for RIM.

asymptotic variance image and from an empirical (using 1000
speckled images) variance image. Note that in this 3D context,
as predicted by the analysis in [5], RIM should provide optical
sectioning since the accessible sample Fourier domain DSR =
DPSF⊖DPSF does not exhibit any missing cone [1, Sec. 5.4].
For this data stack 512× 256× 128, the computation time for
RIM-CF is around 0.6 seconds, while for both RIM-STD and
RIM-VAR, the computation time is 25 seconds, corresponding
to the time it took for RIM-STD to reach convergence. Both
these iterative approaches start from a constant initial guess
showing that RIM-STD dramatically outperforms RIM-VAR
in term of convergence speed. Different observations can be
drawn from Fig. 3.

On asymptotic data, RIM-STD achieves RIM theoretical
resolution bounds Fig. 3(b) both in the transverse and axial
directions. RIM-CF Fig. 3(e) is not as efficient but it im-
proves signifciantly the sample estimation as compared to the
wide-field deconvolution or the raw standard-deviation image,
Fig. 3(c,d).

In more realistic conditions, using 1000 noisy speckled
images to compute the empirical variance, RIM-STD exhibits
a loss of resolution compared to the asymptotic regime while
RIM-CF is minimally affected. As a result, RIM-STD recon-
struction is now very similar to RIM-CF, see Fig. 3(f,g). In this
case, the model error due to the truncation of (11) in RIM-CF
may be negligible compared to the model error consisting in
estimating the variance with an asymptotic expression while
the actual data is an empirical variance formed with a finite
number of illuminations. In practice, the data are also deterio-
rated with Poisson or electronic noise and RIM-STD and RIM-

(a) (b)

(c) (d)
Fig. 2. Proof of the super-resolution induced by RIM in a 2D asymptotical
noiseless case. (a) True object. (b) Wide-field deconvolution. Obtained by
taking E equal to a constant in (1). (c) Reconstruction using the non-iterative
estimator RIM-CF, with (lower) and without (upper) data pre-filtering. (d)
Reconstruction using RIM-STD The dashed and solid lines are indicators
of the resolution level achievable with a cutoff frequency νPSF and 2νPSF

respectively.

CF are going to behave differently under these various sources
of error. A theoretical analysis being out of reach, a more
pragmatic approach is to investigate how these methods behave
via Monte-Carlo simulations. Such an analysis is reported in
Appendix E, from which we conclude that, while RIM-STD
is clearly superior to RIM-CF in ideal conditions, RIM-STD
resolution and overall statistical behavior is only slightly better
than that of RIM-CF in noisy, non asymptotic configurations.

VI. CONCLUSION

The main contribution of this paper has been to show that,
with a slight model error, the standard deviation of microscope
images obtained under random speckled illuminations can
be written as the sample convolved with a super-resolved
point spread function. This result leads to a very simple
and fast RIM reconstruction scheme, RIM-CF, which proved
efficient in various imaging configurations. To further improve
the resolution gain, we also developed an iterative estimator
based on a standard-deviation matching procedure, avoiding
the model error. We have shown that this novel algorithm,
RIM-STD, was able to provide resolution gains similar to the
expected theoretical ones with less than one hundred iterates.
This fast convergence is due to the quasi-linear behavior of
the image standard deviation with respect to the sample and
the use of an appropriate preconditionner. We believe that
the speed and the performances of RIM-STD and RIM-CF
are major assets for extending the applicability of RIM and
its ease of use. The two-fold resolution improvement and
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XY
(a) (b) (c) (d)

(e) (f) (g) (h)

XZ
(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. RIM simulation with an object representing microtubules (cf. [24]). The top and bottom halves represent XY and XZ cuts, respectively. (a) Ground truth.
(b) Ground-truth bandwidth limited image, matching the inversion of the asymptotical, standard deviation with RIM-STD. (c) Average of M = 1000 speckled
microscope images. (d) Empirical standard deviation of the same M = 1000 speckled images. (e) Non iterative estimation RIM-CF, with the asymptotic
standard deviation (case corresponding to M = ∞). (f)-(h) Reconstruction with RIM-CF, RIM-STD and RIM-VAR respectively, from the empirical standard
deviation image shown in (d). In all simulations, we set Dspec = DPSF, so the identifiability domain is D′

SR = DSR = DPSF ⊖DPSF.

optical sectioning of the reconstructions, together with the
low computational burden, make RIM-CF and RIM-STD the
methods of choice for three-dimensional imaging.

APPENDIX A
ADOPTED ASSUMPTIONS

The scope of this paper is restricted to incoherent imaging,
which implies the following standard assumptions concerning
the quantities in the observation model (2)

A1) ρ is both integrable and square-integrable and takes finite,
real non-negative values over Rd;

A2) h is a (real-valued) non-negative, symmetric function that
is non-zero almost everywhere;

A3) h has a finite energy, which implies the existence of its
Fourier transform h̃.

A4) h̃ is a non-negative function with a bounded support
DPSF := {x ∈ Rd | h̃(x) ̸= 0}.

A5) E and ε are mutually independent and second-order
stationary.
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A6) The auto-correlation functions of E and ε, denoted here-
after γE and γε, are real-valued positive functions known
a priori (see for instance [7, Chap. 4] for a justification).

A7) The support Dspec of the Fourier transform of γE (i.e.,
of the spectral energy density) is bounded and such that
Dspec ⊆ DPSF.

We note that assumptions A1-A2 are specific to the case of
incoherent imaging, and are then slightly more restrictive than
the ones given in [5, Sec. II], i.e., the main identification results
of RIM [5, Prop. 3] and [6, Th. 2] hold here.

APPENDIX B
PROPERTIES OF EIGENVECTOR u1

A. Positivity

In order to prove that u1 is positive, let us first define an
integral operator associated with kernel t introduced in (9):

T : Φ 7→
∫
t(x,x′)Φ(x′) dx. (27)

Lemma 1 below shows that T has many good properties.
In particular, it is a compact self-adjoint operator, so the
spectral theorem [25, Chap. 3] applies. Hence, T can be
decomposed on the orthonormal basis of its eigenvectors via
a decomposition of its kernel t, i.e., there exists a countable
family {ψn |n ≥ 1} such that

t(x,x′) =
∑
n≥1

λnψn(x)ψn(x
′) (28)

where ψn is an orthogonal basis of eigenvectors for the
operator T and λn are the associated eigenvalues. Since
the operator is self-adjoint, {λn}n≥1 are real-valued. The
eigenvalues, ordered by decreasing magnitude, are such that
the limit of the sequence is zero as n grows to infinity.

The Krein-Rutman theorem can be used in order to prove
the positivity of u1 :=

√
λ1ψ1. For the sake of completeness,

this theorem is stated below with our notations.

Theorem 1 [18, Th. 19.2]. Let X be a Banach space and
K ⊆ X a convex cone so that K ⊖K is dense in X (K is a
total cone). Let T : X 7→ X be a positive (i.e., T (K) ⊆ K)
compact operator with a positive spectral radius r(T ). Then
r(T ) is an eigenvalue of T and the associated eigenvector lies
within K \ {0}.

In what follows, we check that the assumptions of the Krein-
Rutman theorem hold for the integral operator (27). Let us
first review the key properties of kernel t defined in (9).

Lemma 1 t : Rd × Rd 7→ R is symmetric, i.e., t(x, x′) =
t(x′, x), and it is strictly positive almost everywhere. Fur-
thermore, we have

∫∫
|t(x′, x′)|2 dx dx′ <∞.

Proof: With the assumptions on h and γE in mind (see
A2 and A6 in Appendix A, the first part of the lemma are
direct consequences of the definition of the kernel given in (9).
Finally, E being a second-order stationary process (A5), its
auto-correlation is such that |γE(x)| ≤ γE(0) < ∞, i.e., γE

is bounded. The assumption h ∈ L2(Rd) then leads to t ∈
L2(Rd × Rd), which completes the proof.

We are now in position to prove that Theorem 1 applies. In
particular,

1) Let X = L2(Rd) be the set of square integrable
functions over Rd. X is an Hilbert space, and thus is
also a Banach space. Let K be the set of non-negative
functions in X . K is a total cone since K ⊖ K = X
as any function is the difference of its positive and
negative parts: f = f+ − f− with f+ = max(0, f) and
f− = −min(0, f), both being non-negative functions.

2) As a consequence of Lemma 1, T is an endomorphism
of L2(Rd).

3) Since t is a symmetric kernel, T is self-adjoint and can
be decomposed on a countable basis of eigenvectors.

4) Consequently, the spectral radius of T is by definition
r(T ) := sup{|λn| | n > 1}. Without loss of generality,
the eigenvalues can be ordered by decreasing magnitude,
so that r(T ) = |λ1| ≥ 0. Furthermore, for Hilbert-
Schmidt operators, the energy of the kernel is finite and
given by ∥t∥22 =

∑
n≥1 λ

2
n. In particular, |λ1| > 0 when

∥t∥2 > 0, which is the case according to Lemma 1.
5) Finally, t being a non-negative integral kernel, T is

a positive operator. Jointly with the previous point,
this ensures that λ1 > 0. In addition, since T is an
endomorphism, any L2 function applied to T is also in
an L2, which implies T (K) ⊂ K.

The conditions in Theorem 1 being met, the first eigenvector
u1 :=

√
λ1ψ1 is in K \ {0}, i.e., it is a non-negative function.

Let us stress that we were not able to show the desirable
property that the spectral radius is associated to a single eigen-
vector. In a finite-dimensional setting (i.e., when t is a matrix),
such a result holds as a consequence of the Perron-Frobenius
theorem. In the infinite-dimensional setting, a stronger version
of the Krein-Rutman theorem would be necessary, but the
existing ones (e.g., [18, Chap.6]) do not apply to the L2(R)-
space considered here.

B. Proof of Propositiion 1

Here, we prove that the Fourier support of u1 is exactly
DSR. We first note that ũn := F(un) are the eigenvectors of
an integral operator, with a kernel given by

t̃(ν,ν′) =

∫∫
t(x,x′)e−2iπ(ν·x−ν′·x′) dx dx′. (29)

Inserting (9) into (29) leads to

t̃(ν,ν′) =

∫
h̃(ξ − ν)h̃(ξ − ν′)γ̃E(ξ) dξ. (30)

When h̃ and γ̃E are positive (as it is the case here, see
Appendix A), t̃ is also positive and the non-negativity of
ũ1 follows from the Krein-Rutman theorem with arguments
similar to the ones used in Appendix B-A. We can now show
the following result.
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Lemma 2 For all ν, the support of f̃ν : ν′ 7→ t̃(ν,ν′) is

Df̃ν
=
(
Dspec ∩ ({ν} ⊕ DPSF)

)
⊖DPSF.

Proof: According to (30), f̃ν is the correlation between
h̃ and g̃ν : ξ 7→ γE(ξ)h̃(ξ − ν), given ν ∈ Rd. The support
of g̃ν is the intersection of the supports of γE and h̃(· − ν):

Dg̃ν = Dspec ∩ ({ν} ⊕ DPSF).

Then, as f̃ν is the correlation of two non-negative functions h̃
and g̃ν , its support is the Minkowski difference Dg̃ν ⊖DPSF,
hence the result.

The following corollary is a direct consequence of Lemma 2.

Corollary 1 We have
(i) ∀ν /∈ DSR, Dspec ∩ ({ν} ⊕ DPSF) = ∅, so Df̃ν

= ∅.
(ii) Dspec ⊆ DPSF (see assumption A7 in App. A)

=⇒ Dspec ∩ ({0} ⊕ DPSF) = Dspec, so Df̃0
= DSR.

We can now proceed to the proof of Proposition 1. First, we
have

∀ν,
[
T̃ ũ1

]
(ν) = λ1ũ1(ν) =

∫
t̃(ν,ν′)ũ1(ν

′) dν′. (31)

as a direct implication that ũ1 is an eigenvector of integral
operator T̃ . Then, we consider first the case ν /∈ DSR: we
already noticed from Corollary 1(i) that the kernel of this
integral is uniformly zero, as its support is empty. Since λ1
is not zero, (31) leads to ∀ν /∈ DSR, ũ1(ν) = 0. In particular,
this means that the support of ũ1 (denoted Dũ1

in the sequel)
is such that Dũ1

⊆ DSR.
Now that we established that Dũ1

is smaller than DSR, we
aim at showing that ũ1 cannot vanish inside DSR. Let ν0 ∈
DSR be such that ũ1(ν0) = 0. Then, we have from (31)

λ1ũ1(ν0) =

∫
t̃(ν0,ν

′)ũ1(ν
′) dν′ = 0.

As both t̃ and ũ1 are positive functions, this implies that ũ1
must vanish wherever the function f̃ν0

: ν′ 7→ t̃(ν0,ν
′) is not

zero. Following Lemma 2, this means that ũ1 vanishes on the
domain Df̃ν0

. We now prove the following result.

Lemma 3 ∀ν0 ∈ DSR, we have 0 ∈ Df̃ν0
.

Proof: By definition of DSR given by (15), ∃ ξ1 ∈
DPSF, ξ2 ∈ Dspec such that ν0 = ξ1 − ξ2 ∈ DSR, or
equivalently

0 = (ν0 − ξ1) + ξ2. (32)

We then deduce that
1) With h real (assumption A2), DPSF is symmetric and

−ξ1 ∈ DPSF, so (ν0 − ξ1) ∈ {ν0} ⊕ DPSF.
2) With γE real (assumption A6), Dspec is symmetric and

−ξ2 ∈ Dspec. As a consequence, (ν0 − ξ1) = −ξ2 ∈
Dspec.

3) A7 =⇒ Dspec ⊆ DPSF, so −ξ2 ∈ DPSF.
We have (ν0 − ξ1) ∈ Dspec ∩ ({ν0} ⊕ DPSF) according to
1) and 2), and (−ξ2) ∈ DPSF according to 3). Since (32) is
equivalent to

0 = (ν0 − ξ1)− (−ξ2), (33)

by definition of Df̃ν0
, (33) is equivalent to 0 ∈ Df̃ν0

.

If ũ1 vanishes over the domain Df̃ν0
, we have in particular

ũ1(0) = 0 since 0 ∈ Df̃ν0
from the lemma above. We can now

use the same derivation with ν0 = 0. Then, Corollary 1(ii)
yields that ũ1 vanishes over DSR, which contradicts the fact
that ũ1 is the first eigenvector of a nonzero integral operator.
Thus, there is no frequency ν0 ∈ DSR such that ũ1(ν0) = 0,
and DSR ⊆ Dũ1

.
Since Dũ1

⊆ DSR and DSR ⊆ Dũ1
, we have Dũ1

= DSR.

APPENDIX C
NUMERICAL IMPLEMENTATION OF RIM-STD

A. Discretization of the problem
Let us discretize a d-dimensional space variable r ∈ Rd

on a regular grid G. This grid consists in N elements (i.e.,
segments, pixels or voxels) indexed by their spatial coordinate
vector rn, n = 0, . . . , N−1. For any band-limited function f :
Rd → R, the N element vector f :=

(
f(r1), . . . , f(rN )

)t
defines a lossless sampling of f as long as each discretization
step meets the Nyquist criterion. In a similar way, any kernel
t : Rd×Rd → R can be discretized to provide N×N matrices.
In particular, it is easy to discretize kernel (9) as a definite
non-negative matrix

T = Diag(h)ΓE Diag(h) (34)

with h the discrete version of the PSF h and ΓE =
BCCB(γE), a BCCB matrix defined by the auto-correlation
of the speckle. After introducing shifting matrices Pn, per-
forming circular shifts so that pixel n is now at position
1, the discretized version of the variance (7) reads vz =
(vz;1, . . . , vz;N )t with vz;n := vz(rn) given by

vz;n = ρtPt
nTPnρ+ vε = ρ

tTnρ+ vε (35)

with Tn := Pt
nTPn. For the sake of notational convenience,

we will drop the subscript z hereafter. Matrix T can be
decomposed on its basis of eigenvectors {ψ1, . . . , ψN} as

T =
K∑

k=1

λkψkψ
t
k =

K∑
k=1

uku
t
k (36)

where K ≤ N is the rank of T, λ1, . . . , λK > 0, Tψk =
λkψk, and uk =

√
λkψk. Using the shift properties of the

eigenvectors of Tn, the variance vector can be given the
following expression

v =

K∑
k=1

(Ukρ)⊙ (Ukρ) + vε (37)

with Uk = BCCB(uk) and ⊙ the Hadamard (e.g., entry-wise)
product. This equation is the discretized counterpart of (11).
Criterion J given in (23) then reads

J(ρ) =
1

2

N∑
n=1

(
σn(ρ)− σ̂n

)2
+
µ

2
∥ρ∥22 (38)

with σn(ρ) = (ρtTnρ + vε)
1
2 and σ̂n :=

√
v̂n. We recall

that in practice, a reduced-rank approximation of T is usually
performed with ten to twenty eigenvectors, resulting in a fast
yet accurate evaluation of (35).
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B. Computation of the gradient

We have

∂J

∂ρ
=

N∑
n=1

∂σn
∂ρ

(ρ)
(
σn(ρ)− σ̂n

)
+ µρ

=

N∑
n=1

((
1− σ̂n

σn(ρ)

)
Tnρ

)
+ µρ. (39)

=

K∑
k=1

[
Ut

kUkρ⊙ σ(ρ)− σ̂
σ(ρ)

]
+ µρ, (40)

The division in this expression is done entrywise. We recall
that thanks to the contribution of the electronic noise, it is
guarantee that σ(ρ) only has non zero entries, so the gradient
is well defined. Furthermore all operations involved in this
computation can be done entry-wise in either the direct or the
Fourier space, so the computation can be done efficiently.

C. Specification of a preconditioner

Differentiating expression (39) yields the Hessian matrix:

H(ρ) =

N∑
n=1

(
σn(ρ)− σ̂n
σn(ρ)

Tn − σ̂nTnρρ
tTn

σn(ρ)3

)
+ µIN

= S+ µIN −
N∑
n

σ̂n
σn(ρ)

( 1

vn(ρ)
Tnρρ

tTn +Tn

)
with S :=

∑N
n=1 Tn. For our problem, we stress that H(ρ)

may not be NND. Moreover, its size prevents a priori its
direct use in any Newton or quasi-Newton scheme. Matrix S
is nevertheless NND (as a sum of NND matrices). Moreover,
we have S = BCCB(s) with

s̃ =

K∑
k=1

|ũk|2. (41)

As a consequence, matrix S+µIN is a positive definite BCCB
matrix, and thus a natural candidate to be a preconditionner,
yielding a scaling of the gradient at an O(N log(N)) com-
plexity.

D. Stepsize computation

We propose to use a line-search backtracking strategy to
find a suitable step αk for iteration (24). In order to grant
convergence of the PCG iteration, we ensure that the stepsize
meets the standard Armijo-Goldstein condition through back-
tracking [16]. The initial step of the backtracking subroutine is
given by a 1D Newton step along the current descent direction

ᾱk =
W ′

k(0)

W ′′
k (0)

(42)

with Wk(α) = J(ρk + αdk). Such an initial step being
often accepted by the Armijo rule, the average number of
backtracking iterations is limited over the whole minimization
process. Furthermore, this step can be given a closed-form

expression. This computation is straighforward, and yields the
following expression for the initial step:

ᾱ =

∑N
n=1Bn

(
1− σ̂n

σn

)
+ µdtρ∑N

n=1

(
An − B2

n

σn

)(
1− σ̂n

σn

)
+

B2
n

σn
+ µ||d||2

. (43)

With

An = dtTnd (44)
Bn = dtTnρ (45)

Using the decomposition of T0, the whole set of An and
Bn can be computed with an O(N logN) complexity, leaving
of the overall complexity of the algorithm unchanged.

APPENDIX D
PARALLELS BETWEEN RIM AND PHASE RETRIEVAL

A common expression for phase retrieval (PR) problems
found in the literature is

y2n = |a†
nx|2 (46)

in the noiseless version (cf. [21], [26]–[28]). If we restrict our
attention to real-valued problems, an,x ∈ RN and we have

y2n = xtAnx, (47)

An = ana
t
n being a rank-one NND matrix. For RIM, the

noiseless variance model reads

σ2
n = ρtTnρ (48)

where Tn is an NND matrix whose rank is usually K ≪ N .
Clearly, this relation retains the quadratic structure of the PR
problem with the rank-one condition removed. Indeed, RIM
falls within the category of Generalized Phase Retrieval (GPR)
problems, according to [29], [30]. since RIM-CF makes use
of a rank-one approximation for Tn, it is formally identical to
a real-valued, non-negative (and thus trivially solved) instance
of a PR problem.

A standard question in PR and GPR problems is to ensure
that the measurement elements An are sufficiently diverse to
ensure that the solution is unique (up to a factor of modulus
one). Recent contributions focus on random measurement
operators to provide such a diversity with a high probability.
However, this cannot be applied to RIM, since in the latter
case, the available data correspond to Fourier measurements
at the output of an optical system. As a consequence, identi-
fiability results are rather to be derived in a specific way, as
explored in [5], [12].

APPENDIX E
CHARACTERIZATION VIA MONTE CARLO SIMULATIONS

Let us resort to Monte-Carlo simulations (MC) to investigate
the behavior of our iterative and non-iterative RIM estimators.
To prevent an inevitable explosion of the total simulation time,
we use a 1D “chirp” function (i.e., the 1D equivalent of the
spoke-pattern shown in Fig. 2) that reads

ρ(r) =
1

2
+

1

2
cos
(
2πf0r

2
)
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Fig. 4. Illustration of the simulation environment. The top image represents a
speckled measurement before and after the addition of the noise. The bottom
image represents both the empirical and model variances used within RIM-
VAR, in the case where 500 speckles have been generated. It is noticable
that the empirical variance is roughly the speckled variance shifted by a fixed
amount (here, roughly 25), corresponding precisely to the variance of the
additive noise pledging the data. With 500 speckles, there remains significant
differences between the empirical variance and the model variance.

where f0 = 30 controls the frequency domain spanned by the
chirp. A total of N = 1024 points evenly sampled over the
domain r ∈ [−1, 1] are computed, resulting in a symmetric
numerical object ρ ∈ RN

+ (the symmetry also helps to mitigate
circular boundary effects that may arise from replacing FT by
FFT in the reconstruction methods).

We also consider a 1D imager model whose OTF h̃ =W †h
is a discretized triangle function —a rather standard assump-
tion, see [31, Chap. 6]. The cutoff frequency of the OTF is
set to fc = 40, so that iterative methods using noise-free (i.e.,
asymptotical) statistics should retrieve the chirp perfectly.

In order to get statistically meaningful results, we consider
2.500 reconstructions of the same object from independent
datasets, all generated from the (discretized) RIM observation
model given in (19)5. Each reconstruction first requires the
generation of a series of M = 500 (1D) microscope observa-
tions {zm}Mm=1 obtained from an identical number of random
speckle illuminations {Em}Mm=1. The autocorrelation function
of the illuminations is set to γE = E2

0 × h, with E0 ∈ R+

the expected value of the illuminations and h the PSF of the
microscope (a setting consistent with a standard fluorescence
microscope working in epi-illumination, see for instance [7]);
the expected illumination is set to E0 =

√
20 for the whole

experiment. Finally, each image zm is plagued with additive
Gaussian noise, with a variance of γε = 25. Fig. 4 shows some
intermediate quantities generated in one simulation, namely

5In the 1D case, the BCCB matrices are simply circulant matrices.

one acquisition zm, as well as the statistics derived6 from the
M = 500 observations in the current dataset.

The results of the MC simulation are given for several values
of the regularization parameter µ in Figs. 5 and 6, respectively
for RIM-CF and RIM-STD, with the truncature level K = 10.
Let us recall that a given tuning of µ achieves a reconstruction
quality within a bias vs. variance tradeoff [9, Chap. 4]. We
can then identify three distinct regims in these results. When
µ is too low (e.g., µ < 10−2 here), the retrieved solutions
are subject to a large amplification of the various sources of
noise; in this situation, we note that the iterative estimates
remain almost free of bias. When µ is too large (e.g., µ ≥ 100

here), over-regularization is killing the noise amplification at
the expense of a severe loss in the maximal resolution. For
both estimators, the reconstruction variance is then small, but
the bias is large. Finally, when the value of µ is intermediate,
the fluctuation and the bias in the estimates are kept “under
control”. In such a case, the iterative reconstruction RIM-STD
shows almost no bias and achieves a lower variance than RIM-
CF.

Similarly, Figs. 7 and 8 represent the proposed estimators
applied after the data pre-filtering procedure proposed in
Sec. II-B2. Raw images have then been convolved with the
filter g defined by (12), with η = 10−5. As a result, the
triangular OTF has been nearly inverted on its domain, so the
equivalent OTF h⊗g is a top-hat function with an unchanged
cutoff frequency. In this case, the iterative algorithm RIM-STD
yields comparable results, both with and without pre-filtering.
This is not surprising since the main goal of pre-filtering is to
increase the convergence speed of the algorithm by increasing
the sensitivity to higher frequency components. Finally, we
note that performing RIM-CF (see Figs. 5 and 7) with pre-
whitened data provides an overall improvement of the solution.
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