
HAL Id: hal-04139064
https://hal.science/hal-04139064

Submitted on 23 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applying MapReduce principle to High level
information fusion

Claire Laudy, Johann Dreo, Christophe Gouguenheim

To cite this version:
Claire Laudy, Johann Dreo, Christophe Gouguenheim. Applying MapReduce principle to High level
information fusion. 17th International Conference on Information Fusion, International Society on
Information Fusion, Jul 2014, Salamanca, Spain. pp.1–8. �hal-04139064�

https://hal.science/hal-04139064
https://hal.archives-ouvertes.fr

Applying MapReduce principle to High level
information fusion

Claire Laudy
Thales Research & Technology
claire.laudy@thalesgroup.com

Johann Dreo
Thales Research & Technology
johann.dreo@thalesgroup.com

Christophe Gouguenheim
Thales Research & Technology

christophe.gouguenheim@thalesgroup.com

Abstract—The InSyTo Synthesis framework is based on graph
structures, graph algorithms and similarity measures for soft
data fusion managing inconsistencies. The framework can be
used to enable non-redundant additions to an information net-
work, as well as graph based information query on several
applications. The graph fusion algorithm relies on the search
of a maximum common subgraph isomorphism, which makes it
a difficult problem, especially on large graphs. In this work, the
subgraph matching algorithm is partially parallelized, based on
the MapReduce approach and on the Hadoop framework. Using
Hadoop enables the management of big graphs, first by avoiding
the load of the graphs in memory and secondly by distributing the
computations over several processing nodes. Our experiments on
the Global Terrorism Database (which contains the descriptions
of more than 113,000 terrorist attacks in a graph of more than
20,000,000 nodes) shows that InSyTo Synthesis now scales to so-
called “big data” applications.

I. INTRODUCTION

Soft data fusion is an ever growing trend in the information
fusion community. More and more tracks dedicated to soft
information are organized within the International Conference
on Information Fusion over the years and numerous authors
stress the need for soft data management and fusion. For
instance in the detection of people and complex activities,
the use of soft information sources is critical. The authors
of [1] describe a 5 year program involving several academic
actors that aim at addressing major stakes of soft data fusion. It
includes the development of a framework as well as evaluation
methods. In addition, many authors relate about new issues
raised by soft data fusion. Among them [2] and [3] quote
natural language processing, transformation of data into com-
prehensive and semantic data structures, soft data association
and graph matching. Studies such as [4] and [5] emphasize on
the importance of integrating soft data in situation awareness
support systems. As the automation of soft data fusion is a very
challenging issue, due to, e.g., error estimation, normalization
and context extraction for information interpretation, the au-
thors propose a mixed approach that embeds the participation
of a human analyst to the fusion process.

Within their day to day work, intelligence analysts pile up
a large amount of information. The different information items
are linked through a big information network, as the analysts
express part of their reasoning and domain knowledge through
links between different pieces of information, piled up within
one or more working sessions. One of the issue for using such
an amount of information is to be able to access relevant parts
of it efficiently. For example, this enables highlighting schemes

of actions of terrorist groups, recognize modus operandi and
deviation from usual behavior for instance.

We previously developed a framework based on graph
structures, graph algorithm and similarity measures for soft
data fusion managing inconsistencies (InSyTo Synthesis v1 [6],
[7]). The use case presented in [8] dealt with the management
of an information network containing descriptions of entities
(companies, universities...) that collaborate through several
media such as research project, scientific papers and so on.
The InSyTo Synthesis framework was used to enable non-
redundant information addition to the information network,
as well as graph based information query. This network
contains more than 10000 nodes and the operations took a
few seconds. The processing time was operationally accepted
and the memory load was not an issue. However, the new step
envisioned for our work on soft data fusion, was to enable the
management of bigger graphs.

The graph fusion algorithm relies on the search for matches
between sub-graphs and more precisely for a maximal match-
ing subgraph. Maximal subgraph matching is used in order to
determine where to add information in an information graph,
and which parts of two information graphs are redundant and
should thus be fused rather than be repeated twice in the graph
resulting from the fusion.

The decision problem of whether two graphs match is
well studied and is in NP [9]. But the problem of finding
matching subgraphs, known as the subgraph isomorphism
problem, is known to be NP-complete and difficult to solve
in parallel [10]. This problem is well studied and have leds
to a lot of algorithms, among which several have been par-
allelized [10], [11], [12]. The most difficult graph matching
problem in our case is to find the set of subgraphs that
maximize the matching. This maximum common subgraph
isomorphism problem (MCS) is known to be NP-hard [13],
which makes it intractable on large graphs [14]. It is thus
often solved with tools from the combinatorial optimization
domain [15], [16] like constraint programming [17], [18], but
the parallelization of MCS algorithms remains to be studied.

The InSyTo Synthesis fusion algorithm relies on subgraph
isomorphism and maximum subgraph isomorphism algorithms.
Both those algorithms must solve highly combinatoric prob-
lems, on which the execution time may become too long to
satisfy user requirements. To manage this problem, we present
a new version of the InSyTo Synthesis framework in which
the subgraph isomorphism algorithm is partially parallelized.
Our approach is based on the MapReduce principle and

the implementation use the Hadoop framework [19]. Using
Hadoop enables the management of big graphs by avoiding the
load of the graphs in memory and distributing the computations
over several processing nodes.

The paper is organized as follows. The second section is
dedicated to the presentation of the soft data fusion algorithms.
We present the approach that relies on the use of conceptual
graphs formalism to express the information graphs. We also
present the limitations of the first version of the soft data
fusion framework. The third section presents the paralleliza-
tion of those algorithms, which permits the management of
bigger data graphs. After a short presentation of the Hadoop
framework parts on which our work relies, we describe the
MapReduce version of a subgraph matching algorithm. Section
four is dedicated to our experimentations. We used the MapRe-
duce version of the framework on a huge database containing
the descriptions of more than 113,000 terrorist attacks over the
world. We show how InSyTo Synthesis now scales to so-called
“big data” applications. In the last section, we conclude and
present future work.

II. GRAPH BASED INFORMATION REPRESENTATION

A. Information fusion, information synthesis and information
Query

The InSyTo Synthesis soft data fusion framework relies on
the use of semantic graph structures to store soft data and uses
a graph algorithm to carry out the fusion process. It enables
three different operations on networks of information that are
depicted on figure 1 and described hereafter.

+ + =

Query

Data graph

Information SynthesisObservations

+ =

Information Fusion

Observations

Situation model

Fig. 1. InSyTo three functions

When a model of a situation of interest (e.g. a terrorist
attack in a specific city at a specific date) is available, one may
want to monitor the situation and raise alarms if an instance of
such a situation is happening. Therefore, different observations,

coming potentially from different sources, are filtered out in
order to keep observations of interest only. They are then
assembled through information fusion in order to provide a
representation of the ongoing situation of interest, as precise
as possible.

Information synthesis enables one to collect and organize
information about a specific subject. Through information
synthesis, all the gathered information items are organized into
a network. The redundant part of the informations items are
detected and eliminated.

All the instances of information corresponding to a speci-
fied graph pattern may be found within a network of informa-
tion, through the information query function. In the following
paper, we focus on the information query function. As we will
see in section IV, given an already built information graph,
our aim is to support intelligence analysts by providing means
to efficiently query this information graph.

B. A graph based information representation

Graph based representations appear to be naturally well
adapted to soft data. Our approach relies on the use of
bipartite graphs, more specifically a subset of the conceptual
graphs ([20], [21]) to represent soft data and knowledge. The
conceptual graphs formalism is a model that encompasses
a basic ontology (called vocabulary), graph structures and
operations on the graphs. The vocabulary defines the different
types of concepts and relations that exist in the modeled
application domain, while the graphs provide a representation
of the observations which are provided by the information
sources.

Basic conceptual graphs are bipartite graphs containing
concept and relation nodes. Figure 2 gives an example of
a conceptual graph. The rectangular boxes represent concept
nodes and the ovals represent relation nodes.

locationYear: 1972 Event:e1

Country: Philippines

date

date([Event: e1@e1], [Year: 1972 @y1972], [Month: 01 @january]),
location([Event: e1 @e1], [Country: Philippines @Philippines]).

Graphical form

Linear form

Month:01

1

3

2

2

1

Fig. 2. Example of a conceptual graph

The term concept is used to refer to a concept node. The
concepts represent the “things” or entities that exist. A concept
is labeled with two components: the conceptual type and the
individual marker.

The conceptual type defines the category to which
the entity belongs. For instance, in Figure 2 the concept
[Country:Philippines] is an instance of the category
Country, i.e., its conceptual type is Country.

The individual marker relates a concept to a
specific object of the world. The object represented
by [Country:Philippines] has the name (or value)
Philippines. The individual markers may also be undefined.
An undefined or generic individual marker is either blank

or noted with a star *, if the individual object referred to is
unknown.

The term relation is used to refer to a relation node. The
relation nodes of a conceptual graph indicate the relations
that hold between the different entities of the situation that
is represented. Each relation node is labeled with a relation
type that points out the kind of relation that is represented.

The notion of vocabulary was defined in [21]. The concept
types and the conceptual relation types, which are used to label
the concept and relation nodes, are organized in hierarchies.

We restrict our approach to relation types that are un-
ordered in order to manage only one hierarchy, the concept
types hierarchy.

Formally, we denote the set of concept types as TC , the set
of relation types as TR and the set of individual markers that
are used to labeled the concept nodes as markers, which de-
fines a vocabulary V = (TC , TR,markers). A basic conceptual
graph G is then defined by a 4-uple G = (CG, RG, EG, lG),
where

• (CG, RG, EG) is a finite undirected and bipartite
multigraph. CG is the set of concept nodes. RG is
the set of relation nodes, and EG is the set of edges.

• lG is a naming function of the nodes and edges of the
graph G which satisfies:

1) A concept node c is labeled with a
pair lG(c) = (type(c),marker(c)), where
type(c) ∈ TC and marker(c) ∈ markers ∪
{*}.

2) A relation node r is labeled by lG(r) ∈ TR.
lG(r) is also called the type of r.

C. Specialization and generalization of graphs

A specialization/generalization relationship is defined on
the graphs. These relationships are used for the query function.
The aim of the query is indeed to find all the sub graphs of the
information graph that are specializations of the query graph.
Therefore, the query is expressed as a generic graph.

We define these relationships hereafter.

1) Relationships between conceptual types: Given the hier-
archical nature of the vocabulary, a partial order holds among
the set of conceptual types TC , interpreted as a relation of
specialization: t1 ≤ t2 means that t1 is a specialization of t2,
that is to say that any instance of the class denoted by t1 is
also an instance of the class denoted by t2.

2) Relationships between concepts: Given the order on TC ,
we can also partially order the concepts that are defined on
TC×{markers ∪ {*}}, by a specialization relation as follows.
Let c1 = [T1 : m1] and c2 = [T2 : m2] be two concept nodes,
we define:

c1 ≤ c2 iff

{
T1 ≤ T2

m2 = * or sim(m1,m2) ≥ thres
(1)

where sim is a similarity function and thres a user-defined
threshold.

For instance, if we consider that the conceptual type
Event is greater (i.e. more general) than the conceptual type
TerroristEvent, we have:

[Event:*] ≥ [Event:e1] ≥ [TerroristEvent:e1]
but [Event:e1] and [TerroristEvent:*] are not compa-
rable.

3) Relationships between graphs: We also define a special-
ization relation between graphs. This relation is denoted by v
(in order to avoid confusion with the specialization relation
≤ between concepts). Let A and B be two basic conceptual
graphs. CA and RA denote the set of concepts and relations of
the graph A, defined over the vocabulary V . Denoting as PAB

the set of graph isomorphisms between A and B, we have:

A v B ⇔ ∃ p ∈ PAB ,

p : CA,RA → CB ,RB

cA, rA 7→ cB , rB
∀ cA ∈ CA, cB ≤ cA
∀ rA ∈ RA, rB = rA

By extension of the notation, GA|rA v GB |rB denotes that
the subgraph of GA restricted to the relation node rA and its
linked concept nodes is a generalization of the subgraph of
GB restricted to the relation node rB and its linked concept
nodes.

D. Graph based Fusion: Information Query

The InSyTo Synthesis platform encompasses a generic
graph based fusion algorithm that is used for the three func-
tions (information fusion, information synthesis and informa-
tion query). The usage of the algorithm (parameters and launch
mode) determines the function that is realized.

The fusion algorithm is made of two interrelated compo-
nents (see Figure 3). The first component is a generic subgraph
matching algorithm, which itself relies on the use of fusion
strategies.

The graph matching component takes care of the overall
structures of the initial and fused observations. It is in charge of
the structural consistency of the fused information, regarding
the structures of the initial observations, within the fusion
process.

The fusion strategy part is made of similarity, compatibility
and functions over elements of the graphs to be fused (see
equation 1 for instance). They enable the customization of the
generic fusion algorithm according to the context in which it
is used. The context encompasses the application domain, the
semantics of the information items and user preferences. The
fusion strategies enable to manage the discrepancies that may
be observed in observations of the same situation by different
sources (see [6]).

Within the query function, the strategies that are used in the
algorithm follow the specialization/generalization relationships
defined before (II-C). We use a subsomption strategy and a
whole-structure conservation mode.

The subsomption strategy is used within the nodes to nodes
comparison between the query and the data graphs. That is to
say that the concepts of the query graph must be more general
than the ones of the data graph in order to be fused.

sub graph
matching

generic fusion strategies

specific fusion strategies

input graph input graph

output graph

data
adapter

F
u

s
io

n
 a

lg
o

ri
th

m

Fusion heuristics

Semantic Information Fusion Toolbox

compatibility
functions

fusion functions

data
adapter

data
adapter

graph fusion

Fig. 3. InSyTo algorithm

The specialization relationship between the query and the
data graphs also imply that the structure of the query graph
must be entirely found in the data graph. In other words, all
the relations of the query graph must have an image in the
data graph, that respects the structure of the query graph. The
query function relies on the search for injective homomorphism
between the query graph and the data graph.

III. TOWARDS BIGGER GRAPHS

A. Hadoop : a framework for processing “big data”

Hadoop is a implementation of a distributed file system
along with a model for performing distributed data processing
on this file system.

Hadoop’s file system is called HDFS (Hadoop Distributed
File System). It allows the partitioning of data across many
nodes. A Hadoop cluster scales computation capacity, storage
capacity and I/O bandwidth by simply adding commodity
servers.

The data processing model is called MapReduce, and
allows processing of large data sets. Users specify a map
function that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that merges
all intermediate values associated with the same intermediate
key. The advantage of MapReduce is that the processing can be
performed in parallel on multiple processing nodes (multiple
servers) so it is a system that can scale very well.

Since it’s based on a functional programming model, the
map and reduce steps each do not have any side-effects (the
state and results from each subsection of a map process does
not depend on another), so the data set being mapped and
reduced can each be separated over multiple processing nodes.

The use of Hadoop for the parallelization of our algorithms
has two advantages. The first one is that the graphs are not

loaded in memory, but sub-parts of them are passed along the
processing nodes thanks to the distributed file system. The
second one is that parts of the isomorphism search process
itself can be distributed on the different processing nodes,
enabling a speed-up of the overall process.

B. Problem decomposition

In this work, we focus on the query functionality of InSyTo
Synthesis. The input data are two graphs. The data graph is a
big network (more than 20,000,000 nodes). The query graph
is a relatively small graph. Indeed, the query is “written” by
the analyst and contains most of the time 20 to 50 nodes.

The main issue of the subgraph isomorphism algorithm is
the combinatoric explosion and the big graph structures. The
management of the structural part of the graphs (i.e. which
node is linked to which one) is a difficult problem while
looking for candidate images for the nodes of one graph in
the other. Therefore, within the search for candidate images
for the nodes of the query graph in the information graph, our
approach is to split up the process into a first phase that will
manage the values of the query and information nodes and a
second phase in charge of the management of the structural
aspects of the graphs.

In order to follow the MapReduce model, we cut off the
two graphs (data and query) into small pieces that will then
be pairwise compared. The comparison take into account the
value of the nodes themselves, without taking care of the
overall structures of the graphs. Therefore, the comparisons
are independent from one another, and the MapReduce model
can be applied.

Figure 4 shows the decomposition of a query graph into
two small graphs. Each small graph corresponds to one of
the relation nodes of the query graph, linked to a copy of its
neighbor concept nodes.

+

Query

Pieces of Request

Fig. 4. Decomposition of a ‘query’ graph

Once the two graphs are cut around the relations nodes,
each relation node and the ordered list of concepts nodes it is
linked to, constitutes an entry for the MapReduce algorithm.
To be readable by the Hadoop framework, the set of pieces of
the query are written into their linear form (see figure 2) into
a file. Each line of the file is one of the subgraph and will be
processed by the MapReduce algorithm.

The MapReduce algorithm looks for all the candidate
images for each piece of the query (from the query graph) in
the set of pieces of data (from the data graph) (see Figure 5).

…

+

Fig. 5. Finding candidate images and reconstructing answer graphs

The master node of the Hadoop cluster divides the data
graph into a set of relation nodes, each being linked a set of
concepts. It then distributes the compatibility test of the data
relations against the query graph to the worker nodes of the
cluster. The worker nodes process the compatibility test and
produce, if the test is achieved, output records R as pairs of
compatible query and data nodes.

The map function on a query graph Gr = (Cr, Rr, Er, lr)
and a data graph Gd = (Cd, Rd, Ed, ld) is detailed hereafter.
The compatibility between a subgraph Gr,ri of the query
Gr and a subgraph Gd,di of the data graph Gd follows the
specialization relationship v defined on subgraphs restricted
to one relation (see II-C).

Algorithm 1 Map function for a query graph and a data graph
function map(Gr, Gd,di

) :
R← ∅
for all Gr,ri ∈ Gr do

if Gr,ri v Gd,di then
{append output record}
R← R‖(Gr,ri , Gd,di)

end if
end for
return R

Once the map step is achieved, the reduce step takes place.
The master node of the processing cluster collects the records
R = {(Gr,ri , Gd,di)∀Gr,ri ∈ Gr|Gr,ri v Gd,di} produced
during the map phase and combine them so as to associate
each subgraph Gr,ri of the query with the list of all compatible
subgraphs Gd,di

of the data graph.

The reduce function aggregates the set of candidate sub-
graphs Gd,dj

as a list of images of Gr,ri . The produced asso-
ciative array r img(Gr,ri) = {Gd,dj

∀Gd,dj
∈ Gd|Gr,ri v

Gd,dj} has the same set properties than R but permits to
improve further query times.

C. Result graphs build-up

Once the candidate answers to each piece of query are
processed, we need to build up answer graphs from these

Algorithm 2 Reduce function on the set of candidate sub-
graphs

function reduce(R) :
r img ← ∅
for all (Gr,ri , Gd,di) ∈ R do
{append subgraph to the list mapped to the query graph}
r img(Gr,ri)← r img(Gr,ri)‖Gd,di

end for
return r img

candidates. The different combinations of pieces of answers
are provided, taking care of the original structure of the data
graph (see Figure 5). The candidate pieces for answers are
assemble one with another, if and only if their association
respects the structural constraints of the initial data graph. In
other words, the connectivity between the relations through the
concept nodes is checked while building the answer graphs.

Within the result graph reconstruction algorithm, the fol-
lowing notations are used:

• query graph Gr = (Cr, Rr, Er, lr);

• data graph Gd = (Cd, Rd, Ed, ld);

• fstrategy is the fusion strategy that is used for
compatibility conditions and fusion functions. The
fusion strategy used within the query function is the
subsomption of concept nodes.

• r img = {(Gr,ri , Gd,rj)|Gr,ri v Gd,rj} is the asso-
ciative array containning the records generated by the
MapReduce algorithm.

• Gr,ri is the subgraph of Gr restricted to the relation
ri and its linked concept nodes cj ∈ Cr;

• r mods = {Gr,ri |ri ∈ Rr} is the set of subgraphs of
Gr restricted to each relation ri of Gr.

• ans = {Gansi |Gansi = subgraph(Gd) ∧ Gr v
Gansi} the set of subgraphs of Gd that are answers
to the query (i.e. more specific than) Gr.

• assoi = {(Gr,ri , imgi)} is an associative array that
associates each subgraph restricted to a relation of
the query graph Gr to a subgraph restricted to a
compatible relation of the data graph Gd that is
its image in the current association. An image of a
relation node can be added in an association if and
only if it is compatible (regarding node values and
graph structures) with the already associated relations.

• assos = {assoi} is the set of all association tables
assoi containing relations nodes of the data graph Gd

associated to the relation nodes of query graph Gr and
that respect the conditions given by Gr and the fusion
strategy fstrategy

• graph(assoi) → Gansweri is a function that trans-
forms an association table assoi into a graph by
reconstructing the graph structure.

The input of the algorithm are r img, the table of potential
relation images of the data graph for each relation node of
the query and the fusion strategy fstrategy that relies on

the subsomption between concept nodes and graphs (see II-C).

Algorithm 3 Result graph reconstruction algorithm
associateModel(r img, fstrategy) :
assos← ∅
for all img ∈ r img(r mods0) do
{append an element to the associations:}
assos← assos‖(r mod0, img)

end for
for r mod ∈ {r mods1 . . . r modsn} do

i← 0
while i + 1 < |assos| do
{iterate over assos while modifying it}
i← i + 1
found← ⊥
for all img ∈ r img(r mod) do

if compatible(assosi, (r mod, img, fstrategy))
then
associate(assosi, (r mod, img, fstrategy))
found← >

end if
end for
if ¬found then
{remove the ith association:}
assos← {assos0, . . . , ̂assosi, . . . , assosn}

end if
end while

end for
ans← ∅
for all asso ∈ assos do
ans← ans‖graph(asso)

end for
return ans

IV. EXPERIMENTATIONS

A. The Global Terrorism Database

The global terrorism database1(GTD) is an open-source
database that contains the descriptions of all the terrorist events
that occurs worldwide between 1970 and 2012.

The GTD has the following characteristics :

• It contains information on over 113,000 terrorist at-
tacks;

• It includes information on more than 47,000 bomb-
ings, 14,400 assassinations, and 5,600 kidnappings
since 1970;

• It includes information on 45 to more than 120 vari-
ables for each case;

The GTD is supervised by an advisory panel of 12 ter-
rorism research experts and over 4,000,000 news articles and
25,000 news sources were reviewed to collect incident data

For each GTD incident, information is available on the
date and location (region, country, state, city) of the incident,

1The National Consortium for the Study of Terrorism and Responses to
Terrorism (START) makes the GTD available via an online interface on the
website of the project : http://www.start.umd.edu/gtd/

perpetrator group name, tactic used in attack, the weapons used
and nature of the target, the number of casualties, etc.

Other variables provide information unique to specific
types of cases, including kidnappings, hostage incidents, and
hijackings.

This database represents a huge work and is particularly
valuable for intelligence analysts. Therefore smart functional-
ities that would enable the recognition of modus operandi, for
instance, are eagerly awaited.

Within our experimentations, we imported the data con-
tained in the GTD into an information network. The importa-
tion of the data is agnostic to the contents of the database.

The GTD database is a classical “table”. Each line of the
table contains the description of an event, each column of
the table corresponds to a characteristic of the events (date,
location, attack type, etc.). To import the GTD data into the
conceptual graphs format, we first automatically built the type
hierarchy described in II-B. Therefore, Two concept types were
defined, GTDEvent and GTDEntity that are directly attached
to the root type of the hierarchy. The types of relations are
extracted from the column labels of the table.

The data itself is then imported into a graph structure
by creating a GTDEvent which value is the identifier of the
event contained in the first column of the table. This concept
is then linked to concepts of type GTDEntity and value to
values of the other columns through relation nodes of the types
corresponding to the labels of the columns.

The resulting network of information contains more than
10,000,000 concept nodes linked through 13,560,000 relation
nodes.

B. Results

We launched several queries on the network made of the
GTD data. These queries are patterns of terrorists events
containing some known and unknown values. The figure 6
depicts an example of such a query.

It queries the network for information on years, types of
weapons used and number of persons killed in all the terrorist
events perpetrated by Tamils and that occurred in Sri Lanka.
This query gave us 2935 answers under the form of graphs
describing these terrorists events (see figure 6 for one of the
answers).

In order to test the scalability of our implementation, we
artificially increased the size of the information network by
generating 7 terrorist events for each event described in the
GTD. This generated a text input file of 6.64 Mo that describes
the 1,560,000 events. The requests were sent on a single core
CentOS 5.7 machine with 3Gb RAM and 20Gb disk memory.
The answers to requests were obtained in less than 1 minute.

The results obtained during this first experimentation phase
are promising. The whole data network can be processed
through this new parallelized version of the fusion algorithm.
This was not worth considering, using a classical algorithm
for the maximum subgraph isomorphism problem.

The structure of the hierarchy that was built from the GTD
database is flat. Only two types of concepts are considered,

Fig. 6. Example of query and answer on the information network

with no hierarchical dependency between them. The advantage
of the agnostic importation of the data is that the experimen-
tation platform can be used on any other database. However,
it also prevents from taking advantages of all the aspects
of the conceptual graphs based information fusion approach.
The queries made on the network could be done efficiently
on the table version of the database, as the structure was
adapted to the contents of the data. The advantages of using
the hierarchy of concept types and fusion strategies in order to
query complex inexact patterns on the network where shown
in previous work ([22] and [8]) however.

V. CONCLUSION AND FUTURE WORK

In this paper we present the implementation of a distributed
algorithm for the graph based information fusion. The con-
ceptual graphs based information fusion platform that was
previously developed enables the management of inconsis-
tencies withing information fusion. To do that, the platform
uses a hierarchy of the types of nodes of the data network,
as well as fusion strategies. The fusion strategies encompass
similarity measures and fusion functions that enable managing
the discrepancies between values of the information nodes of
a network of information.

The new algorithm relies on the Map/Reduce principle,
which enables the distribution of part of the process on
several processing nodes. The implementation uses the Hadoop
framework.

Tests were conducted on an information network made
of the data contained in the Global Terrorist Database. The
tests consisted in querying specific patterns of terrorist events.
The information network contains more than 20,000,000 nodes
linked together. Using Hadoop first enables to distribute the
process among several processing nodes. It secondly avoid
loading the whole information network in memory, by splitting
and distributing on the Hadoop file system.

The second phase of the algorithm is still time consuming,
which underlines the necessity of feeding it with as few inputs
as possible and consider to distribute it on several processing
nodes. Therefore, these results lead us two the two following
trail for future work:

• How to optimize the research for potential images for
each subgraph of the query restricted to the relation
nodes ?

• How to parallelize the result graphs build-up ?

The present paper describes the implementation of the
query functionality of the information synthesis platform.
Future work will encompass the implementation of the other
functions of InSyTo, namely information fusion and informa-
tion synthesis. This should follow the same fusion process.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Union Seventh Framework Program
(FP7/2007-2013) iSAR+ FP7-SEC-2012-1-312850

REFERENCES

[1] J. Llinas, R. Nagi, D. Hall, and J. Lavery, “A multi-disciplinary univer-
sity research initiative in hard and soft information fusion: Overview,
research strategies and initial results,” in Information Fusion, 13th
International Conference on, 2010.

[2] G. Gross, R. Nagi, K. Sambhoos, D. Schlegel, S. Shapiro, and G. Tauer,
“Towards hard+soft data fusion: Processing architecture and implemen-
tation for the joint fusion and analysis of hard and soft intelligence data,”
in Information Fusion, 15th International Conference on, 2012.

[3] K. Date, G. A. Gross, S. S. Khopkar, R. Nagi, and K. Sambhoos,
“Data association and graph analytical processing of hard and
soft intelligence data.” in Proceedings of the 16th International
Conference on Information Fusion, FUSION 2013, Istanbul, Turkey,
July 9-12. IEEE, 2013, pp. 404–411. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/fusion/fusion2013.html#DateGKNS13

[4] N. Belov and P. Gerken, “Mixed initiative soft data fusion associate,”
in Information Fusion, 12th International Conference on, 2009.

[5] H. Kohler, D. A. Lambert, J. Richter, G. Burgess, and T. Cawley,
“Implementing soft fusion.” in Proceedings of the 16th International
Conference on Information Fusion, FUSION 2013, Istanbul, Turkey,
July 9-12. IEEE, 2013, pp. 389–396. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/fusion/fusion2013.html#KohlerLRBC13

[6] C. Laudy, Semantic Knowledge Representations for Soft Data Fusion
— Efficient Decision Support Systems - Practice and Challenges From
Current to Future. Chiang Jao Publisher, 2011.

[7] S. Fossier, C. Laudy, and F. Pichon, “Managing uncertainty in con-
ceptual graph-based soft information fusion,” in Proceedings of the
16th International Conference on Information Fusion, FUSION 2013,
Istanbul, Turkey, July 9-12, 2013, pp. 930–937.

[8] C. Laudy, É. Deparis, G. Lortal, and J. Mattioli, “Multi-granular fusion
for social data analysis for a decision and intelligence application,”
in Proceedings of the 16th International Conference on Information
Fusion, FUSION 2013, Istanbul, Turkey, July 9-12, 2013, pp. 1849–
1855.

[9] B. D. McKay and A. Piperno, “Practical graph isomorphism,
II,” Journal of Symbolic Computation, vol. 60, pp. 94–112, Jan.
2014. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0747717113001193

[10] T. Plantenga, “Inexact subgraph isomorphism in MapReduce,” Journal
of Parallel and Distributed Computing, vol. 73, no. 2, pp. 164–175,
Feb. 2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S0743731512002559

[11] Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. A. Kumar, and M. V.
Marathe, “SAHAD: subgraph analysis in massive networks using
hadoop.” IEEE, May 2012, pp. 390–401. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6267876

[12] Y. Liu, X. Jiang, H. Chen, J. Ma, and X. Zhang, “MapReduce-Based
pattern finding algorithm applied in motif detection for prescription
compatibility network,” in Advanced Parallel Processing Technologies,
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,
M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
Y. Dou, R. Gruber, and J. M. Joller, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, vol. 5737, pp. 341–355. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-03644-6 27

[13] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J.
ACM, vol. 23, no. 1, pp. 31–42, Jan. 1976. [Online]. Available:
http://doi.acm.org/10.1145/321921.321925

[14] D. Conte, P. Foggia, and M. Vento, “Challenging complexity of maxi-
mum common subgraph detection algorithms: A performance analysis
of three algorithms on a wide database of graphs,” J. Graph Algorithms
Appl., vol. 11, no. 1, pp. 99–143, 2007.

[15] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento, “A
comparison of algorithms for maximum common subgraph on randomly
connected graphs,” in Lecture Notes on Computer Science. Heidelberg:
Springer-Verlag, 2002, vol. 2396, pp. 123–132.

[16] J. Raymond and P. Willett, “Maximum common subgraph isomorphism
algorithms for the matching of chemical structures,” Journal of
Computer-Aided Molecular Design, vol. 16, no. 7, pp. 521–533, 2002.
[Online]. Available: http://dx.doi.org/10.1023/A%3A1021271615909

[17] S. N. Ndiaye and C. Solnon, “CP Models for Maximum Common
Subgraph Problems,” in 17th International Conference on Principles
and Practice of Constraint Programming (CP), ser. LNCS. Springer,
Sep. 2011, pp. 637–644. [Online]. Available: http://liris.cnrs.fr/publis/
?id=5128

[18] C. Solnon, “Alldifferent-based filtering for subgraph isomorphism,”
Artif. Intell., vol. 174, no. 12-13, pp. 850–864, Aug. 2010. [Online].
Available: http://dx.doi.org/10.1016/j.artint.2010.05.002

[19] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc.,
2009.

[20] J. F. Sowa, Conceptual Structures: Information Processing in Mind and
Machine. Reading: Addison-Wesley, 1984.

[21] M. Chein and M.-L. Mugnier, Graph-based Knowledge Representation:
Computational Foundations of Conceptual Graphs. Springer, 2008.

[22] C. Laudy, “Introducing semantic knowledge in high level information
fusion,” Ph.D. dissertation, Paris 6 University, 2010.

