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NONPARAMETRIC ESTIMATION FOR I.I.D. STOCHASTIC

DIFFERENTIAL EQUATIONS WITH SPACE-TIME DEPENDENT

COEFFICIENTS

F. COMTE(1), V. GENON-CATALOT(1)

Abstract. We considerN i.i.d. one-dimensional inhomogeneous di�usion processes (Xi(t), i =

1, . . . , N) with drift µ(t, x) =
∑K
j=1 αj(t)gj(x) and di�usion coe�cient σ(t, x), where K, the

functions gj(x) and σ(t, x) are known. Our concern is the nonparametric estimation of the
K-dimensional unknown function (αj(t), j = 1, . . . , k) from the continuous observation of the
sample paths (Xi(t)) throughout a �xed time interval [0, τ ]. A collection of projection estimators
belonging to a product of �nite-dimensional subspaces of L2([0, τ ]) is built. The L2-risk is de�ned
by the expectation of either an empirical norm or a deterministic norm �tted to the problem.
Rates of convergence for large N are discussed. A data-driven choice of the dimensions of the
projection spaces is proposed. The theoretical results are illustrated by numerical experiments
on simulated data.

Keywords and phrases: Adaptive estimation. Continuous observation. Inhomogeneous di�u-
sions. Least squares estimator. Nonparametric drift estimation. Projection method. Stochastic
di�erential equations.

June 23, 2023

1. Introduction

In this paper, we considerN independent and identically distributed (i.i.d.) processes (Xi(t))1≤i≤N
given by the inhomogeneous stochastic di�erential equation (SDE)

(1) dXi(t) = µ(t,Xi(t))dt+ σ(t,Xi(t))dWi(t), with µ(t, x) :=

K∑
k=1

αk(t)gk(x),

with Xi(0) = ηi, i = 1, . . . , N . The integer K, the deterministic functions x 7→ gk(x), k =
1, . . . ,K and (t, x) 7→ σ(t, x) are known, Wi, i = 1 . . . , N are N independent Brownian motions,
ηi, i = 1, . . . , N are i.i.d. random variables, independent of (Wi, i = 1 . . . , N). The functions
α1(t), . . . , αK(t) are deterministic and unknown.
The aim of the paper is the nonparametric estimation of the K-dimensional function t ∈
[0,+∞) 7→ (αj(t), j = 1, . . . , k) ∈ RK from the continuous observation of the N sample paths
thoughout a �xed time interval [0, τ ]. The asymptotic framework is N → +∞.
Inference and especially nonparametric drift estimation for di�usion processes is a well devel-
opped topic. Generally authors consider one trajectory, continuously or discretely observed on a
time interval [0, τ ]. Statistical results are obtained by means of an asymptotic framework: either
τ is �xed and the di�usion coe�cient tends to 0, or τ tends to in�nity. In the former case, space
and time dependent coe�cients may be considered. In the latter case, ergodicity assumptions
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are required and generally only authorize homogeneous di�usions, see e.g. Kutoyants (1984,
2004), Iacus (2008), Kessler et al. (2012), Dalalyan and Reiss (2006, 2007), Comte et al. (2007),
Ho�mann (1999), Strauch (2018), Gloter and Sorensen (2009).

More recently, the interest in inference for i.i.d. paths of SDEs has begun to grow. This
problem belongs to functional data analysis, i.e. analysis of samples of in�nite dimensional data
(see e.g. Ramsay and Silvermann (2007), Wang et al. (2016)). Panel or longitudinal data analysis
are another name for the study of data collected over time from a sample of individuals (see
e.g. Hsiao (2003)). Among recent results on nonparametric drift estimation for i.i.d. samples
of SDEs, one may quote Comte and Genon-Catalot (2020b), Denis et al (2020, 2021), Marie
and Rosier (2023). See also Comte and Marie (2023) for identically distributed di�usions with
correlated Brownian motions. All these papers consider homogeneous di�usions, for which the
drift and di�usion coe�cients do not depend on time but only on space.

Space-time dependent drifts are considered though, in recent papers dealing with interacting
particle systems or their mean �eld limits. When the coe�cients do not depend on the empirical
distribution of (Xi(t), i = 1, . . . , N), i.e. when there is no interaction between particles, these
models reduce to i.i.d. di�usion processes. For instance, Della Maestra and Ho�mann (2022)
study a pointwise kernel estimator of a general drift term µ(t, x). In Comte and Genon-Catalot
(2023), an Ornstein-Uhlenbeck interacting particle system with time dependent coe�cients is
investigated. This study contains, as a particular case, the model dXi(t) = α(t)Xi(t)dt +
dWi(t), i = 1, . . . , N and the non parametric estimation of the function α(t) by projection method
with data-driven choice of the dimension of the projection space is studied.

In this paper, we extend this case to the general model (1). For m = (m1, . . . ,mK) ∈ NK , we
consider Sm = Sm1 × . . .× SmK a product of �nite-dimensional subspaces of (L2([0, τ ]))K with
respective dimensions mj . We de�ne, for each m, a projection estimator ãm(t) = (α̃j(t), j =
1, . . . ,K)T (T denotes the transpose of the vector) obtained by minimizing a global projection
contrast inspired by the log-likelihood of the N processes (Xi(t), t ∈ [0, τ ], i = 1, . . . , N). The
risk of the estimators is evaluated by the expectation of either the square of an empirical norm
or the square of a deterministic norm linked with the projection contrast de�ned as follows. We
introduce for N ≥ 1 and t ≥ 0, the K×K nonnegative symmetric matrices SN (t), S(t) given by:

(2) SN (t) =

(
1

N

N∑
i=1

gj(Xi(t))gk(Xi(t))

)
1≤j,k≤K

, S(t) = (E [gj(X1(t))gk(X1(t))])1≤j,k≤K .

For h = (h1, . . . , hK)T ∈ (L2([0, τ ]))K , we set

(3) ‖h‖2N =

∫ τ

0
h(t)TSN (t)h(t)dt, ‖h‖2τ =

∫ τ

0
h(t)TS(t)h(t)dt.

Under the identi�ability assumption that, for all t, the matrices (2) are invertible, ‖.‖N (resp.
‖.‖τ ) is a random (resp. deterministic) norm on (L2([0, τ ]))K . To bound the estimators risks
that is de�ned as the expectation of these square norms, the key tool is to study the set where the
empirical norm ‖h‖N and the deterministic norm ‖h‖τ are equivalent for elements of the space
Sm. Actually, we are able to compare these norms for all functions of (L2([0, τ ]))K . Indeed, we
prove that on the set

(4) ON =

{
sup
t∈[0,τ ]

‖S(t)−1/2SN (t)S(t)−1/2 − IdK‖op ≤
1

2

}
,
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for all h ∈ (L2([0, τ ]))K , (1/2)‖h‖2τ ≤ ‖h‖2N ≤ (3/2)‖h‖2τ (for a symmetric matrix M , the norm
‖M‖op is the supremum of the absolute values of its eigenvalues). By means of the Garsia-
Rodemacher-Rumsay (GRR) Lemma as stated in Jourdain and Pagès (2022), we prove that
P(OcN ) . N−p for all p > 1 (. means ≤ up to a constant).
After the study of the estimators for �xed m, a data-driven choice of m is proposed where, for
the sake of simplicity, σ(t, x) is assumed to be uniformly bounded. The obtained estimator is
adaptive, in the sense that it reaches an automatic squared bias-variance compromise.
In Section 2, assumptions and some preliminary results are given. In Section 3, the minimum
contrast estimators are de�ned. Their risks are given in Theorem 2, and the risk bounds show an
explicit and clear variance term. We also discuss the rates of convergence: our method estimates
all functions simultaneously and the corresponding rate is the estimation rate of one function
with regularity associated to the smallest regularity of the K functions. It is interesting to note
that the additive drift structure guards against the curse of dimensionality.

Section 3.5 is devoted to the data-driven procedure. Section 4 presents numerical results on
simulated data for various examples of models and several orthonormal bases for the projection
spaces. Section 5 gives some concluding remarks. In Appendix (Section 7), the GRR Lemma
and some useful results on matrices are recalled and examples of orthonormal bases are given.

2. Notation, assumptions and preliminary results.

Notation. For M a matrix, we denote by MT the transpose of M , by Tr(M) the trace of M
and by ‖M‖op the operator norm ofM that is the square root of the largest eigenvalue ofMMT .
If M is symmetric, ‖M‖op = sup{|λi|} where λi are the eigenvalues of M . If, in addition, M is
invertible, ‖M−1‖op = ‖M‖−1

op .

For h ∈ L2
τ = L2([0, τ ]), we denote by ‖h‖ = (

∫ τ
0 h

2(t)dt)1/2 its L2-norm and ‖x‖2,r denotes the
Euclidian norm of the vector x = (x1, . . . , xr)

T of Rr. For h(t) = (h1(t), h2(t), . . . , hK(t))T and

and h?(t) = (h?1(t), . . . , h?K(t))T elements of L2
τ × · · · × L2

τ , we set ‖h‖ = (
∑K

k=1

∫ τ
0 h

2
k(t)dt)

1/2

and 〈h,h?〉 =
∑K

k=1

∫ τ
0 hk(t)h

?
k(t)dt for respectively the L2-norm and the scalar product of

L2
τ × · · · × L2

τ .

2.1. Assumptions. We consider i.i.d. processes (Xi(t), t ≥ 0, i = 1, . . . , N) where Xi(t) is
solution of (1) with i.i.d. Xi(0) = ηi, i = 1 . . . , N and i.i.d. standard Brownian motions
(Wi(t), t ≥ 0), i = 1, . . . , N , independent of the initial conditions.

We set the following assumptions:
[H1] (i) The functions gk are Lipschitz with constant L:

∀k = 1, . . .K, ∃L > 0,∀x, y ∈ R, |gk(x)− gk(y)| ≤ L|x− y|.
(ii)The function σ is C1 on R+ × R and has linear growth w.r.t. x:

∀t > 0, ∃Ct > 0, ∀s ∈ [0, t],∀x ∈ R, |σ(s, x)| ≤ Ct(1 + |x|),
where t 7→ Ct is a continuous function.

(iii) the i.i.d. variables ηi have moments of any order.

[H2] The functions αk(t) : R+ → R, k = 1, . . . ,K are continuous on R+ (and thus belong to L2
τ ).

[H3] ∀t ∈ [0, τ ], the matrix S(t) is invertible and ∀t ∈ [0, τ ], ∀N ≥ 1, SN (t) is a.s. invertible
(see (2)).
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Assumptions [H1] and [H2] ensure that equation (1) admits a unique strong solution. Under
[H1]-[H2], the functions gj and x 7→ µ(t, x) have linear growth:

∀x ∈ R, |gj(x)| ≤ L̃(1 + |x|), L̃ = max{L, max
1≤j≤K

|gj(0)|},(5)

∀t ∈ [0, τ ], ∀x ∈ R, |µ(t, x)| ≤ L(τ)(1 + |x|), L(τ) = KL̃ sup
t∈[0,τ ]

sup
1≤k≤K

|αk(t)|.(6)

Assumption [H3] is an identi�ability assumption allowing to estimate theK functions (αi(t), i =
1 . . . ,K). For instance, forK = 2, det(S(t)) = E[g2

1(X1(t))]E[g2
2(X1(t))]−{E[g1(X1(t))g2(X1(t))]}2

is nonzero if and only if g1(X1(t)) is not proportional to g2(X1(t)) almost surely.
As SN (t) converges a.s. to S(t) as N tends to in�nity, if S(t) is invertible, SN (t) is invertible for
N large enough.

The following bounds on the moments of the process are classical and useful in the sequel.

Proposition 1. Under Assumptions [H1]-[H2], for all p ≥ 0:

(7) E

[
sup
t∈[0,τ ]

|X1(t)|p
]
< +∞.

For all r ≥ 1, there exists a positive constant B(r, τ) such that ∀s, t ∈ [0, τ ], with |t− s| ≤ 1,

(8) E(|X1(t)−X1(s)|2r) ≤ B(r, τ)|t− s|r.

Moreover, for g = gjgk, where j, k ∈ {1, . . . ,K}, ∀r ≥ 1, there exists a positive constant C(r, τ)
such that such that ∀s, t ∈ [0, τ ], with |t− s| ≤ 1,

(9) E(|g(X1(t))− g(X1(s))|2r) ≤ C(r, τ)|t− s|r.

Details about B(r, τ) and C(r, τ) can be found in the proof of Proposition 1.

2.2. Di�erent norms in the problem. Note that, if we set

(10) g(x) = (g1(x), . . . , gK(x))T and Sg(x) = g(x)g(x)T ,

we have (recall de�nition (2))

(11) SN (t) =
1

N

N∑
i=1

Sg(Xi(t)), S(t) = E[SN (t)] = E[Sg(X1(t))].

By [H3], the matrices SN (t) and S(t) are symmetric positive de�nite. For any x = (x1, . . . , xK)T ∈
RK

xTS(t)x = E

 K∑
j=1

xjgj(X1(t))

2 ≥ 0, xTSN (t)x =
1

N

N∑
i=1

 K∑
j=1

xjgj(Xi(t))

2 ≥ 0.

For all t ≥ 0, x ∈ RK → xTS(t)x de�nes a norm:

‖x‖S(t) := xTS(t)x

as ‖x‖S(t) ≥ 0, 6= 0 if and only if x 6= 0. For x = (x1, . . . , xK), x? = (x?1, . . . , x
?
K), we denote by

〈x,x?〉S(t) = xT S(t)x? the scalar product associated with the norm ‖x‖S(t).

The empirical version of the norm ‖.‖S(t) is given, for x ∈ RK , by

‖x‖2SN (t) = xTSN (t)x,
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with associated scalar product 〈x,x?〉SN (t) = xT SN (t)x?. We have E(‖x‖2SN (t)) = ‖x‖2S(t).

Lastly, for functions h = (h1, . . . , hK) and h? = (h?1, . . . , h
?
K) with hi, h

?
i , i = 1, . . . ,K in L2

τ , we
have (see (3))

‖h‖2N =

∫ τ

0
‖h(t)‖2SN (t)dt, 〈h,h?〉N =

∫ τ

0
〈h(t),h?(t)〉SN (t)dt.

Now, ‖h‖2N = 0 implies that ‖h(t)‖2SN (t) = 0, a.e. on [0, τ ] and thus by [H3], h(t) = 0 in (L2
τ )K .

Therefore, ‖.‖N is a norm and 〈., .〉N a scalar product on (L2
τ )K .

Analogously,

‖h‖2τ :=

∫ τ

0
‖h(t)‖2S(t)dt = E(‖h‖2N ), 〈h,h?〉τ =

∫ τ

0
〈h(t),h?(t)〉S(t)dt

are respectively a square norm and a scalar product on (L2
τ )K .

As a consequence, three norms are to handle in the problem for a function h = (h1, . . . , hK),

the standard L2-norm on [0, τ ], de�ned by ‖h‖2 =
∑K

i=1

∫ τ
0 h

2
i (t)dt, the L2

τ -norm ‖h‖2τ and the

empirical norm ‖h‖2N . The compactness of [0, τ ] and our assumptions allow to compare them.
First, the norm ‖.‖τ can be compared to the L2-norm as stated now.

Proposition 2. Under [H1]-[H2], ∀h ∈ (L2)K , ‖h‖τ ≤ KG2‖h‖2, where ‖h‖2 =
∑K

j=1

∫ τ
0 h

2
j (t)dt

and

G2 := max
j=1,...,K

sup
t∈[0.τ ]

E[g2
j (X1(t))].

Proof of Proposition 2. It holds that

‖h‖2τ =

∫ τ

0
h(t)TS(t)h(t)dt ≤ sup

t∈[0,τ ]
‖S(t)‖op‖h‖2.

As ‖S(t)‖op ≤ Tr(S(t)) =
∑K

j=1 E[g2
j (X1(t))] ≤ KG2, we get the result. 2

For the link between the empirical and the L2
τ norms, recall the event:

ON =

{
sup
t∈[0,τ ]

‖S(t)−1/2SN (t)S(t)−1/2 − IdK‖op ≤
1

2

}

de�ned by (4). Then, as announced in the Introduction, the following theorem holds

Theorem 1. Under [H1]-[H3], ON ⊂ {∀h ∈ (L2
τ )K , (1/2)‖h‖2τ ≤ ‖h‖2N ≤ (3/2)‖h‖2τ}.

Moreover, for all p ≥ 1,

(12) P(OcN ) . N−p.

(. means ≤ up to a constant).

In other words, on ON , the empirical norm and its theoretical counterpart are equivalent for
functions of (L2

τ )K and the probability P(OcN ) is as small as we want.
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3. Definition and study of estimators of αj(t), for j = 1, . . . ,K.

3.1. Estimation contrast. Let (ϕj , j ≥ 1) be an orthonormal basis of L2
τ := L2([0, τ ]) com-

posed of continuous functions and Sm be the subspace generated by (ϕj , 1 ≤ j ≤ m).
For m ≥ 1, let

(13) L(Sm) = sup
t∈[0,τ ]

m−1∑
j=0

ϕ2
j (t) < +∞,

The quantity L(Sm) was introduced in Comte and Genon-Catalot (2020a, 2020b) in the frame-
work of regression and drift estimation for di�usions by projection method. As

L(Sm) = sup
h1∈Sm,‖h1‖=1

sup
t∈[0,τ ]

h2
1(t)

where ‖h1‖2 =
∫ τ

0 h
2
1(t)dt, it only depends on the subspace Sm and not on the basis chosen to

de�ne it. We assume

[H4] ∃c > 0 such that L(Sm) ≤ cm.

Assumption [H4] holds for several classical bases of L2
τ . We give examples in Section 7.3.

This assumption may be weakened into L(Sm) ≤ cmω for any ω ≥ 1.

For h(t) = (h1(t), h2(t), . . . , hK(t))T element of L2
τ × · · · ×L2

τ , we consider the contrast which
is inspired by the log-likelihood of the N processes (1) (see notation (10)),

UN (h) =
1

N

∫ τ

0

N∑
i=1

[
h(t)Tg(Xi(t))

]2
dt− 2

N

N∑
i=1

∫ τ

0

[
h(t)Tg(Xi(t))

]
dXi(t).(14)

We de�ne the projection estimator of a(t) = (α1(t), . . . , αK(t))T on Sm1×Sm2×· · ·×SmK := Sm,
for m = (m1,m2, . . . ,mK), by

(15) âm(t) = (α̂1(t), . . . , α̂K(t))T = arg min
h∈Sm

UN (h).

The choice of UN (h) for estimating a(t) is motivated by looking at the expectation:

E(UN (h)) =
1

N
E
∫ τ

0

N∑
i=1

[
K∑
k=1

hk(t)gk(Xi(t)]
2dt

− 2

N
E
∫ τ

0

N∑
i=1

[

N∑
k=1

hk(t)gk(Xi(t))][

K∑
k=1

αk(t)gk(Xi(t))]dt

= E
∫ τ

0
[
K∑
k=1

hk(t)gk(X1(t)]2dt− 2E
∫ τ

0
[
K∑
k=1

hk(t)gk(X1(t))][
K∑
k=1

αk(t)gk(X1(t))]dt

= ‖h‖2τ − 2〈h,a〉τ = ‖h− a‖2τ − ‖a‖2τ ,

which is minimal if hj = αj for j = 1, . . . ,K. Moreover,

UN (h) =

∫ τ

0
‖h(t)‖2SN (t) dt−

2

N

N∑
i=1

∫ τ

0

[
K∑
k=1

hk(t)gk(Xi(t))

]
dXi(t)

= ‖h‖2N − 2〈h,a〉N − 2νN (h)(16)
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where

νN (h) =
1

N

N∑
i=1

∫ τ

0
[
K∑
k=1

hk(t)gk(Xi(t))]σ(t,Xi(t))dWi(t),

is a centered empirical process of interest.

3.2. Minimum contrast estimator. Let us now detail the construction and the expression of
the estimator (15). Let

(17) |m| := m1 + · · ·+mK = ‖m‖1.

Denote by Ψ̂m the |m| × |m| symmetric matrix with blocks of size mj ×mk denoted by Ψ̂mj ,mk
given by:

(18) Ψ̂m =

 Ψ̂m1,m1 . . . Ψ̂m1,mK
...

...

Ψ̂mK ,m1 . . . Ψ̂mK ,mK

 ,

where

Ψ̂mj ,mk =

(∫ τ

0
ϕp(t)ϕq(t)

1

N

N∑
i=1

gj(Xi(t))gk(Xi(t))dt

)
1≤p≤mj ,1≤q≤mk

.

Set moreover

Ψm = E
(

Ψ̂m

)
.

Using de�nition (15), we can compute

(19) âm(t) = (α̂1(t), . . . , α̂K(t))T where α̂k(t) =

mk∑
j=1

α̂k,jϕj(t)

and standardly obtain that the vector Âm = (α̂1,1, . . . , α̂1,m1 , α̂2,1, . . . , α̂2,m2, . . . , α̂K,1, . . . , α̂K,mK )T

of R|m| is solution of

Ψ̂mÂm = Vm, with Vm =

 V1,m1

...
VK,mK

 ,

and Vj,mj are mj × 1 vectors, j = 1, . . . ,K, given by

Vj,mj =

(
1

N

∫ τ

0
ϕp(t)

N∑
i=1

gj(Xi(t))dXi(t), 1 ≤ p ≤ mj

)T
.

Therefore we need to know if the matrix Ψ̂m is invertible, and this is the topic of the following
Lemma, which also makes the link between the matrix and the empirical norm.

Lemma 1. For x = (x1,1, . . . , x1,m1 , x2,1 . . . , x2,m2 , . . . , xK,1, . . . , xK,mK )T ∈ R|m|, we have

xT Ψ̂mx =

∫ τ

0

1

N

N∑
i=1

 K∑
j=1

hj(t)gj(Xi(t))

2

dt = ‖h‖2N ,

xTΨmx =

∫ τ

0
E

 K∑
j=1

hj(t)gj(X1(t))

2

dt = ‖h‖2τ ,
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where, for j = 1, . . . ,K, hj(t) =
∑mj

p=1 xj,pϕp(t) and h = (h1(t), . . . , hK(t))T (see (3)).

Under [H3], the matrices Ψ̂m and Ψm are symmetric positive de�nite.

By Lemma 1, under [H3], the matrix Ψ̂m is invertible and positive de�nite. Therefore the

estimator (19) can be computed by getting the coe�cients Âm as follows:

(20) Âm = Ψ̂−1
m Vm.

3.3. Truncated estimator on a �xed space and risk bounds. In what follows, we de�ne
the risk of any estimator āN (t) as the expectation of the empirical square norm ‖āN − a‖2N
or the deterministic square norm ‖āN − a‖2τ . These de�nitions of the risk are classically used
for problems of regression type by projection method, see e.g. Baraud et al (2001), Comte et
al. (2007), Gendre (2014), Comte et al. (2020a), Denis et al. (2021).
The following proposition shows that, contrary to other contexts (see Cohen et. al (2013, 2019)),
we need not introduce a restriction of the choices of the dimension spaces in term of bounding
‖Ψ−1

m ‖op by a quantity depending on N . Indeed, it holds that

Proposition 3. Assume [H1]-[H3]. Then, for all m,

(21) ‖Ψ−1
m ‖op ≤ fτ = sup

t∈[0,τ ]
‖S(t)−1‖op

Proof of Proposition 3. Let us note that

‖Ψ−1
m ‖op = sup

x∈R|m|,‖x‖2,|m|=1

xTΨ−1
m x = sup

y∈R|m|,‖yTΨmy‖2,|m|=1

yTy

= sup
‖h‖2τ=1,h∈Sm

‖h‖2 = sup
h∈Sm,h6=0

‖h‖2

‖h‖2τ
,(22)

where, for y = (yj,p, p = 1, . . . ,mj , j = 1, . . . ,K), h = (h1(t), . . . , hK(t))T and for j = 1, . . . ,K,

hj(t) =
∑mj

p=1 yj,pϕp(t). Recall that

‖h‖2τ =

∫ τ

0
h(t)TS(t)h(t)dt ≥

∫ τ

0
inf

1≤i≤K
λi(t)h(t)Th(t)dt

where (λi(t), i = 1, . . .K) denote the eigenvalues of S(t). Now,

inf
1≤i≤K

λi(t) = 1/‖S(t)−1‖op ≥ 1/fτ .

This implies ‖h‖2τ ≥ ‖h‖2/fτ which gives the result. 2

Remark 1. • Combining Propositions 2 and 3, we see that the two norms ‖.‖ and ‖.‖τ
are equivalent for functions of Sm.
• Note that, if m = (m1, . . . ,mK) and m′ = (m′1, . . . ,m

′
K) are such that mj ≤ m′j for

j = 1, . . . ,K, then by (22), ‖Ψ−1
m ‖op ≤ ‖Ψ−1

m′‖op.

We can do the analogous reasoning for ‖Ψ̂−1
m ‖op.

For the estimator (19), a transformation by introducing an adequate truncation is required,
in relation with equality (21). For constants c1, c2 > 0 that can take any value, let us de�ne

(23) ΛN = {∀t ∈ [0, τ ], ‖SN (t)−1‖op ≤ c1N
c2}.

Using (23), we de�ne the trimmed estimator:

(24) ãm = âm1ΛN
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The following proposition shows that ΛN has large probability and guarantees a rough bound

on ‖Ψ̂−1
m ‖op.

Proposition 4. Assume that [H1] to [H3] are ful�lled. Then, for all p > 1, there exists a
constant c0 > 0 depending on K, fτ (see Proposition 3) and p, such that P(ΛcN ) ≤ c0N

−p.
Moreover, on ΛN , it holds that

∀m, ‖Ψ̂−1
m ‖op ≤ c1N

c2 .

Denote by Θ̂m the |m|× |m| symmetric matrix built similarly to Ψ̂m, but given by the blocks
mj ×mk

(25) Θ̂mj ,mk =

(∫ τ

0
ϕp(t)ϕq(t)

1

N

N∑
i=1

gj(Xi(t))gk(Xi(t))σ
2(t,Xi(t))dt

)
1≤p≤mj ,1≤q≤mk

,

The deterministic counterpart is Θm := E(Θ̂m), which is also |m| × |m| and symmetric.
We can prove the following risk bounds with respect to the integrated empirical and deter-

ministic norms.

Theorem 2. Assume that [H1] to [H4] hold and that m satis�es |m| ≤ N . The estimator ãm
of a(t) = (α1(t), . . . , αK(t))T satis�es, for c is a generic constant,

(26) E‖ãm − a‖2N ≤ inf
h=(h1,...,hK)T∈Sm

‖h− a‖2τ + 2
Tr(Ψ−1

m Θm)

N
+

c

N
,

(27) E‖ãm − a‖2τ ≤ 5 inf
h=(h1,...,hK)T∈Sm

‖h− a‖2τ + 4
Tr(Ψ−1

m Θm)

N
+

c

N
.

We have Tr(Ψ−1
m Θm) ≤ C|m| where C is a constant given in the proof and |m| is given in (17).

An explicit value of the constant C above can be given under an additional assumption.

[H5] supt∈[0,τ ],x∈R σ
2(t, x) := ‖σ‖2∞ < +∞.

Corollary 1. If σ satis�es [H5], then Tr(Ψ−1
m Θm) ≤ ‖σ‖2∞|m|.

3.4. Discussion about rates. To evaluate rates of convergence, we must assess the L2-norm
of the estimators bias within some regularity subspaces of L2

τ . Such assessments are standard in
nonparametric statistcs, for function αj belonging to Sobolev spaces associated with the chosen
basis (see examples in Comte and Genon-Catalot (2023), section 3.3).

Proposition 5. Assume [H1] to [H5] and that for j ∈ {1, . . . ,K}, the function αj belongs to

a regularity space such that infh∈Sm ‖αj − h‖2 ≤ Rjm
−2αj . Choose mj = O(N1/(2αj+1)) for

j = 1, . . . ,K and set α? = minj=1,...,K αj, then

E‖ãm − a‖2τ . O(N−2α?/(2α?+1)).

If all functions have the same regularity αj = α?, for all j = 1, . . .K, choosingmj = N1/(2α?+1) :=
m? for j = 1, . . . ,K, and setting m? = (m?, . . . ,m?), we obtain

E‖ãm? − a‖2τ . O(N−2α?/(2α?+1)).
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Proof of Proposition 5. By Proposition 2, we have

inf
h=(h1,...,hK)T∈Sm

‖h− a‖2τ ≤ KG2 inf
h∈Sm

‖h− a‖2 = KG2 inf
hj∈Smj ,j=1,...,K

K∑
j=1

‖hj − αj‖2

≤ KG2
K∑
j=1

Rjm
−2αj
j .

Under [H5], we �nd, under the assumptions of Theorem 2 ,

E‖ãm − a‖2τ ≤ 5 inf
h∈Sm

‖h− a‖2τ + 4‖σ‖2∞
|m|
N

+
c

N

≤ 5KG2
K∑
j=1

Rjm
−2αj
j + 4‖σ‖2∞

m1 + · · ·+mK

N
+

c

N

.
K∑
j=1

N−(2αj)/(2αj+1) = O(N−2α?/(2α?+1)). 2

Thus, our method has the advantadge of estimating all functions simultaneously and of reaching
the rate corresponding to the estimation of one function with regularity α?. The drawback is
that the rate corresponds to the smallest regularity.

3.5. Model selection. Now, the choices proposed above are asymptotic and depend on un-
known regularity parameters. So, they cannot be implemented. This is why we propose a data
driven model selection device. This de�nes a new estimator, for which we prove a nonasymptotic
risk bound.

Consider the collection of models de�ned by

(28) MN =
{
m ∈ {1, . . . , N}K , |m| ≤ N

}
.

Set

(29) m̂ ∈ arg min
m∈MN

[UN (âm) + pen(m)] , pen(m) = κ‖σ‖2∞
|m|
N

,

and consider the estimator

ã = âm̂1ΛN ,

where ΛN is de�ned by (23).

Theorem 3. Assume that [H1] to [H5] hold. Consider the estimator ã of a(t) = (α1(t), . . . , αK(t))T

with any m̂ de�ned by (29). Then, there exists a numerical constant κ0 such for all κ ≥ κ0, we
have

(30) E
(
‖ã− a‖2N

)
≤ 4 inf

m∈MN

(
inf

h=(h1,...,hK)T∈Sm

‖h− a‖2τ + ‖σ‖2∞
|m|
N

)
+
C

N
,

where C is a constant depending on K,G, ‖σ‖∞.

As a consequence, Inequality (30) shows that the estimator is performing an automatic �-
nite sample and global square bias/variance compromise. Asymptotically, when a belongs to a
regularity space as described in Section 3.4, the rates given in Proposition 5 follow.
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(1) (2) (3)

Figure 1. Plots of 40 repetitions of t 7→ λmax(S−1
N (t)) on [0, τ ] with τ = 2. Cou-

ples (g1, g2): �rst line (a), second line (b). Examples (1)-(2)-(3) in corresponding
columns. N = 2000

Triplet (1) Triplet (2) Triplet (3)
N = 500 N = 2000 N = 500 N = 2000 N = 500 N = 2000
α1 α2 α1 α2 α1 α2 α1 α2 α1 α2 α1 α2

MSE A.T. 1.8 .75 .57 .25 1.3 .81 .44 .20 .99 1.6 .30 .40
(std) (1.0) (.29) (.24) (.08) (.46) (.33) [.15) (.11) (.63) (.62) (.14) (.17)

I T 1.8 .78 .56 .26 1.5 .58 .51 .21 .89 1.4 .31 .43
(std) (1.0) (.31) (.25) (.09) (.39) (.23) (.17) (.07) (.66) (.66) (.17) (.17)

MSE A.L. 1.1 .52 .29 .13 .91 .48 .24 .15 .56 .29 .17 .13
(std) (0.7) (.27) (.18) (.06) (.39) (.38) (.14) (.07) (.59) (.31) (.11) (.09)

MSE I.L. 1.3 .56 .34 .14 .95 .40 .29 .11 .62 .53 .18 .16
(std) (0.7) (.28) (.18) (.07) (0.38) (.30) (.18) (.08) (.68) (.44) (.12) (.12)

dim T 6.7 8.6 8.5 11 6.1 4.7 8.1 6.1 3.3 5.0 4.7 6.7
dim L 4.7 7.1 5.2 7.7 6.3 5.0 7.1 5.2 4.0 2.0 4.1 2.1

Table 1. First case (g1, g2) of Ornstein-Uhlenbeck type (a). Mean squared er-
ror (MSE) and standard deviation (std) are both multiplied by 100. A./I. for
Anisotropic or Isotropic, T./L. for (half) Trigonometric or Laguerre basis. Di-
mensions (dim) are averages of selected dimensions in the anisotropic case.

4. Numerical results on simulated data.

In this simulation section, we consider the case K = 2. Two examples of couples (g1, g2):

(a) g1(x) = 1, g2(x) = x
(b) g1(x) = x and g2(x) = x/(1 + x2),
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are illustrated, with three examples of triplets (α1, α2, σ):

(1) α1(t) = t(τ − t), α2(t) = sin(4t), σ(t, x) = 0.5(1 + 1√
1+x2

),

(2) α1(x) = sin(4t), α2(t) = cos(2.5t), σ(t, x) = 1/(1 + t2),
(3) α1(t) = t, α2(t) = −2t/(1 + t2), σ(t, x) = 0.5.

We have generated discrete paths on [0, τ ] with τ = 2 by a basic Euler scheme, with n = 2000
observations for a step ∆ = τ/n.

First, we study the behaviour of the largest eigenvalue of S−1
N (t), denoted by λmax(S−1

N (t)).
The supremum over [0, τ ] of this function is involved in the de�nition of the estimator, and it
corresponds to the empirical version of fτ , which is �nite under our assumptions. The results for
sample size N = 2000 and 40 repetitions are presented in Figure 1. The pictures show that the
pro�les are very di�erent in the di�erent examples, and their values are also quite di�erent.

Next, we look at the performance of the estimator. For each path, a discrete L2-distance
between the true function and its estimation is computed. The values of MSE are obtained by
averaging these results over the L = 400 simulated trajectories correponding to each case. To be

more precise, for simulation `, we calculate
(

(α̂p)
(`)
m̂p

(k∆)
)

1≤k≤n
for p = 1, 2 from N independent

paths (X
(`)
i (k∆))1≤k≤n, for i = 1, . . . , N and compute for p = 1, 2, the MSE for αp as

1

L

L∑
`=1

[
∆

n∑
k=1

(
(α̂p)

(`)
m̂p

(k∆)− αp(k∆)
)2
]
.

Triplet (1) Triplet (2) Triplet (3)
N = 500 N = 2000 N = 500 N = 2000 N = 500 N = 2000
α1 α2 α1 α2 α1 α2 α1 α2 α1 α2 α1 α2

MSE A.T. 1.1 19 .37 6.1 1.6 9.5 .51 3.6 .61 9.1 .20 2.1
(std) (.91) (13) (.24) (3.6) (1.2) (9.3) (.29) (1.7) (.42) (4.2) (.11) (.75)

MSE I.T. 1.1 23 .38 8.1 1.9 9.7 .60 3.0 .67 5.0 .22 1.7
(std) (.94) (12) (.24) (3.5) (1.2) (8.3) (.27) (2.0) [.42) (3.1) (.11) (.93)

MSE A.L. .84 18 .22 5.1 1.6 17 .39 3.1 .44 2.2 .11 .54
(std) (.88) (9.3) (.20) (2.9) (1.3) (11) (.30) (1.8) (.36) (2.6) (.09) [.53)

MSE I.L. .84 17 .23 4.8 1.7 13 .40 3.3 .48 3.9 .17 1.1
(std) (.91) (9.7) (.21) (2.6) (1.3) (11) [.30) (2.3) (.38) (3.2) (.12) .75)

dim T 9.8 5.8 13 6.7 6.7 3.3 8.6 3.7 6.5 2.1 9.3 3.6
dim L 5.3 5.4 5.4 6.4 6.7 3.1 7.2 4.1 4.3 2.0 5.0 2.0

Table 2. Case (b), (g1(x), g2(x)) = (x, x/(1 + x2). Mean squared error (MSE)
and standard deviation (std) are both multiplied by 100. A./I. for Anisotropic
or Isotropic, T./L. for (half) Trigonometric or Laguerre basis. Dimensions (dim)
are averages of selected dimensions in the anisotropic case.

We experimented two di�erent samples sizes: N = 500 and N = 2000 in order to check the
improvement brought by increasing N . We also implemented two bases for the estimation: the
half trigonometric and the Laguerre basis (see their description in section 7.3 in Appendix). The
penalty constant κ in formula (29) is taken equal to 2.5 for half-trigonometric basis and to 3 for
Laguerre basis. The true value of ‖σ‖∞ is used. Both anisotropic and isotropic model selection
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Figure 2. Example (1)-(b). True curve in black and 40 estimated functions in
cyan, for N = 2000. Right: function α1, 100 MSE 0.52 and 0.31. Left: function
α2, 100 MSE 0.33 and 0.16. Top trigonometric basis, bottom Laguerre bases.

are implemented and, each model is selected among dimensions 1 to Dmax with Dmax = 15 for
the half-trigonometric basis and Dmax = 8 for the Laguerre basis. These maximal dimension
are selected to be large enough for all examples (in the sense that much smaller dimensions are
always chosen by the algorithm), and in that way, to save computing time (these Dmax are not
as large as they should).

Let us comment the results given in Tables 1 and 2. Clearly, increasing N always substantially
improve the results and decreases the MSE. In the same time, the selected dimensions increase,
which is also expected. Most of the time (75%), the anisotropic method gives a better result than
the isotropic one, but it is almost always true for α1 and much more mitigated for α2. It is likely
that, contrary to what the theory says, the global risk is generally improved by the anisotropic
model selection, but probably not in a signi�cant order.

Figures 2 and 3 show 40 estimators compared to the true function (in bold black), and illustrate
that for di�erent functions (g1, g2), the results can be quite di�erent: the function α2 is well
estimated in case (a), but the MSEs are much larger in case (b), and this can be seen on the
plots. Figure 4 presents another illustration for smaller sample size, and shows that the estimator
can �t a straight line (function α1), which was not obvious with trigonometric or Laguerre bases.

5. Concluding remarks

In this paper, we consider a new setting of N i.i.d. one-dimensional inhomogeneous di�u-
sion processes (Xi(t), i = 1, . . . , N) with drift µ(t, x) =

∑K
j=1 αj(t)gj(x) and di�usion coe�cient

σ(t, x), where K, the functions gj(x) and σ(t, x) are known. We propose a nonparametric estima-
tion method for the K-dimensional unknown function (αj(t), j = 1, . . . , k) from the continuous
observation of the N sample paths (Xi(t)) throughout a �xed time interval [0, τ ]. We proceed
by a projection method on �nite dimensional subspaces of L2([0, τ ])K and propose a data-driven
choice of the dimension of the projection space.
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Figure 3. Example (1)-(b). True curve in black and 40 estimated functions in
cyan, for N = 2000. Right: function α1, 100 MSE 0.28 and 0.16. Left: function
α2, 100 MSE 5.7 and 4.6. Top trigonometric basis, bottom Laguerre bases.

Figure 4. Example (3)-(a). True curve in black and 40 estimated functions in
cyan, for N = 500. Right: function α1, 100 MSE 0.84 and 0.49. Left: function
α2, 100 MSE 1.0 and 0.22. Top trigonometric basis, bottom Laguerre bases.

We obtain risk bounds for the projection estimator on a �xed space and for the data-driven
estimator. Numerical results on simulated data for several models show that the method works
in practice.
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Discrete time observations could be studied as was done in Comte and Genon-Catalot (2023);
it is enough to discretize all formulae and de�nitions. The handling of residual terms is similar
to the Appendix of Comte and Genon-Catalot (2023). This is what is used in simulations.

A possible extension would be to look at the case where τ can be large, but this would be a
completely di�erent framework from the point of view of the assumptions on the model.

Another question is: how could we propose methods which may deliver individual estimators
for each function αj catching each regularity? In an additive case for regression, Gendre (2014)
studies projections of the observations in order to implement one of the functions of the sum
alone. It is not obvious if such a construction may be possible in the present case.

The case of correlated Brownian motions driving the SDEs may also be of interest even if
probably di�cult, see Comte and Marie (2023). Lastly, the case of general drift (t, x) 7→ µ(t, x)
by projection method would be worth of investigation and probably related to bivariate rates.

6. Proofs

6.1. Proof of Proposition 1. The bound (7) is classical (see e.g. Proposition A in Gloter (2000))
and follows from [H1]. The bound (8) is obtained by applying the Burkholder-Davis-Gundy In-
equality (see (6) and [H1]):

E(|X1(t)−X1(s)|2r) ≤ 22r−1E

(∣∣∣∣∫ t

s
µ(u,X1(u))du

∣∣∣∣2r +

∣∣∣∣∫ t

s
σ(u,X1(u))dW1(u)

∣∣∣∣2r
)

≤ 22r−1
(
22r−1(L(τ))2r|t− s|2r) + 22r−1C2r

τ |t− s|r
)

sup
0≤u≤τ

(1 + E|X1(u)|2r).

This yields, for |t− s| ≤ 1,

E(|X1(t)−X1(s)|2r) ≤ B(r, τ)|t− s|r

with

B(r, τ) := 24r−2
(
(L(τ))2r + C2r

τ

)
sup

0≤u≤τ
(1 + E|X1(u)|2r).

For (9), we write that, for g = gjgk,

|g(X1(t))− g(X1(s))| ≤ |(gj(X1(t))− gj(X1(s)))gk(X1(t))|
+|gj(X1(s))(gk(X1(t))− gk(X1(s)))|

≤ L|X1(t)−X1(s)|(|gk(X1(t))|+ |gj(X1(s))|).

E(|g(X1(t))− g(X1(s))|2r) ≤ 22r−1L2rE1/2(|X1(t)−X1(s)|4r) max
k∈{1,...,K}

sup
t∈[0,τ ]

E1/2(|gk(X1(t))|4r).

Using (8), we obtain (9) with

C(r, τ) := 22r−1L2rB1/2(2r, τ) max
k∈{1,...,K}

sup
t∈[0,τ ]

E1/2(|gk(X1(t))|4r).

Note that

sup
t∈[0,τ ]

E(|gk(X1(t))|4r) ≤ 24r−1L̃4r

(
1 + sup

t∈[0,τ ]
E(|X1(t)|4r)

)
< +∞. 2
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6.2. Proof of Theorem 1. We denote by S(t)1/2 a symmetric square root of S(t), invertible
under [H3]. Let h ∈ (L2

τ )K such that ‖h‖2τ =
∫ τ

0 h(t)TS(t)h(t)dt = 1. Then∣∣∣∣‖h‖2N‖h‖2τ
− 1

∣∣∣∣ =
∣∣‖h‖2N − ‖h‖2τ ∣∣ =

∣∣∣∣∫ τ

0
h(t)T (SN (t)− S(t))h(t)dt

∣∣∣∣
=

∣∣∣∣∫ τ

0
h(t)TS(t)1/2(S(t)−1/2SN (t)S−1/2(t)− IdK))S(t)1/2h(t)dt

∣∣∣∣
≤ sup

t∈[0,τ ]
‖S(t)−1/2SN (t)S(t)−1/2 − IdK‖op

∫ τ

0
|h(t)TS(t)h(t)|dt

= sup
t∈[0,τ ]

‖S(t)−1/2SN (t)S(t)−1/2 − IdK‖op,

using that ‖h‖τ = 1. As a consequence supt∈[0,τ ] ‖S(t)−1/2SN (t)S(t)−1/2 − Id2‖op ≤ 1/2 implies

for all h ∈ (L2
τ )K ,

∣∣‖h‖2N/‖h‖2τ − 1
∣∣ ≤ 1/2, which gives the �rst result.

Next, using [H3], recall that we have set fτ := supt∈[0,τ ] ‖S(t)−1‖op. We have

sup
t∈[0,τ ]

‖S(t)−1/2SN (t)S(t)−1/2 − IdK‖op ≤ sup
t∈[0,τ ]

‖S(t)−1‖op sup
t∈[0,τ ]

‖SN (t)− S(t)‖op

≤ fτ sup
t∈[0,τ ]

√
Tr((SN (t)− S(t))2)

Then

Tr((SN (t)− S(t))2) =
∑

1≤j,k≤K

(
1

N

N∑
i=1

{gj(Xi(t))gk(Xi(t))− E[gj(Xi(t))gk(Xi(t))]}

)2

≤ K2 max
1≤j,k≤K

(
1

N

N∑
i=1

{gj(Xi(t))gk(Xi(t))− E[gj(Xi(t))gk(Xi(t))]}

)2

It follows that

P(OcN ) ≤ P

(
max

1≤j,k≤K
sup
t∈[0,τ ]

∣∣∣∣∣ 1

N

N∑
i=1

{gj(Xi(t))gk(Xi(t))− E[gj(Xi(t))gk(Xi(t))]}

∣∣∣∣∣ > 1

2Kfτ

)
,

≤
∑

1≤j,k≤K
P

(
sup
t∈[0,τ ]

∣∣∣∣∣ 1

N

N∑
i=1

{gj(Xi(t))gk(Xi(t))− E[gj(Xi(t))gk(Xi(t))]}

∣∣∣∣∣ > 1

2Kfτ

)
.

The result of Theorem 1 follows immediately from Lemma 2 below. 2
Lemma 2 is obtained by application of the Garsia-Rodemich-Rumsey (1970/71) Lemma (in

the formulation stated in Jourdain and Pagès (2022), see Lemma 5 in Section 7).

Lemma 2. Assume that [H1]-[H2] holds. Let g = gjgk for j, k ∈ {1, . . . ,K}. Then ∀p > 1,
there exists a constant Cp,τ such that, for all constant aτ > 0,

P0 := P

(
sup
t∈[0,τ ]

∣∣∣∣∣ 1

N

N∑
i=1

g(Xi(t))− E[g(Xi(t))]

∣∣∣∣∣ > aτ

)
≤ Cp,τa−2p

τ N−p.

6.3. Proof of Lemma 2. Let us de�ne

YN (t) :=
1

N

N∑
i=1

[g(Xi(t))− E(g(Xi(t))].
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First we prove that there exists a > 1 and a constant cτ such that

∀N ≥ 1, ∀s, t ∈ [0, τ ], E[|YN (t)− YN (s)|2p] ≤ cτ |t− s|a
1

Np
.

We apply the Rosenthal Inequality and get

E[|YN (t)− YN (s)|2p] ≤ C(2p)

N2p

(
NE(|g(X1(t))− g(X1(s))|2p) + (NVar(g(X1(t))− g(X1(s))))p

)
≤ C(2p)

N2p

(
NE(|g(X1(t))− g(X1(s))|2p) +

(
NE(g[(X1(t))− g(X1(s)))2]

)p)
,

where C(2p) is the constant of the Rosenthal Inequality. By applying (9) of Proposition 1, we
obtain

E[|YN (t)− YN (s)|2p] ≤ 2C(2p)

Np
E(|g(X1(t))− g(X1(s))|2p)

≤ 2C(2p)

Np
C(p, τ)|t− s|p

Then by Lemma 5 (see Appendix), we get that for p > 1, there exists a constant Cp,τ such
that

∀N ≥ 1, E

(
sup
t∈[0,τ ]

|YN (t)− YN (0)|2p
)
≤ Cp,τ

1

Np
.

Next, by the Rosenthal Inequality, we get

E[|YN (0)|2p] ≤ C(2p)N−2p{NE[|g(X1(0))|2p] +Np[Var(g(X1(0)))]p}.

Therefore for another constant Cp,τ ,

(31) E

(
sup
t∈[0,τ ]

|YN (t)|2p
)
≤ Cp,τ

1

Np
.

Now by the Markov Inequality, P0 ≤ a−2p
τ Cp,τN

−p. 2

6.4. Proof of Lemma 1. Using the product of matrices by blocks and setting for j = 1, . . . , k,
xTj = (xj,1, . . . , xj,mj ), we get:

xT Ψ̂mx =
∑

1≤j,k≤K
xTj Ψ̂mj ,mkxk.

Using the de�nition of Ψ̂mj ,mk yields, for hj as de�ned in Lemma 1:

xTj Ψ̂mj ,mkxk =

∫ τ

0
hj(t)hk(t)

1

N

N∑
i=1

gj(Xi(t))gk(Xi(t))dt.

Thus,

xT Ψ̂mx =
1

N

N∑
i=1

∫ τ

0

 K∑
j=1

hj(t)gj(Xi(t))

2

dt =

∫ τ

0
h(t)TSN (t)h(t)dt.

Now, xT Ψ̂mx = 0 implies that h(t)TSN (t)h(t) = 0 a.e. on [0, τ ], by [H3]. As, for all j, the
functions (ϕj , j = 1, . . . ,mj) are orthonormal on L2

τ , this implies that for all j, xj = 0, therefore,

x = 0. This shows that Ψ̂m is positive de�nite. The same holds for Ψm. 2
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6.5. Proof of Proposition 4. On ΛcN , there exists t0 ∈ [0, τ ] such that ‖SN (t0)−1‖op > c1N
c2

while supt∈[0,τ ‖S(t)−1‖op ≤ (c1/2)N c2 (indeed for c2 > 0, it holds (c1/2)N c2 > fτ ) and thus

‖S(t0)−1‖op ≤ (c1/2)N c2 . It follows that for this t0, ‖SN (t0)−1 − S(t0)−1‖op ≥ (c1/2)N c2 .
Indeed

c1N
c2 < ‖SN (t0)−1‖op ≤ ‖SN (t0)−1−S(t0)−1‖op+‖S(t0)−1‖op ≤ ‖SN (t0)−1−S(t0)−1‖op+(c1/2)N c2 .

Therefore

P(ΛcN ) ≤ P
(
∃t0 ∈ [0, τ ], ‖SN (t0)−1 − S(t0)−1‖op ≥ (c1/2)N c2

)
.

We use Theorem 4 (of the Appendix) to write that, if ‖S(t)−1(SN (t)− S(t))‖op < 1,

(32) ‖SN (t)−1 − S(t)−1‖op ≤
f2
τ ‖SN (t)− S(t)‖op

1− ‖S(t)−1(SN (t)− S(t))‖op
.

So we split the event

At := {‖SN (t)−1 − S(t)−1‖op ≥ c′} = Bt ∪ Ct
where

Bt = {‖SN (t)−1 − S(t)−1‖op ≥ c′, ‖S(t)−1(SN (t)− S(t))‖op < 1/2}
and

Ct = {‖SN (t)−1 − S(t)−1‖op ≥ c′, ‖S(t)−1(SN (t)− S(t))‖op ≥ 1/2}.
We have

P(∃t0 ∈ [0, τ ], ‖SN (t0)−1 − S(t0)−1‖op ≥ c′) = P(∃t0 ∈ [0, τ ] such that At0 holds)

≤ P(∃t0 ∈ [0, τ ] such that Bt0 holds)

+P(∃t0 ∈ [0, τ ] such that Ct0 holds)

Now with (32),

P(∃t0 ∈ [0, τ ] such that Bt0holds) ≤ P(∃t0 ∈ [0, τ ], ‖SN (t0)− S(t0)‖op ≥ c′/(2f2
τ ))

and by keeping only the second constraint in the other case,

P(∃t0 ∈ [0, τ ] such that Ct0holds) ≤ P(∃t0 ∈ [0, τ ], ‖SN (t0)− S(t0)‖op ≥ 1/(2fτ )).

As a consequence,

P(ΛcN ) ≤ P( sup
t∈[0,τ ]

‖SN (t)− S(t)‖op ≥ c1N
c2/(2f2

τ )) + P( sup
t∈[0,τ ]

‖SN (t)− S(t)‖op ≥ 1/(2fτ ))

From the Proof of Theorem 1 and (31), we have for any p > 1,

E

(
sup
t∈[0,τ ]

‖SN (t)− S(t)‖2pop

)
≤ C(p,K, τ)N−p.

Therefore, for any p > 1, P(ΛcN ) ≤ c0N
−p and the �rst part of Proposition 4 follows by applying

the Markov Inequality.

Next, on ΛN , we have that ∀t ∈ [0, τ ],

λmax(S−1
N (t)) =

1

λmin(SN (t))
≤ c1N

c2 .

(λmax(M), resp. λmin(M), denotes the maximal, resp. minimal, eigenvalue of matrixM). In the

same way, λmax(Ψ̂−1
m ) = 1/λmin(Ψ̂m).
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As for any x ∈ R|m|, and for h associated with x as in Lemma 1,

xT Ψ̂mx =

∫ τ

0
h(t)TSN (t)h(t)dt,

it follows that on ΛN , for any eigenvalue λ of Ψ̂m and any eigenvector x with norm equal to 1,

λ = xT Ψ̂mx =

∫ τ

0
h(t)TSN (t)h(t)dt ≥

∫ τ

0
λmin(SN (t))‖h(t)‖2dt ≥ c−1

1 N−c2 .

Thus λmin(Ψ̂m) ≥ c−1
1 N−c2 and it follows that ‖Ψ̂−1

m ‖op ≤ c1N
c2 . 2

6.6. Proof of Theorem 2. We start with some preliminaries.

6.6.1. General orthogonal projection w.r.t. 〈., .〉N . To study the risk of ãm, we need to have an
adequate expression of the orthogonal projection of a with respect to 〈., .〉N . Let

Φm1+···+mj−1+k = (0, . . . , 0︸ ︷︷ ︸
j−1

, ϕk, 0, . . . , 0︸ ︷︷ ︸
K−j

)T , j = 1, . . . ,K, k = 1, . . . ,mj

The functions (Φj , j = 1, . . . , |m|) constitute an orthonormal system of (L2
τ )K with respect to

the scalar product 〈h,h?〉 =
∫ τ

0

∑K
j=1 hj(t)h

?
j (t) dt and generate a space S|m| (isomorphic to Sm)

with dimension |m| = m1 + · · ·+mK . An element h = (h1, . . . , hK)T of S|m| can be written as

h(t) =

|m|∑
i=1

aiΦi = (

m1∑
i=1

aiϕi,

m2∑
i=1

am1+i ϕi, . . . ,

mK∑
i=1

am1+...,+mK−1+i ϕi)
T

We have:
Ψ̂m = (〈Φj ,Φ`〉N )0≤j,`≤|m| .

Indeed, if m1 + . . .+mk−1 + j ≤ m1 + · · ·+mk and m1 + . . .+mk′−1 + ` ≤ m1 · · ·+mk′ ,

〈Φj ,Φ`〉N = Ψmkmk′ .

The orthogonal projection πma of a on S|m| with respect to the scalar product 〈., .〉N is charac-
terized by πma− a ⊥ Φj , j = 1, . . . |m|. This yields

(33) πma =

|m|∑
j=1

ajΦj where

 a1
...

a|m|

 = Ψ̂−1
m


...

〈a,Φj〉N
...


1≤j≤|m|

.

The vector Vm = (V T
1,m1

, . . . , V T
K,mK

)T can be written as

(34) Vm =


...

〈a,Φj〉N
...


0≤j≤|m|

+ Wm, Wm :=
1

N


...∫ τ

0 Φj(t)
TdMN (t)
...


0≤j≤|m|

.

where

MN (τ) =

(∫ τ

0

N∑
i=1

gj(Xi(t))σ(t,Xi(t))dWi(t)

)
1≤j≤K

.

Note that, recalling the de�nition of Θ̂m given in (25), we have

(35) EWmWT
m =

1

N
EΘ̂m :=

1

N
Θm,
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and Θ̂m = Ψ̂m if σ ≡ 1. The matrices Θ̂m and Θm are symmetric and nonnegative matrices
with

xτΘmx =

∫ τ

0
E


K∑
j=1

mj∑
p=1

xj,pϕp(t)︸ ︷︷ ︸
hj(t)

gj(X1(t))σ(t,X1(t))


2

dt ≥ 0.

6.6.2. A useful Lemma.

Lemma 3. Assume [H1] to [H3]. De�ne the set

(36) Ωm :=

{∣∣∣∣‖h‖2N‖h‖2τ
− 1

∣∣∣∣ ≤ 1

2
,∀h ∈ Sm

}
.

where the empirical norm ‖.‖N and the ‖ · ‖τ -norm are equivalent for elements of Sm. We have
ON ⊂ Ωm for all m, and

(37) Ωm =
{
‖Ψ−1/2

m Ψ̂mΨ
−1/2
m − Id|m|‖op ≤ 1/2

}
.

Proof of Lemma 3. The inclusion ON ⊂ Ωm follows from Theorem 1. On Ωm, ∀h ∈
Sm, (2/3)‖h‖2N ≤ ‖h‖2τ ≤ 2‖h‖2N . If xT = (x0, . . . , x|m|) ∈ R|m| and h = (

∑m1
j=1 xjϕj , . . . ,

∑mK
j=1 xm1+···+mK−1+jϕj)

T ,
then

(38) ‖h‖2N = xT Ψ̂mx and ‖h‖2τ = xTΨmx = ‖Ψ1/2
m x‖22,|m|, so that

sup
h∈Sm,‖h‖τ=1

∣∣‖h‖2N − ‖h‖2τ ∣∣ = sup
~x∈R|m|,‖Ψ1/2

m x‖2,|m|=1

∣∣∣xT (Ψ̂m −Ψm)x
∣∣∣

= sup
u∈R|m|,‖u‖2,|m|=1

∣∣∣uTΨ
−1/2
m (Ψ̂m −Ψm)Ψ

−1/2
m ~u

∣∣∣
= ‖Ψ−1/2

m Ψ̂mΨ
−1/2
m − Id|m|‖op.

Therefore, we get (37). This ends the proof of Lemma 3.2
Now we prove inequalities (26) and (27).

6.6.3. Proof of inequality (26). We write, with a(t) = (αj(t), j = 1, . . . , k),

‖ãm − a‖2N = ‖âm − a‖2N1ΛN + ‖a‖2N1ΛcN

= ‖âm − a‖2N1ΛN∩ON + ‖âm − a‖2N1ΛN∩OcN + ‖a‖2N1ΛcN
(39)

:= T1 + T2 + T3.

• Consider the last term T3 = ‖a‖2N1ΛcN
. We have ET3 ≤ E1/2(‖a‖4N )P1/2(ΛcN ) where

‖a‖2N =
1

N

N∑
i=1

∫ τ

0

 K∑
j=1

αj(t)gj(Xi(t))

2

dt.



DRIFT ESTIMATION FOR INHOMOGENEOUS SDES 21

Thus,

E[‖a‖4N ] ≤ τ

∫ τ

0

 K∑
j=1

α2
j (t)

2

E

 K∑
j=1

g2
j (X1(t))

2 dt
≤ Kτ

∫ τ

0

(
K∑
k=1

α2
k(t)

)2

dt

K∑
j=1

E

(
sup
t∈[0,τ ]

g4
j (X1(t))

)
:= cK(τ).

Then Proposition 4 implies ET3 . 1
Np/2 . 1

N for p ≥ 2.

• Let us now study of T1 = ‖âm − a‖2N1ΛN∩ON . We can write:

(40) ‖âm − a‖2N = ‖âm − πma‖2N + ‖πma− a‖2N = ‖âm − πma‖2N + inf
h∈Sm

‖a− h‖2N .

On one hand, we have âm =
∑|m|

j=1[Âm]jΦj with ÂT
m = (α̂1,1, . . . , α̂1,m1 , . . . , . . . , α̂K,mK ) =

Ψ̂−1
m Vm. On the other hand, πma =

∑M
j=1 ajΦj where (see (33)) Am = (a1, . . . , a|m|)

T =

Ψ̂−1
m (〈Φj , b〉N )1≤j≤|m|.

Hence, by (34), Âm −Am = Ψ̂−1
m Wm and using (38),

‖âm − πma‖2N = (Wm)T Ψ̂−1
m Ψ̂mΨ̂−1

m Wm = (Wm)T Ψ̂−1
m Wm.(41)

Recall that by Lemma 3, ON ⊂ Ωm. On Ωm =
{
‖Ψ−1/2

m Ψ̂mΨ
−1/2
m − Id|m|‖op ≤ 1/2

}
, all the

eigenvalues of Ψ
−1/2
m Ψ̂mΨ

−1/2
m belong to [1/2, 3/2] and so all the eigenvalues of Ψ

1/2
m Ψ̂−1

m Ψ
1/2
m

belong to [2/3, 2]. Thus, we write

(Wm)T Ψ̂−1
m Wm 1ON = (Wm)TΨ

−1/2
m Ψ

1/2
m Ψ̂−1

m Ψ
1/2
m Ψ

−1/2
m Wm 1ON

≤ 2(Wm)TΨ−1
m Wm 1ON .(42)

Therefore , by using equality (35),

E
(
‖âm − πma‖2N1ON∩ΛN

)
≤ 2E

 ∑
1≤j,k≤M

[Wm]j [Wm]k[Ψ
−1
m ]j,k


=

2

N

∑
1≤j,k≤M

[Ψ−1
m ]j,k[Θm]j,k =

2

N
Tr[Ψ−1

m Θm],(43)

So we obtain:

E(T1) ≤ E( inf
h∈Sm

‖a− h‖2N ) +
2

N
Tr[Ψ−1

m Θm]

≤ inf
h∈Sm

‖a− h‖2τ +
2

N
Tr[Ψ−1

m Θm],

where the second term of the right-hand-side (rhs) above is the variance term appearing in (26).

• Finally, let us study of T2 = ‖âm−a‖2N1ΛN∩OcN . We have T2 ≤ (‖âm−πma‖2N+‖a‖2N )1ΛN∩OcN .
Using (41) yields

(44) T2 ≤ (WT
mΨ̂−1

m Wm + ‖a‖2N )1ΛN∩OcN .
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By Proposition 4 about ΛN and the Cauchy-Schwarz inequality, we get,

(45) ET2 ≤
(

2c1N
c2E1/2((WT

mWm)2) + E1/2‖a‖4N )
)
P1/2(OcN ).

We have already seen that E(‖a‖4N ) ≤ cK(τ). For the term E[(WT
mWm)2], we prove the following:

Lemma 4. With Wm de�ned in (34), we have, for some constant c(τ), if the ϕjs are bounded:

E[(WT
mWm)2] ≤ c(τ)

|m|
∑K

j=1 L(Smj )

N2
.

Otherwise,

E[(WT
mWm)2] ≤ c(τ)

|m|
(∑K

j=1 L(Smj )
)2

N2
.

Plugging the result of Lemma 4 in (45) allows to conclude, with Inequality (12), that, for all

m satisfying |m| ≤ N , E(T2) . N c2+(1/2)−(p/2 ≤ N−1, for p ≥ 2c2 + 3.
Joining the bounds for the expectations of T1, T2, T3 gives Inequality (26) by choosing p ≥ 2c2+3.
2

Proof of Lemma 4. Using (34) yields

E[WT
mWm]2 =

1

N4
E

 |m|∑
j=1

(∫ τ

0
Φj(t)

TdMN (t)

)2
2

≤ |m|
N4

|m|∑
j=1

E
(∫ τ

0
Φj(t)

TdMN (t)

)4

.

Now, for j = 1, . . . ,K, and k = 1, . . . ,mj ,∫ τ

0
Φm1+···+mj−1+k(t)

TdMN (t) =

∫ τ

0
ϕk(t)

N∑
i=1

gj(Xi(t))σ(t,Xi(t))dWi(t).

Therefore, using the Burholder-Davies-Gundy inequality yields

E[WT
mWm]2 .

|m|
N4

 K∑
j=1

mj∑
k=1

E

[∫ τ

0
ϕ2
k(t)

N∑
i=1

g2
j (X1(t))σ2(t,Xi(t))dt

]2


≤ τ |m|
N2

∫ τ

0

K∑
j=1

mj∑
k=1

ϕ4
k(t)E(g4

j (X1(t))σ4(t,X1(t))dt


For bounded ϕjs, i.e. |ϕj(t)| ≤ Cϕ, ∀t ∈ [0, τ ] and under [H1] and (H2] (see (7)), we obtain

E[WT
mWm]2 .

|m|
N2

(

K∑
j=1

L(Smj )),

as
∑mj

k=1 ϕ
4
k(t) ≤ C2

ϕ

∑mj
k=1 ϕ

2
k(t) ≤ C2

ϕL(Smj ).

Without using that the ϕjs are bounded, we have
∑mj

j=1 ϕ
4
j (t) ≤ (

∑mj
j=1 ϕ

2
j (t))

2 and we obtain

E[WT
mWm]2 .

|m|
N2

(

K∑
j=1

L2(Smj )) .
|m|
N2

(

K∑
j=1

L(Smj ))
2,
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which ends the proof of Lemma 4. 2

6.6.4. Proof of inequality (27). Similarly to the previous bound, we write

‖ãm − a‖2τ = ‖âm − a‖2τ1ΛN∩ON + ‖âm − a‖2τ1ΛN∩OcN + ‖a‖2τ1ΛcN
(46)

:= T ′1 + T ′2 + T ′3.

It is straightforward that E(T ′3) = ‖a‖2τP(ΛcN ) . 1/Np for all p > 1.
Now we turn to T ′1. Let am,τ be the orthogonal projection of a on Sm w.r.t. the τ -norm.We

have

‖âm − a‖2τ1ON = ‖âm − am,τ‖2τ1ON + ‖am,τ − a‖2τ1ON
≤ ‖am,τ − a‖2τ + 2‖âm − πma‖2τ1ON + 2‖am,τ − πma‖2τ1ON
≤ ‖am,τ − a‖2τ + 4‖âm − πma‖2N + 2‖am,τ − πma‖2τ1ON

Thus

E[T ′1] ≤ ‖am,τ − a‖2τ +
4

N
Tr[Ψ−1

m Θm] + 2E
(
‖am,τ − πma‖2τ1ON

)
.

Now, as am,τ and πma belong to Sm,

E
(
‖am,τ − πma‖2τ1ON

)
≤ 2E

(
‖am,τ − πma‖2N

)
= 2E

(
‖πm(a− am,τ )‖2N

)
≤ 2E

(
‖a− am,τ‖2N

)
= 2‖a− am,τ‖2τ

It follows that

E[T ′1] ≤ 5‖am,τ − a‖2τ +
4

N
Tr[Ψ−1

m Θm].

Let us lastly consider T ′2 = ‖âm − a‖2τ1ΛN∩OcN and write

T ′2 ≤ 2(‖âm‖2τ + ‖a‖2τ )1ΛN∩OcN := T ′2,1 + T ′2,2.

Clearly E(T ′2,2) ≤ ‖a‖2τP(OcN ) ≤ KG2‖a‖2N−p, by using Proposition 2. Analogously, it holds

that ‖âm‖2τ ≤ KG2‖âm‖2. Now using formula (20), we get

‖âm‖2 = ‖Âm‖22,|m| ≤ ‖Ψ̂
−1
m ‖2op‖Vm‖22,|m|.

By Proposition 4, on ΛN , we have

‖Ψ̂−1
m ‖2op ≤ 4c1

2N2c2 .

As a consequence

(47) E[T ′2,1] ≤ 4c1
2N2c2E1/2(‖Vm‖42,|m|)P

1/2(OcN ).

By formula (34), we write

‖Vm‖22,|m| ≤ 2

 |m|∑
j=1

〈a,Φj〉2N + ‖W‖22,|m|

 .

By Lemma 4, we have a bound on E1/2[‖W‖42,|m|] ≤ C(τ)
√
|m|

∑K
j=1 L(Smj )/N and under [H4]

(48) E1/2[‖W‖42,|m|] . |m|
3/2/N ≤ |m|1/2 ≤ N1/2

as |m| ≤ N . We have,

‖SN (t)‖op ≤
1

N

N∑
i=1

‖Sg(Xi(t))‖op =
1

N

N∑
i=1

Tr(Sg(Xi(t))) =
1

N

N∑
i=1

K∑
j=1

g2
j (Xi(t))



24 F. COMTE, V. GENON-CATALOT

and thus

E(‖SN (t)‖4op) ≤ K4 max
j∈{1,...,K}

sup
t∈[0,τ ]

E(g8
j (X1(t))) := c1(τ,K).

Then we get

E

 |m|∑
j=1

〈a,Φj〉2N

2 ≤ |m|E
 |m|∑
j=1

〈a,Φj〉4N


and

E
(
〈a,Φj〉4N

)
≤ E

(∫ τ

0
‖SN (t)‖op‖a(t)‖2,K ‖Φj(t)‖2,Kdt

)4

≤ τ3

∫ τ

0
E(‖SN (t)‖4op)‖a(t)‖42,K ‖Φj(t)‖42,Kdt

≤ τ3c1(τ,K)

(
sup
t∈[0,τ ]

K∑
k=1

α2
k(t)

)2 ∫ τ

0
ϕ4
j (t)dt.

Thus

(49) E

 |m|∑
j=1

〈a,Φj〉2N

2 ≤ cτ3c1(τ,K)

(
sup
t∈[0,τ ]

K∑
k=1

α2
k(t)

)
|m|3

Plugging (48) and (49) into (47) yields

E[T ′2,1] .
N2|m|3/2

log2(N)
P1/2(OcN ) . N2c2+3/2−p/2.

This term is less than O(N−1) for p ≥ 4c2 + 5. Having bounded the expectations of T ′1, T
′
2, T

′
3

yields (27).

Now we bound Tr[Ψ−1
m Θm]. As Ψ−1

m and Θm are symmetric and nonnegative, we have (see
Lemma 6 in Appendix Section 7):

Tr[Ψ−1
m Θm] ≤ ‖Ψ−1

m ‖opTr[Θm] ≤ fτ

K∑
j=1

Tr[Θmjmj ] where

Tr[Θmjmj ] =

mj∑
p=1

∫ τ

0
ϕ2
p(t)E[g2

j (X1(t)σ2(t,X1(t))]dt ≤ mj sup
j=1,...,K

sup
t∈[0,τ ]

E[g2
j (X1(t)σ2(t,X1(t))].

Therefore,

Tr[Ψ−1
m Θm] ≤ C|m|

with C = fτ supj=1,...,K supt∈[0,τ ] E[g2
j (X1(t)σ2(t,X1(t))].

The proof of Theorem 2 is now complete. 2
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6.7. Proof of Corollary 1.
Now, let us prove that, if σ is bounded, then Tr[Ψ−1

m Θm] ≤ |m|‖σ‖2∞.
We use the followig trick. Let ε := (εi)1≤i≤|m| be a vector of i.i.d. centered variables with

unit variance, independent of (Xi(t))t≥0,1≤i≤N . For any |m| × |m| matrix C, it holds that
Tr(C) = E(εT Cε). Therefore

Tr[Ψ−1
m Θm] = Tr[Ψ

−1/2
m ΘmΨ

−1/2
m ] = E

(
εTΨ

−1/2
m ΘmΨ

−1/2
m ε

)
.

Setting x = Ψ
−1/2
m ε yields

xTΘmx

=
∑

1≤j,`≤K

∑
1 ≤ k ≤ mj

1 ≤ p ≤ m`

x
m1+···+mj−1+k

xm1+···+m`−1+p

∫ τ

0
ϕk(t)ϕp(t)E

(
gj(X1(t))g`(X1(t))σ2(t,X1(t))

)
dt

=

∫ τ

0
E

 K∑
j=1

hj(t)gj(X1(t))

2

σ2(t,X1(t))

∣∣∣∣∣∣ ε
 dt

where hj(t) =
∑mj

k=1 xm1+···+mj−1+kϕk(t) and E(.|ε) is the conditional expectation w.r.t. ε. Thus
we get

εTΨ
−1/2
m ΘmΨ

−1/2
m ε = xTΘmx ≤ ‖σ‖2∞

∫ T

0
E

 K∑
j=1

hj(t)gj(X1(t))

2∣∣∣∣∣∣ ε
 dt.

Noticing that∫ τ

0
E

 K∑
j=1

hj(t)gj(X1(t))

2∣∣∣∣∣∣ ε
 dt = xTΨmx = εTΨ

−1/2
m ΨmΨ

−1/2
m ε = ‖ε‖22,|m|,

we obtain, by taking expectation,

Ψ−1
m Θm = Tr[Ψ

−1/2
m ΘmΨ

−1/2
m ] = E

(
εTΨ

−1/2
m ΘmΨ

−1/2
m ε

)
≤ ‖σ‖2∞|m|.

Hence, the result. 2

6.8. Proof of Theorem 3. We write the decomposition

‖ã− a‖2N = ‖âm̂ − a‖2N1ΛN + ‖a‖2N1ΛcN
.

The study of the last term is similar to the study of T2 , see (44)-(45), and yields E(‖a‖2N1ΛcN
) ≤

C/N thanks to Proposition 4, P(ΛcN ) . 1/Np for any p > 2.
For the main term E(‖âm̂ − a‖2N1ΛN ), we recall that UN (âm) = −‖âm‖2N . By de�nition of

âm̂, we have for any m ∈MN , and any am ∈ Sm,

UN (âm̂) + pen(m̂) ≤ UN (am) + pen(m).

From (16), we have UN (h) − UN (h?) = ‖h − a‖2N − ‖h? − a‖2N − 2νN (h − h?) and therefore
for any m ∈MN , and any am ∈ Sm, on ΛN

‖âm̂ − a‖2N ≤ ‖am − a‖2N + pen(m) + 2νN (âm − am)− pen(m̂).

Now we de�ne

Bm,m′ = {h ∈ Sm + Sm′ , ‖h‖τ = 1}.
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We have

E(‖âm̂ − a‖2N1ΛN ) = E(‖âm̂ − a‖2N1ΛN∩ON ) + E(‖âm̂ − a‖2N1ΛN∩OcN ).

The term E(‖âm̂ − a‖2N1ΛN∩OcN ) is studied analogously as the previous term T2, with still
P(OcN ) ≤ c/Np for all p.
Using that, on ON , ∀m,m′ ∈ {1, . . . , N}K , ∀h ∈ Sm + Sm′ , ‖h‖2τ ≤ 2‖h‖2N , we obtain, on
ON ∩ ΛN , the following sequence of inequalities.

‖âm̂ − a‖2N ≤ ‖am − a‖2N + pen(m) +
1

8
‖âm̂ − am‖2τ

+8 sup
h∈Bm,m̂

ν2
N (h)− pen(m̂)

≤
(

1 +
1

2

)
‖am − a‖2N + pen(m) +

1

2
‖âm̂ − a‖2N

+8

(
sup

h∈Bm,m̂

ν2
N (h)− p(m̂,m)

)
+

+ 8p(m̂,m)− pen(m̂),

where p(m̂,m) = κ?‖σ‖2∞(|m̂|+|m|)/N , where κ? is a numerical constant (see below). Choosing
κ0 ≥ 8κ? implies that 8p(m̂,m) ≤ pen(m̂) + pen(m). Therefore

E(‖âm̂ − a‖2N1ΛN∩ON ) ≤ 3‖am − a‖2τ + 4pen(m) + 16E

[
( sup
h∈Bm,m̂

ν2
N (h)− p(m̂,m))+1ΛN∩ON

]
.

To exhibit the numerical value κ∗ and achieve the proof of Theorem 3, �rst, we use Bernstein's
inequality for continuous local martingales (see Revuz and Yor, 1999 p. 153): let Mτ = NνN (h)
and

〈M〉τ =

N∑
i=1

∫ τ

0

[
K∑
k=1

hk(t)gk(Xi(t))

]2

σ2(t,Xi(t))dt.

Then,

P
(
Mτ ≥ Nε, 〈M〉τ ≤ Nv2

)
≤ exp

(
−Nε

2

2v2

)
.

For σ bounded, we have

〈M〉τ ≤ N‖σ‖2∞‖h‖2N .

Therefore

P
(
νN (h) ≥ ε, ‖h‖2N ≤ v2

)
≤ exp

(
− Nε2

2‖σ‖2∞v2

)
.

This inequality implies that we can apply the L2-chaining method described in Baraud et al.,
(2001), Proposition 6.1, p.42 and its proof p. 45-47, which yields that there exists a numerical
constant κ? such that

E

[(
sup

h∈Bm̂,m

ν2
N (h)− p(m̂,m)

)
+

1
Λ̂N∩ON

]
≤ c‖σ‖

2
∞

N

with p(m,m′) = 2κ‖σ‖2∞
|m|+|m′|

N , κ∗ = 2κ (κ = 38 is the value given in the proof). 2
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7. Appendix

7.1. The Garsia-Rodemich-Rumsey (1970/71) Lemma. We state the version of this lemma
given in Jourdain and Pagès (2022).

Lemma 5. Let (Y n
t )n≥1 be a sequence of continuous processes where the processes Y

n = (Y n
t )t∈[0,T ]

are de�ned on a probability space (Ω,A,P). Let p ≥ 1. Assume there exists a > 1, a sequence
(δn)n≥1 of positive real numbers converging to 0 and a real constant C > 0 such that

∀n ≥ 1,∀s, t ∈ [0, T ], E[|Y n
t − Y n

s |p] ≤ C|t− s|aδpn.

Then there exists a real constant Cp,T > 0 such that

∀n ≥ 1,E

(
sup
t∈[0,T ]

|Y n
t − Y n

0 |p
)
≤ Cp,T δpn.

7.2. Useful results from linear algebra. A proof of the following theorem can be found in
Stewart and Sun (1990).

Theorem 4. Let A, B be (m × m) matrices. If A is invertible and ‖A−1B‖op < 1, then

Ã := A + B is invertible and it holds

(50) ‖Ã−1 −A−1‖op ≤
‖B‖op‖A−1‖2op

1− ‖A−1B‖op

The following Lemma is used in the proofs.

Lemma 6. Let A,B be two symmetric nonnegative d× d matrices. Then,

(51) Tr(AB) ≤ ‖A‖opTr(B)

Proof of Lemma 6. Since the matrices are symmetric, there exist two orthogonal matrices
P,Q such that A = P TDP , B = Q∆QT where D = diag(λi(A)),∆ = diag(λi(B)) are diagonal
matrices with diagonal elements equal to the eigenvalues of A (resp. B). As the matrices are
nonnegative, λi(A) ≥ 0, λi(B) ≥ 0 for all i = 1, . . . d. Set P = (pij). We have P TQ∆QTP =
P Tdiag(λi(B))P and

[P TQ∆QTP ]ii =
∑
j

λj(B)p2
ji ≥ 0,

which implies∑
i

[P TQ∆QTP ]ii =
∑
i

∑
j

λj(B)p2
ji =

∑
j

λj(B)
∑
i

p2
ji =

∑
j

λj(B) = Tr(B).

Therefore, using nonnegativity of λi(A) and λi(B),

Tr(AB) =
∑
i

λi(A)[P TQ∆QTP ]ii ≤ sup
i
λi(A)

∑
i

[PQ∆QTP T ]ii ≤ ‖A‖opTr(B). 2
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7.3. Examples of bases. In the simulation section, we experimented two bases.

The trigonometric bases and spaces are de�ned as follows. Let us denote (STrigm ,m ≥ 0) the

subspaces of L2([0, τ ]) such that STrigm has odd dimension m and is generated by the orthonormal

trigonometric basis. This basis is given by (ϕj,τ ) where ϕ0,τ (t) =
√

1/τ1[0,τ ](t),

ϕ2j−1,τ (t) =
√

2/τ cos(2πjt/τ)1[0,τ ](t), ϕ2j,τ (t) =
√

2/τ sin(2πjt/τ)1[0,τ ](t)

for j = 1, . . . , (m− 1)/2. It is easy to see that

m−1∑
j=0

ϕ2
j,τ (t) =

m

τ
and L(STrigm ) = sup

x∈[0,τ ]

m−1∑
j=0

ϕ2
j,τ (x) =

m

τ
.

Those properties are adequate, but a function developped in this basis is such that its values at
points 0 and τ are equal, and this is not adapted to our examples.

This is why we rather used a trigonometric basis called "half-trigonometric" system, namely
the cosine basis de�ned by ϕ0,T (x) =

√
1/T1[0,T ](t), ϕj,T (t) =

√
2/T cos(πjt/T )1[0,T ](t), j =

1, . . . ,m − 1, see Efromovich (1999, p.46). It is clearly an orthonormal basis. For a twice
di�erentiable function, the projection coe�cients decrease like 1/j2 without border constraints;
such constraints are required for higher regularities only, see Efromovich (1999, p.32). In practical
implementation, it appears that this basis is more convenient and performant than the complete
trigonometric basis.

We also used a basis which does not match to our theoretical conditions, but which revealed to
work well while being parsimonious (few coe�cients required for good estimation): the Laguerre
basis (see Comte and Genon-Catalot (2018)) de�ned by

(52) `j(t) =
√

2Lj(2t)e
−t1t≥0, j ≥ 0, Lj(t) =

j∑
k=0

(−1)k
(
j

k

)
tk

k!
.

We set SLagm = span{`j , j = 0, . . . ,m− 1}. We have

∀t ≥ 0,

m−1∑
j=0

`2j (t) ≤ 2m, and L(SLagm ) ≤ 2m.


