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Asymptotically Achieving Centralized Rate on the
Decentralized Network MISO Channel

Antonio Bazco-Nogueras, Member, IEEE, Paul de Kerret, Member, IEEE,
David Gesbert, Fellow, IEEE, and Nicolas Gresset, Senior Member, IEEE

Abstract—In this paper, we analyze the high-SNR regime of
the M ×K Network MISO channel in which each transmitter
has access to a different channel estimate, possibly with different
precision. It has been recently shown that, for some regimes,
this setting attains the same Degrees-of-Freedom as the ideal
centralized setting with perfect Channel State Information (CSI)
sharing, in which all the transmitters are endowed with the best
estimate available at any transmitter. This result is restricted
by the limitations of the Degrees-of-Freedom metric, as it only
provides information about the slope of growth of the capacity
as a function of the SNR, without any insight about the possible
performance at a given SNR. In order to overcome this limitation,
we analyze the affine approximation of the rate on the high-
SNR regime for this decentralized Network MISO setting for
the antenna configurations in which it achieves the Degrees-of-
Freedom of the centralized setting. We show that, for a regime
of antenna configurations, it is possible to asymptotically attain
the same achievable rate as in the ideal centralized scenario.
Consequently, it is possible to achieve the beamforming gain of
the ideal perfect-CSI-sharing setting even if only a subset of
transmitters is endowed with precise CSI, which can be exploited
in scenarios such as distributed massive MIMO where the number
of transmit antennas is much bigger than the number of served
users. This outcome is a consequence of the synergistic compromise
between CSI precision at the transmitters and consistency between
the locally-computed precoders, which is a inherent trade-off of
decentralized settings that does not exist in the centralized CSI
configuration. We propose a precoding scheme achieving the
previous result, which is built on an uneven structure in which
some transmitters reduce the precision of their own precoding
vector for the sake of using transmission parameters that can be
more easily predicted by the other transmitters.

Index Terms—Network MIMO, Cooperative transmission,
Distributed Broadcast Channel, decentralized zero-forcing.

I. INTRODUCTION

A. Cooperative Transmission

Multi-user cooperative networks and the extend of their
theoretical capabilities have been thoroughly analyzed in the
literature [1]–[4]. Initially, it was shown that cooperation can

This work was in part supported by the European Research Council under the
European Union’s Horizon 2020 research and innovation program (Agreement
no. 670896). (Corresponding author: Antonio Bazco-Nogueras).

A. Bazco-Nogueras was with the Mitsubishi Electric R&D Centre Europe,
Rennes, France, and also with the Communication Systems Department,
EURECOM, Sophia-Antipolis, France. He is now with the IMDEA Networks
Institute, Madrid, Spain (e-mail:antonio.bazco@imdea.org).

P. de Kerret was with the Communication Systems Department, EURECOM,
Sophia-Antipolis, France; he is now with Greenly.

D. Gesbert is with the Communication Systems Department, EURECOM,
Sophia-Antipolis, France (e-mail: gesbert@eurecom.fr).

N. Gresset is with the Mitsubishi Electric R&D Centre Europe, Rennes,
France (e-mail: n.gresset@fr.merce.mee.com).

bring multiplicative gains under ideal assumptions on the
channel knowledge available at the communicating nodes. As
a matter of example, it is known that, under the assumption of
perfect Channel State Information (CSI), the setting in which
M transmitters (TXs) jointly serve K single-antenna users (the
so-called Network MISO channel) achieves a rate that scales
as min(NT ,K) times the rate of the single-antenna point-to-
point channel [5], where NT is the total number of transmit
antennas. Conversely, the K×K interfering channel can attain
a multiplexing gain of K/2 [6]. This perfect CSI scenario
has been profoundly studied [5], [7]–[9]. Unfortunately, the
assumption of perfect information is not practical in most of the
current wireless networks. Motivated by the infeasibility of the
previous assumption, the community has investigated settings
in which the information available at the communicating
nodes does not meet the perfect CSI assumption, such as
scenarios where the information available is imperfect [10]–
[14], partial [15], [16], or delayed [17]–[20].

Even though the aforementioned works considered an imper-
fect acquisition or estimation of the CSI, all the cooperating
nodes are assumed to perfectly share the same imperfect
information. Yet, current and upcoming wireless networks
characteristics make this assumption of perfect sharing also
impractical for many applications. This is due to, for example,
the proliferation of heterogeneous networks for which some
of the nodes have a wireless, fluctuating, or limited backhaul
[21], [22], hierarchical distributed networks (with remote radio-
heads of different capabilities), or Ultra-Reliable Low-Latency
Communication (URLLC) applications [23], [24], in which
the perfect sharing of the information would result in an
intolerable delay. Settings in which simple devices with low
capabilities aim to communicate in a dense environment, as in
IoT applications, also fall into the use cases in which the sharing
of channel information is indispensable but challenging. This
evolution of different use cases boosts the interest of distributed
information settings, in which the information available at the
communicating nodes is not only imperfect but different from
one node to another. This type of settings can be formalized as
the so-called Team Decision problems [25], in which different
agents aiming for the same goal attempt to cooperate in the
absence of perfect communication among them.

B. Distributed CSIT Setting

There exists a great number of different distributed settings
[26]–[31]. In particular, we focus on the scenario where M TXs
jointly serve K different single-antenna users (RXs), which
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is often referred to as the Network MISO setting, under the
assumption of distributed CSI at the TXs (CSIT). In such
scenario, every TX has access to the information symbols of
every RX, but it does not share the same CSI with the other
TXs. This setting arises in situations in which the data can
be buffered or cached, but the CSI needs to be available with
very small delay; for example, for the transmission of high-
popularity content that can be cached at the network edge
before the transmission occurs [31]–[33], or in high mobility
scenarios and IoT (or V2X) networks with fast varying channels
but low data rate [34], [35].

The Network MISO with distributed CSIT has been analyzed
in recent works. Initially, it was shown in [36] that the 2× 2
single-antenna scenario in which one TX has better knowledge
of the full channel matrix that the other TX achieves the same
Degrees-of-Freedom (DoF) as the ideal centralized case in
which both TXs are endowed with the best CSI. The DoF
metric, which will be presented in the following section, is
defined as the pre-logarithmic factor of the capacity as function
of the SNR [2], [6], [9], and it is also known as multiplexing
gain. The outcome of [36] derives from a precoding with
a master-slave structure, named Active-Passive Zero-Forcing
(AP-ZF), in which the TX whose CSI is less precise transmits
with a fixed precoder. Although this result could depend on
the asymmetric structure of the setting, it has been extended
to more general settings. Indeed, it was shown in [37] that
the Generalized DoF1 of the centralized setting with perfect
CSIT sharing are attained in the distributed setting, no matter
which TX has the best estimation of every single channel
coefficient. By way of explanation, the pre-logarithmic factor
of the centralized 2× 2 Network MISO is preserved as long as
the estimate of a certain link is available at one of the TXs. This
comprises for example cases in which TXs have only local CSI
or in which each TX knows better the channel towards a certain
RX. The DoF analysis has been also applied to the K ×K
scenario, in which two main insights can be outlined: First,
the optimal DoF of the centralized setting with perfect CSIT
sharing is also achieved for some regimes of the K×K scenario
[38]. Second, the quantization of the information available at a
certain TX can be beneficial in distributed settings, inasmuch as
it helps to transform the setting into a hierarchical configuration
in which the structure of the CSI allocation can be used to
increase the DoF [39].

These results provide some understanding on the resilience
of cooperating settings under information mismatches between
different nodes. However, the DoF metric is a limited metric
because it only provides information about the pre-log factor,
not offering any information about the achievable rate at any
given SNR. For that reason, it is necessary to take a step
beyond and analyze the affine approximation of the rate at the
high-SNR regime.

C. Linear Approximation of Rate at High-SNR
Finding the fundamental limits of communication in dis-

tributed settings is a challenging problem. Indeed, these limits

1Generalized DoF refers to the DoF analysis under the assumption that the
difference of channel strengths between the links does not vanish at high SNR.
See [9] for more details.
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Fig. 1: Qualitative illustration of the affine approximation of
two different setting with the same DoF (slope) but different
rate offset R∞ = DoFL∞, and hence different achieved rate.

have remained open even for several important centralized
cases. Nevertheless, it is possible to find significant insights
on those settings through rate approximations, which help us
to move towards a better understanding of the behavior of
complex wireless networks.

A very useful metric that has been applied in the literature
is the affine approximation of the rate at high SNR, introduced
in [40]. Following this linear approximation, the rate can be
written as

R = DoF log2(P )−R∞ + o(1), (1)

where P denotes the SNR, DoF is the pre-logarithmic factor
(or Degrees-of-Freedom), and R∞ is the rate offset (or vertical
offset). The approximation in (1) can also be written in terms of
the power offset (horizontal offset) L∞, whereR∞ = DoFL∞.
An illustrative representation is shown in Fig. 1. The term L∞
represents the zero-order term with respect to a reference setting
with the same slope but whose affine approximation intersects
the origin. These terms are defined as

DoF , lim
P→∞

R(P )

log2(P )
(2)

R∞ , lim
P→∞

DoF log2(P )−R(P ), (3)

where R(P ) represents the rate as function of the SNR P . This
measure has already proved instrumental in several findings.
In [3], Lozano et al. analyzed the multiple-antenna point-
to-point scenario, revealing that some system features that
do not impact the DoF (as antenna correlation, fading, etc.)
do considerably impact the zero-order term, affecting the
performance of the system at any possible SNR. In addition to
exposing some limitations of the DoF metric, [3] also revealed
that the affine expansion offers appreciably tight approximations
also at medium-to-low SNR. This characterization has been
also established for the Broadcast Channel (BC) with perfect
CSIT using Dirty-Paper Coding and linear precoding [41], and
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for the BC with imperfect CSIT [42]. In [42], the BC setting
with quantized feedback was studied under the assumption
of Zero-Forcing (ZF) schemes, showing that the CSIT error
variance must be proportional to SNR−α in order to attain a
DoF per user of DoFRX i = α. Furthermore, having a CSIT
error variance scaling with SNR−α was shown to be equivalent
to obtaining a quantized feedback of α log2(SNR) bits from
the RX, which could be attained if the feedback resources scale
proportionally to log2(SNR).

The aforementioned works are yet focused on the centralized
scenario. For the best of our knowledge, this affine approxima-
tion was analyzed in the Distributed CSIT setting for first time
in [43]. In that work, it was shown that the 2 × 2 Network
MISO with Distributed CSIT and quantized feedback achieves
the same rate offset as the ideal centralized scenario of [42],
in which the best CSIT is available at both TXs. Therefore,
both settings asymptotically achieve the same rate. This result
strengthens the previous results on DoF because it shows that
there is no fundamental gap between both centralized and
distributed CSIT settings, which could not be inferred from
DoF analysis. Besides that, it was also shown that the loss
of performance at practical SNR values can be dramatically
reduced with the correct design of the transmission schemes.

D. Main Contributions

Motivated by the result of [43] for the 2 × 2 setting, we
aim to characterize the high-SNR achievable throughput of
ZF precoding techniques for the M × K Network MISO
setting with Distributed CSIT, and we compare it with the ideal
centralized CSIT setting. This comparison is only meaningful
for the antenna configurations that allow the distributed setting
to achieve the same DoF as its centralized counterpart, since,
otherwise, the rate gap between both settings will become
unboundedly big as the SNR increases. Therefore, we restrict
ourselves to such regime. Our main contributions write as
follows:
• We obtain the affine expansion of the rate achieved with

ZF precoding on the M ×K Network MISO setting with
Distributed CSIT for the antenna configurations in which
the centralized DoF can be achieved in the Distributed
CSIT setting. We prove that it is possible to asymptotically
reach the same rate as in the ideal centralized setting in
which the best estimate available in the network is shared
by all the TXs.
This result is especially relevant when the number of
transmit antennas (Nt) is considerably greater than the
number of RXs (K), such as in distributed massive MIMO
settings [44], since we can achieve the beamforming gain
of the centralized CSIT setting even if we only have
precise CSIT at K transmit antennas.

• We present a discussion on a dilemma that is intrinsic to
distributed settings and does not exist in the conventional
centralized case: the interplay between local precision and
global consistency. In particular, we present an achievable
scheme that achieves the previous result by means of
capitalizing on the compromise between precoder preci-
sion and consistency among transmitters. We demonstrate

that decreasing the precision of the precoding at certain
transmitters improves the average performance as it helps
to enhance the predictability of the transmission from the
other TXs.

In addition to that, the techniques and approaches employed
for the design of the transmission scheme are believed to be
worthwhile by themselves for general decentralized problems,
since they deal with the interplay between local precision and
global consistency, which is an inherent aspect of decentralized
and Team Decision problems.

Notations: NN stands for NN , {1, 2, . . . , N}. We follow
the asymptotic notation presented in [45], based on the prevalent
Bachmann–Landau notation [46]. In consequence, f(x) =

o(g(x)) implies that limx→∞
f(x)
g(x) = 0, f(x) = O(g(x))

implies than lim supx→∞
|f(x)|
g(x) < ∞, and f(x) = Θ(g(x))

implies than limx→∞
|f(x)|
g(x) = c, 0 < c <∞. For any expected

value E and event X , E|X denotes the conditional expectation
given X . Pr(X) stands for the probability of the event X
and Xc represents the complementary event to X . Ai,k or
(A)i,k represent the element of the matrix A located in the i-th
row and the k-th column. In writes for the identity matrix of
size n× n. 1M×N (resp. 0M×N ) represents the all-ones (resp.
all-zeros) matrix of size M ×N . ‖A‖ denotes the Frobenius
norm of the matrix A.

II. PROBLEM FORMULATION

A. Transmission and System Model

We consider the Network MISO setting in which M multi-
antenna TXs jointly serve K single-antenna RXs. We suppose
that TX j has Nj antennas, and we denote the total number
of transmit antennas as NT =

∑M
j=1Nj . The received signal

is given by

y ,
√
PHWs + n, (4)

where P is the transmit power, y , [y1, . . . , yK ]T is the
received signal vector, and yi is the received signal at RX i.
n stands for the Additive White Gaussian Noise (AWGN) dis-
tributed as NC(0, 1), where NC(0,Γ) stands for the circularly-
symmetric complex normal distribution with covariance matrix
(or variance) Γ. The vector s , [s1, . . . , sK ]T is the vector
of independent and identically distributed (i.i.d.) information
symbols, where si is the message to RX i. The vector of
information symbols satisfies E[ssH ] = I. The channel matrix
is given by

H ,

h1

...
hK

 ,

h1,1 . . . h1,M

...
. . .

...
hK,1 . . . hK,M

 ∈ CK×NT . (5)

Hence, hi ∈ C1×NT denotes the global channel vector towards
RX i and hi,j ∈ C1×Nj is the channel vector from TX j to
RX i. Note that we have defined the row vectors as hi and
hi,j in place of the usual Hermitian notation hH

i and hH
i,j .

This is done to ease the notation for the remainder of the
document. The channel coefficients are assumed to be i.i.d. as
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NC(0, 1) such that all the channel sub-matrices are full rank
with probability one. The precoding matrix is given by

W ,

T1

...
TM

 , µ
[
w1 . . . wK

]
(6)

, µ

w1,1 . . . wK,1

...
. . .

...
w1,M . . . wK,M

 ∈ CNT×K . (7)

Hence, Tj ∈ CNj×K represents the precoding matrix applied
at TX j, µwi ∈ CNT×1 denotes the global precoding vector
for the information symbol of RX i (si), and µwi,j ∈ CNj×1

is the precoding vector applied at TX j for si. We further
define wi,j,n as the coefficient at the n-th antenna of TX j.
The parameter 0 < µ ≤ 1 is a power correction value that
will be detailed afterwards. We define Tj,n ∈ C1×K as the
precoding vector applied at the n-th antenna of TX j for the
vector s, with n ∈ NNj . We assume that the precoder has a
per-antenna instantaneous unit-norm constraint, such that

‖Tj,n‖ ≤ 1. (8)

The results presented here also hold under the assumption of
per-TX instantaneous constraint (‖Tj‖ ≤ 1). Note that, even
if we set ‖Tj‖ = 1, the transmit power varies over the time
as the power of the information symbols si varies. For sake of
concision, we refer hereinafter to the unit-norm constraint of (8)
as instantaneous power constraint, although strictly speaking it
is an instantaneous power constraint on the precoding vector
averaged over the information symbols.

This is done in opposition to the average power constraint on
the precoder (E

[
‖Tj‖2

]
≤ 1) which has been assumed in other

works [37], [38]. This average power constraint, which results
in a power normalization factor of 1/

√
E[‖wi‖2] for each wi, it

is known to be less harmful for distributed CSIT settings. This
fact follows because, under the instantaneous power constraint,
the precoding must be carefully designed to avoid exceeding
the power budget at every time, and this power normalization
must be locally done at each TX without an exact knowledge
of the actions of the other TXs. On the other hand, under
the average power constraint the normalization is based on
statistics and it is constant.

Thus, we consider the instantaneous power constraint be-
cause it is the most challenging case for a distributed setting
where each TX must independently compute and agree on
the applied power normalization. As it will be shown in the
following, the constraint on the instantaneous power is one
of the key aspects that could diminish the performance in the
distributed setting.

B. Network MISO Setting with Distributed CSIT

The Distributed CSIT (D-CSIT) model is characterized by
the consideration that each TX is endowed with a possibly
different estimate. The key particularity of this setting is that,
for any channel coefficient, there exist as many estimates as
TXs, each of them locally available at a single TX. By way of
example, we can think of a practical scenario in which there

are some TXs with more precise knowledge for some channel
coefficients and some other TXs with more precise information
about other part of the channel matrix, while some sort of
coarse information could be shared between them.

Although the assumption of Distributed CSIT may seem
contradictory with the assumption of perfect sharing of user
data symbols, which is inherent to the Network MISO setting,
both aspects co-exist in many scenarios of interest. More
specifically, this model is inspired by the different timescales of
latency that information data and CSI may experience in a range
of emerging applications. Indeed, CSI sharing is constrained
by the channel coherence time (which can be very short in
high-mobility scenarios) and by the possibly latency-limited
backhaul connection; on the other hand, many data applications
have delivery time restrictions which are orders of magnitude
weaker, such that the data can be pre-fetched or cached at
the TXs and ready to be synchronously transmitted. We refer
to [38] for a detailed discussion and motivation on the joint
transmission with distributed CSIT and the practical scenarios
in which it arises.

In this work, we assume that a limited cooperation between
TXs occurred before the transmission phase, leading to a certain
CSIT precision configuration. Hence, we assume hereinafter
that the average CSIT precision at each TX remains fixed for
a period of time that is long enough to be considered constant
in our analysis. The problem of studying the best strategy of
CSIT sharing with constrained links and/or delays is a very
interesting research problem; yet, it is also a complex problem
which would require another work on its own, and thus we do
not discuss the exact CSIT acquisition and sharing mechanism.

We focus on a particular CSIT configuration where each
TX knows the whole channel matrix with the same precision.
This setting is denoted as the Sorted CSIT setting, as the TXs
can be sorted by level of average precision. Let us denote
the estimate of the channel matrix H available at TX j as
Ĥ(j) ∈ CK×NT . Then, we model the D-CSIT configuration
such that the estimate Ĥ(j) is given by

Ĥ(j) ,
√

1− Z(j) H +
√
Z(j) ∆(j), (9)

where ∆(j) , [δ
(j)
1 , . . . , δ

(j)
K ]T is a random matrix that

contains the additive estimation noise and whose elements
are i.i.d. as NC(0, 1). The matrix ∆(j) is independent of H.
Z(j) is a deterministic value that represents the variance scaling
of the estimation noise with respect to the SNR. Importantly,
Z(j) characterizes the average precision of the estimate at TX j,
which is assumed to remain constant.

From (9), we can see that the variance scaling Z(j) at a
given TX is the same for all the channel coefficients. This
model encloses e.g. a scenario in which a main multi- or
massive-antenna base station serves a set of users with the help
of some single or multi-antenna remote radio-head or simple
TXs, as depicted in Fig. 2.

We would like to remark that this configuration is the only
one known to achieve the same DoF as the centralized setting
where the most precise CSIT is shared. The analysis can be
however extended to the case in which the CSIT precision
order is preserved but the channel towards each user is known
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with different precision at a particular TX. As we will see later,
the precoding vectors are independently computed for each RX,
and only the normalization parameter depends on all the user’s
vectors.2 Because of this last point, we can restrict ourselves to
the case in which the precision of each TX is characterized by a
single parameter Z(j) for the sake of readability and concision,
as the extension to the setting where each RX channel vector
is obtained with different precision at the same TX (and the
order of TXs is preserved) would follow in a similar way.

Furthermore, this Sorted CSIT setting can model other CSIT
configurations. For example, a setting where each TX obtains
precise CSIT from a subset of the network (e.g., the full channel
vector of some users that are associated with that specific
TX, or the direct channel from all users to that specific TX),
which is the most usual case in practice. Then, we could apply
perfect CSIT sharing only unidirectionally towards the main
TX, whereas a coarse global CSIT estimate could be broadcast
back to all the TXs from this main TX. This configuration
could be enforced by tight delay constraints, and it has been
already considered in practical analysis of cell-free Massive
MIMO and radio stripes systems [47]–[49]. Then, the only
difference w.r.t. our Sorted CSIT setting would be that each TX
has also the best estimate for the locally acquired CSIT, but
this would provide no high-SNR gain because the performance
will be limited by the other TXs.

Remark 1. In contrast to the prior work in [43] for the 2× 2
setting, in which a distributed adaptation of the Random Vector
Quantization (RVQ) feedback model of [42] was supposed,
we assume in this work an additive Gaussian model for the
estimation noise. This modification allows us to enlarge the
contribution and verify that the previous result is not dependent
on the feedback model. Indeed, the asymptotic results are
expected to hold for a broad family of estimation models, since
the key parameter that characterizes the asymptotic analysis
is the scaling of the variance of the CSIT error Z(j), which is
assumed to be constant, and not in the unit-variance random
matrix ∆(j).

It is known that, for the centralized CSIT case in which
all the transmit antennas share the same CSI, the variance
of the estimation noise should scale as P−α (provided that
the channel estimate has unit variance) in order to obtain a
multiplexing gain of α [42], [50]. As our focus is on the high-
SNR regime, we consider a high-SNR modeling in which the
estimation error scales such that

Z(j) = P̄−α
(j)

, (10)

where P̄ ,
√
P and 0 ≤ α(j) ≤ 1. α(j) is the precision scaling

parameter that measures the average quality of estimation of
the channel matrix at TX j. Hence, we can order the TXs
w.l.o.g. such that

1 ≥ α(1) > α(2) ≥ · · · ≥ α(M) ≥ 0, (11)

which implies that TX 1 is the best-informed TX; in other
words, the TX whose CSIT has the highest average precision.

2Moreover, it was shown in [43] that this normalization parameter can be
calculated with a less restricting precision without affecting the asymptotic
performance.

limited links (Distributed)

Fig. 2: Master Base Station with remote radio-heads. The Base
Station obtains an estimate of the whole channel matrix, then
it transmits noisy or compressed CSI to the auxiliary TXs.

The reason for which the inequality α(1) > α(2) is strict will
be explained in Section IV. We define the set of precision
parameters of the Distributed CSIT setting as

αM = {α(j)}j∈NM . (12)

For further use, we define the estimate at TX j for the channel
of RX i as

ĥ
(j)
i , z̆(j)hi + z(j) δ

(j)
i , (13)

where z(j) , P̄−α
(j)

, z̆(j) ,
√

1− (z(j))2, and ĥ
(j)
i , δ(j)

i ,
are the i-th rows of the matrices Ĥ(j), ∆(j), respectively. As
stated before, the precision parameters αM are assumed to
be long-term coefficients that vary slowly. Based on that, it
is assumed that every TX knows the full set αM , as it only
requires a sharing of few bits over a long period of time.

C. Ideal Centralized Setting

Finding purely distributed upper-bounds is a challenging
subject that remains open, although some first results have
been shown in [51]. However, any decentralized scenario with
distributed estimates has an ideal centralized counterpart in
which a genie provides the best estimate of each parameter
to every node. Based on that, we define an ideal centralized
scenario as follows.

Definition 1 (Ideal Centralized Setting). Consider the dis-
tributed setting introduced in Section II-B. The Ideal Centralized
Setting is defined as the setting in which all the TXs are
endowed with the estimate of best average precision for every
channel coefficient.

Hereinafter, we denote the centralized channel estimate as
Ĥ and the estimate for the channel vector of RX i as ĥi. We
further denote the CSIT precision for the ideal centralized case
as α?. Note that in the sorted setting, where α(1) > · · · > α(M),
the ideal centralized setting is equivalent to a MISO Broadcast
Channel with NT transmit antennas, CSIT Ĥ equal to Ĥ(1),
and α? = α(1).

We will compare the rate achieved in the distributed scenario
described in the previous section with the respective ideal
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centralized MISO BC counterpart. This provides us with
a benchmark for the performance of ZF schemes in the
Distributed CSIT setting. In this way, we are able to analyze
which is the impact of having distributed information or, in
other words, the cost of not sharing the best CSI.

Remark 2. It is important to observe that the ideal centralized
scenario is such that every TX owns the best estimate among the
available estimates at any TX, instead of its own estimate which
by definition would have less precision. This is in opposition
to another genie-aided scenario, also assumed in the literature
[37], [38], in which each TX shares its CSIT with any other
TX, such that every TX owns the set of M estimates of the
M TXs. The former model, here assumed, permits to compare
the distributed scenario with the centralized counterpart. The
later, although it was shown in [38] that does not attain a
greater DoF, would benefit from the fact that the knowledge of
M estimates allows to reduce the noise variance by a factor
proportional to M .

D. Figure of Merit

Our figure of merit is the ergodic sum rate, i.e., the
expected sum rate over the joint process of fading realizations
and estimates {H, Ĥ(1), . . . , Ĥ(M)} [52]. For the sake of
readability, we omit hereinafter the reference to the joint process
{H, Ĥ(1), . . . , Ĥ(M)} when denoting the expectation E[·].

Let us define the expected rate of RX i as Ri , E[ri], where
ri is the instantaneous rate of RX i. In our K-user setting, ri
writes as

ri , log2

(
1 +

P |hH
i ti|2

1 +
∑
j 6=i P |hH

i tj |2

)
, (14)

where ti denotes the precoder vector for the symbols of
RX i. Then, the expected sum rate is given by R ,

∑K
i=1Ri.

Specifically, we study the linear approximation presented in (1)
for the rate of the Distributed CSIT setting. Let us denote the
rate achieved in a Distributed CSIT setting characterized by
αM as R(αM ). Hence, we aim to find the values DoFd, Rd∞,
such that

R(αM ) = DoFd log2(P )−Rd∞ + o(1). (15)

III. ZERO-FORCING PRECODING

A. Centralized Zero-Forcing Schemes (with ideal CSIT sharing)

We restrict in this work to a general type of ZF precoders
that we rigorously characterize in the following. First, in
order to distinguish when the precoding vectors refer to the
ideal centralized CSIT setting or the D-CSIT one, we denote
the centralized precoding coefficients as vi,k; note that the
counterpart vector for the D-CSIT setting in (7) is denoted
by wi,k. In addition, V and vi are defined as the centralized
counterpart of W and wi, respectively. Hence, the vectors vi
are computed from any ZF precoding algorithm satisfying

1) ĥiv` = 0, ∀` 6= i (Zero-Forcing condition) (ZF1)

2) E
[
‖vi,j,n‖−1

]
= Θ (1) (ZF2)

3) f‖vi‖ ≤ f
max
‖vi‖ <∞ (ZF3)

Note that (ZF1) is nothing but the condition that defines ZF
schemes, (ZF2) implies that the probability of precoding with
a vanishing power is negligible, and (ZF3) that the precoding
vector has a bounded probability density function (pdf), i.e.,
that it is neither predetermined nor constant. This last property
follows from the assumption that hi and ĥi are drawn from
Gaussian distributions and that the ZF precoding is a continuous
map from estimates ĥi to vectors v`. Hereinafter, we assume
that the centralized precoding scheme satisfies (ZF1), (ZF2),
(ZF3). Furthermore, we assume that the precoding vectors and
matrices can be expressed as a combination of summations,
products, and generalized inverses3 of the channel estimates.
As an example, we can use the typical choice of the projection
of the matched filters onto the null spaces of the interfered
users, i.e.,

vi =
Ph⊥

ī
ĥH
i

‖Ph⊥
ī

ĥH
i ‖

(16)

where Ph⊥
ī

is defined as

Ph⊥
ī
,
(
INT − ĤH

ī (ĤīĤ
H
ī )−1Ĥī

)
, (17)

and where the matrix Ĥī stands for the global channel matrix
with the i-th row removed. Note that the inversion in (17) can be
regularized in order to avoid degenerate cases and increase the
performance at low SNR. However, as conventional regularized
schemes converge to their non-regularized counterpart at high
SNR, we omit any reference to regularized inverses. We further
model the precoding scheme as a function of the CSIT, such
that V denotes the function applied to the channel estimate:

V : CK×NT → CNT×K and V = V
(
Ĥ
)
. (18)

B. Zero-Forcing on Distributed CSIT Settings

When we consider a distributed CSIT setting, we face a new
challenge that does not exist in the centralized CSIT counterpart.
This challenge is whether the TXs should use their CSIT even
if they are among the TXs with worst CSIT precision, and to
which extend they should use it. Hereinafter, we will use the
term “naive precoder” at a certain transmitter to refer to any
precoding strategy that considers that such transmitter (naively)
assumes that all the other TXs have obtained exactly its same
CSIT, as if the TXs were in a centralized CSIT setting. Let us
mention two simple and intuitive ZF approaches that can be
applied in the distributed CSIT setting and their shortcomings.

1) Naive ZF precoder: In this strategy, each TX assumes that
all the TXs have obtained its same (imperfect) CSIT,
i.e., the TXs consider that they are in a centralized
CSIT setting. This approach could prove efficient at
low-to-intermediate SNR for the considered CSIT error
model, because the exponential relation of the CSIT error
with P (cf. (10)) implies that the noise variance at most
transmitters will not be significantly different at such
SNR ranges. Yet, this strategy fails at high SNR. Indeed,

3The generalized inverse of an M×N matrix X is any matrix X− satisfying
that XX−X = X [53], [54]. For any full-rank matrix X, the generalized
inverse is any matrix X− that satisfies the fact that X−X = I.
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it is known that the high-SNR performance of centralized
ZF schemes collapses when they are naively applied on
Distributed CSIT settings [36], [38]. The main reason is
that the interference cancellation achieved through (ZF1)
is proportional to the worst CSIT precision among the
TXs, α(M) in the sorted case.
Thus, the question is how to prevent the least precise
TXs from harming the transmission. Intuitively, the TXs
should not act naively, but rather they should take into
account the action of the other TXs.

2) Active-Passive ZF (AP-ZF): The second intuitive idea
is that the TXs whose low CSIT precision is harming
the transmission should not exploit their instantaneous
CSI for precoding. Instead, they could transmit with a
fixed or known precoder based on statistical information.
This solution, coined Active-Passive ZF (AP-ZF), achieves
the centralized DoF under the less restrictive average
power constraint E

[
‖Tj‖2

]
≤ 1 for the 2× 2 setting [37]

and for some regimes of the K ×K setting [38]. Under
the instantaneous power constraint ‖Tj,n‖2 ≤ 1 that we
consider in this work, this approach also achieves the
centralized DoF, but at the expense of a power back-off
that allows the most precise TXs to have enough power
to realign with high-enough probability the interference
generated by the TXs that apply a fixed precoder [36], [43].
The required power back-off scales as log2(P ), and thus
it does not vanish at high SNR. Consequently, it incurs an
important rate penalty that prevents the distributed scheme
from achieving centralized performance. This case is a
illustrative example of the limitation of DoF analysis, as it
does not take into account such power back-off (because
the penalty is o(log2(P )), and thus the DoF analysis is
oblivious to the loss of performance that the power back-
off creates.

These two approaches are the opposed and extreme solutions for
the question of whether the TXs should use their instantaneous
CSIT: While in the first case the TXs naively consider their
CSIT to be perfect, in the second case these TXs completely
disregard their CSIT. In this work, we bridge the gap between
the two strategies, which will prove instrumental to achieve
our main results.

We present in the following several definitions that help to
emphasize the two main limitations of distributed precoding.

Definition 2 (Consistency). Consider two TXs, each endowed
with a different CSI. Suppose that the precoder of TX 1 depends
on the decision at TX 2 such that we can write T1 as T1 =
f(Ĥ(1), g(Ĥ(2))), where f, g are generic functions. In a D-
CSIT setting, TX 1 has no access to Ĥ(2). Let us assume
that TX 1 estimates g(Ĥ(2)) from Ĥ(1) as ĝ(Ĥ(1)). Then, the
computation is said to be Consistent if and only if ĝ(Ĥ(1)) =
g(Ĥ(2)). Otherwise, it is said to be Inconsistent.

Definition 3 (Power Outage). Let Tj denote the linear
precoding matrix computed at TX j. For any precoder Tj ,
a power outage occurs if the instantaneous power constraint
is violated.

In other words, the concept of consistency in Definition 2

stresses the fact that the TXs should precode in a coherent
manner with respect to the actions of the other TXs. In
turn, the concept of Power Outage reflects that even if a
certain TX acquires a perfect knowledge of the precoder
applied at all the other TXs, it may not be able to reduce
the interference if the power required for that action overpasses
the instantaneous power constraint. Throughout this document,
we will be interested in the cases in which the precoding is
both consistent and feasible:

Definition 4 (Feasible Consistency). Several TXs apply a
Feasible Consistent precoder if the precoding coefficients are
Consistent and there is no Power Outage.

One of our contributions is to show that these limitations can
be overcome by encouraging consistency among the different
TXs, at the cost of reducing the precision of precoding at
some TXs.

IV. MAIN RESULTS

Our main contributions rely on a novel ZF-type precoding
scheme coined Consistent Decentralized ZF (CD-ZF), which
is presented in detail in Section IV-B. In short, this scheme is
an adaptation to distributed scenarios of the aforementioned
centralized ZF precoding, such that the precoding applied at
each TX is different if the TX is the best informed one or not.
Let R(αM ) be the expected sum rate for our D-CSIT setting.
Similarly, let R?(α(1)) be the expected sum rate achieved by a
Zero-Forcing scheme on the ideal centralized CSIT setting as
described in Section III-A. Accordingly, the rate gap between
those settings is defined as

∆R , R?(α(1))−R(αM ). (19)

We can now state our main result.

Theorem 1. In the Network MISO setting with Distributed
CSIT, with N1 ≥ K − 1 and α(M) > 0, the expected sum rate
achieved by ZF-type schemes in the ideal centralized CSIT
setting is asymptotically achieved, i.e.,

lim
P→∞

R?(α(1))−R(αM ) = 0. (20)

Proof. The proof is relegated to Section V, and it builds on
the proposed CD-ZF precoding scheme, which is presented in
Section IV-B.

Corollary 1 (Rate-Offset under Distributed CSIT). It holds
from Theorem 1 that the rate offset Rd∞ (defined in (1)) of ZF
with Distributed CSIT is the same as for the ideal centralized
setting, whose rate offset was shown in [42] to be constant for
the case of α? = 1 with respect to Perfect CSIT ZF—and thus
with respect to the capacity-achieving Dirty Paper Coding.

Remarkably, Theorem 1 implies4 that it is possible to achieve
not only the multiplexing gain but also the beamforming gain

4We assume (see (11)) that the inequality α(1) > α(2) is strict. This
follows because, if α(1) = α(2), since both channel realizations and noise are
Gaussian, we can write Ĥ(2) as a noisy version of Ĥ(1), with a noise variance√
2P−α

(1)
. Hence, the error generated when zero-forcing the interference

will have
√
2 times more variance than in the centralized case, which precludes

the convergence presented in Theorem 1.
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achieved by the ideal NT -antenna MISO BC, even if only N1

antennas are endowed with the maximum precision. We would
like to remark that the constraint N1 ≥ K − 1, i.e., that the
TX with the most precise CSI has a number of antennas at
least equal to the number of interfered RXs, comes from the
fact that, if N1 < K − 1, the use of only ZF is not enough
to achieve the DoF of the centralized setting [38], and thus
limP→∞R?(α(1))−R(αM ) =∞. Despite that, it was shown
in [38] that for certain regimes of the parameters α(j) it is
possible to reach the ideal centralized DoF. This is achieved by
means of a transmission scheme which comprises interference
quantization and retransmission, superposition coding at the
TXs, and successive decoding at the RXs. Since in this work
we focus on a simple ZF transmission, we restrict the analysis
to the DoF-achieving regime N1 ≥ K − 1, because it is the
only regime in which the DoF (and thus the rate gap) of the
centralized CSIT setting can be achieved. For the other cases,
the distributed CSIT setting does not achieve the centralized
DoF, and thus the analysis here considered is not meaningful.

It is known that the optimal DoF of the centralized CSIT
setting with precision α(1) is 1 + (K − 1)α(1) [50], which is
attained by means of superposition coding where a common
message is broadcast and intended to be decoded before the
zero-forced messages. It is remarkable that, in the regime of
interest, N1 ≥ K−1, the distributed CSIT setting performance
still converges asymptotically to the centralized performance
even if superposition coding is applied. This comes from the
fact that the instantaneous power applied converges to the one
used in the centralized setting (as we prove at a later stage),
such that the common symbol broadcast can be sent with the
same rate.

A. Achievability: Some Insights

Theorem 1 evidences that the issues associated with feasi-
ble consistency between the TXs (which are enunciated in
Section III-B) can be overcome. Intuitively, the strategies
mentioned in Section III-B are extreme cases of consistency.
Particularly, the Naive ZF represents the extreme in which
consistency is not considered, whereas the Active-Passive ZF
embodies the extreme with perfect consistency but limited
precision and possible Power Outage, such that there may not
be feasible consistency. The block diagrams of Naive ZF and
Active-Passive ZF are shown in Fig. 3a and Fig. 3b, respectively.
The main question is whether a good compromise can be found.

We can build on the idea first presented in [43] for the simple
2×2 setting, i.e., that discretizing the decision space of the TXs
helps to enforce consistency. Yet, the application of this idea is
not straightforward, as in [43] the only source of inconsistency
was a single scalar power parameter, and no beamforming was
possible. Specifically, the strategy in [43] was to design the
ZF precoder such that the TX having worse channel estimate
for a certain user (i.e., smaller α(j)) precodes with a single
real value, and thus it does not consider the possible phase
of the coefficient. Then, the other TX (the best-informed one)
fully controls the phase tuning necessary to cancel out the
interference, such that both TXs need to agree only on a single
value of transmit power—which must yet be agreed upon with

high precision. In the general M ×K setting here considered,
however, beamforming and phase precoding must be applied at
every TX equipped with more than one antenna, which rules
out the aforementioned strategy.

Nevertheless, the main insight is still valid: By means
of discretizing the decision space of the TXs that do not
have the best CSI, we construct a probabilistic hierarchical
setting in which the best informed TX is able to estimate
correctly the action taken by the other TXs with a certain
probability. Interestingly, this discretization can be applied
to either the available information (the channel matrix) or
the output parameters (the precoding vector). Both cases are
illustrated in Fig. 4. This flexibility is due to the asymptotic
nature of our analysis and the properties of linear systems
with respect to error propagation.5 It is however clear that the
performance at low-to-medium SNR can importantly differ for
each of the cases. In this document, we focus on the scheme
that quantizes the channel matrix for the sake of a better
understanding, as the proof is less devious, and because the
proof for the other case (quantizing the precoder) follows the
same approach and steps.

Actually, we will see that this quantization is crucial for the
results. Indeed, if TX 1 attempts to estimate the information
used at the other TXs without any quantization, the estimation
error will scale as the error variance of the other TX. Thus,
TX 1 would be unable to compensate and cancel out the
interference generated by the other TXs.

The key for attaining the surprising result of Theorem 1 is
the proposed precoding scheme, whose rigorous description is
presented in the following section. The proof of Theorem 1
relies on a simple idea: Let A be a set enclosing the feasible
consistent cases in which the precoders transmit coordinately,
and Ac its complementary event. Hence, the rate gap ∆R ,
R?(α(1))−R(αM ) can be expressed as

∆R = ∆RA Pr(A) + ∆RAc Pr(Ac). (21)

The transmission scheme has to be both feasible consistent
(Pr(Ac)→ 0) and, for the consistent cases, it has to be precise
(∆RA → 0). Withal, it turns out that these two conditions are
not enough to obtain Theorem 1. In particular, we need not
only that the scheme is feasible consistent (Pr(Ac)→ 0) but
also that it attains consistency fast enough with respect to the
CSI scaling, i.e., that ∆RAc Pr(Ac)→ 0.

As a matter of example, consider that the rate gap for the
inconsistent cases (∆RAc ) scales proportionally to log(P ) (as
it will proven later on) such that ∆RAc = Θ(log(P )). Then, if
the probability of inconsistency Pr(Ac) approached to 0 at a
convergence rate proportional to 1

log(P ) (Pr(Ac) = Θ( 1
log(P ) )),

the term ∆RAc Pr(Ac) would not vanish and Theorem 1 would
not hold. Fortunately, we can design the achievable scheme so
as to reduce the probability of cases without consistency and
without power outage faster than Θ( 1

log(P ) ), while providing a
precise precoding and vanishing gap ∆RA in the consistent
cases. This last condition is critical: As P increases, the

5These properties will be detailed in Appendix VI. There, it is shown that
the error scaling of the output of a system that applies additions, products,
and matrix pseudo-inverses is the same as the error scaling of the input.
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TX 2 : Ĥ(2)
ZF

Precoding
w(2)

1

w(2)
2

Power
Control T

(2)
2

TX 1 : Ĥ(1)
ZF

Precoding
w(1)

1

w(1)
2

Power
Control T

(1)
1

(a) Block diagram of conventional ZF applied naively in the 2× 2
Distributed CSIT scenario (No Consistency).

TX 2 :
Ĥ(2)

α(1), α(2)

x Power Control
(Constant) T2

TX 1 : Ĥ(1)
ZF

Precoding
w(1)

1

w(1)
2

Power
Control T

(1)
1

(b) Block diagram of AP-ZF applied in the 2× 2 Distributed CSIT
scenario (Full Consistency but possible infeasibility).

Fig. 3: Simple strategies for distributed precoding.

TX 2 : Ĥ(2) Q(·) Ĥ
(2)
q

ZF
Precoding

Power
Control T

(2)
2

TX 1 : Ĥ(1) Q(·) Ĥ
(1)
q

ZF
Precoding

Power
Control T

(1)
1

Continuous Discrete

(a) Quantizing input (CSIT).

TX 2: Ĥ(2)
ZF

Precoding
Power

Control T
(2)
2

Q(·) T
(2)
2q

TX 1: Ĥ(1)
ZF

Precoding
Power

Control T
(1)
1

Q(·) T
(1)
1q

Continuous Discrete

(b) Quantizing output (precoder).

Fig. 4: Two manners of discretizing decision space: At the
input (information) or at the output (action).

precision of the precoder in the consistent cases must increase
faster than O(P ). Otherwise, ∆RA would not vanish. The
key to attaining sufficient precision for the consistent cases
while reducing at the same time the probability of inconsistent
cases is that they depend on different scaling of P (Θ(log(P ))
versus Θ(P )). This is rigorously shown in Section V.

B. Proposed Transmission Scheme: Consistent Distributed ZF

We present in the following the Consistent Distributed ZF
(CD-ZF) precoding scheme, where the CSIT of the TXs that
do not have access to the most precise estimate is quantized
to improve the consistency of the scheme. Later, we analyze
the feasibility of the proposed precoder. The CD-ZF scheme

TX 2 :

TX 1 : Ĥ(1)

MAP(Ĥ
(2)
q ) Ĥ

(2)←(1)
q

ZF Precoding T
(1)
1

Ĥ(2) Q(·) Ĥ
(2)
q ZF Precoding T

(2)
2

Continuous Discrete

Fig. 5: Block diagram of Consistent Distributed ZF applied in
the 2x2 Distributed CSIT scenario

presents an uneven structure, such that each TX applies
a different strategy depending on who has higher average
precision. Furthermore, the proposed scheme independently
computes the precoder for the symbols of different RXs, except
for the final power normalization. We recall that the precoding
vector for the message intended at RX i is defined in (7) as
µwi ∈ CNT×1, and the segment of µwi applied at TX j is
given by µwi,j ∈ CNj×1.

1) Quantizing the CSIT: The block diagram of this precoding
scheme is depicted in Fig. 5. Because of the uneven structure
of the precoder, we separately describe the precoding strategy
at the best-informed TX (TX 1) and at any other TX (TX 2
to TX M ). Let us consider first the later. The main limitation
of the distributed precoding is not the error variance at the
restricting TXs, but the impossibility at TX 1 of knowing what
the other TXs are going to transmit. In order to overcome
this problem, all the TXs but TX 1 quantize their estimate of
the channel matrix with a known quantizer Q. Hence, for any
j > 1, TX j does not directly use its CSIT Ĥ(j) to precode,
but first pre-processes it. In other words, TX j applies

Ĥ(j)
q = Q(Ĥ(j)). (22)

The characteristics of the quantizer Q will be detailed later.
Then, TX j naively applies a centralized ZF scheme as
described in Section III-A but in a distributed manner (based on
Ĥ

(j)
q ). Since the quantization transforms the continuous variable

Ĥ(j) into a discrete one, it facilitates that the setting becomes a
hierarchical setting in which the information available at other
TXs is estimated without explicit communication.

We focus now on the precoder at the best-informed TX
(TX 1), which attempts to correct the error of the previous
TXs. Let TX 1 estimate Ĥ

(j)
q based on its own information

Ĥ(1), e.g. by computing the Maximum A Posteriori estimator
(MAP) of Ĥ

(j)
q :

Ĥ(j)←(1)
q = argmax

Ĥ
(j)
q ∈Q(CK×NT )

Pr
(
Ĥ(j)
q | Ĥ(1)

)
. (23)

It is important to notice that the quantized value Ĥ
(j)
q is

not intended to be transmitted, but it is aimed at helping
TX 1 to estimate the CSIT used at TX j, without any explicit
communication between them.

2) Canceling the interference: The CD-ZF scheme naively
assumes that TX 1 correctly estimates the CSIT at TX j, for
any j in NM , such that

Ĥ(j)←(1)
q = Ĥ(j)

q . (24)
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The probability that (24) holds true will be evaluated in the
following section. Therefore, the fact that (24) is fulfilled
implies that the setting is consistent—although it does not
guarantee feasibility, which will be ensured by the parameter
µ. The goal of TX 1 is to imitate the interference cancellation
performance that the centralized ZF scheme would achieve if
every other TX also had access to Ĥ(1).6 In order to provide
some insights, we first describe the single-antenna case with 2
TXs and 2 RXs.

a) 2× 2 case: Let ī , i (mod 2) + 1. Mathematically,
the goal is to have |ĥ(1)

i wī| = |ĥ
(1)
i vī|, which can be rewritten

as

|ĥ(1)
i,1 wī,1 + ĥ

(1)
i,2 wī,2| = |ĥ

(1)
i,1 vī,1 + ĥ

(1)
i,2 vī,2|. (25)

We remind the reader that w stands for the distributed precoder
whereas v stands for the centralized precoder. Under the
assumption that TX 1 correctly estimates Ĥ

(2)
q , it knows wī,2.

Then, TX 1 computes its precoder such that

wī,1 = vī,1 + (ĥ
(1)
i,1 )†ĥ

(1)
i,2 (vī,2 −wī,2)︸ ︷︷ ︸

φī

, (26)

where (x)† denotes the pseudo-inverse7 of x, which is known
to have minimal Frobenius norm among all the generalized
inverses [53]. The term φi represents the correction term that
TX 1 has to apply in order to compensate the error introduced
by TX 2; note that (26) satisfies (25).

b) M ×K case: The generalization from the 2× 2 case
to the general M ×K case needs one more step. Let TX 1
have N1 ≥ K − 1 antennas. The goal is again to obtain the
same interference cancellation as for the centralized precoder,
such that, for any RX i ∈ NK ,∑

`∈NK\i

|ĥ(1)
i w`|2 =

∑
`∈NK\i

|ĥ(1)
i v`|2. (27)

The equality in (27) is attained if (but not only if) ĥ
(1)
i w` =

ĥ
(1)
i v`, for any i, ` ∈ NK such that i 6= `. Let us split the

precoding and channel vectors in two parts: v`,1, w`,1 and
ĥ

(1)
i,1 denote the sub-vector corresponding to the antennas of

TX 1, whereas v`,1̄, w`,1̄ and ĥ
(1)

i,1̄
represent the sub-vector

corresponding to the antennas from TX 2 to TX M . The
sub-matrices Ĥ¯̀,1 and Ĥ¯̀,1̄ are defined in the same manner,
and they are illustrated in Fig. 6 for the sake of better
comprehension. Note that we have introduced the notation
N1̄ , NT−N1. We can expand the condition ĥ

(1)
i w` = ĥ

(1)
i v`

as a matrix equation in which w`,1 has to satisfy

Ĥ¯̀,1w`,1 = Ĥ¯̀,1v`,1 + Ĥ¯̀,1̄(v`,1̄ −w`,1̄). (28)

6We could develop more convoluted schemes in order to increase the
achievable rate at low or medium SNR regimes. As a matter of example, we
could analyze the minimum mean-square error (MMSE) precoding as in [49],
or design several layers of quantization such that, for every j, TX (j − 1)
tries to correct the interference generated by TX j, in a similar manner to
the algorithm presented in [39]. Nevertheless, in this work we focus on the
asymptotic regime, and thus we maintain the scheme in its simplest expression.

7(x)† could also represent the regularized pseudo-inverse.
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Fig. 6: Illustration of the channel sub-matrices Ĥ¯̀,1 and Ĥ¯̀,1̄.

The precoding vector at TX 1 is then selected as

w`,1 = v`,1 + Ĥ†¯̀,1Ĥ¯̀,1̄(v`,1̄ −w`,1̄)︸ ︷︷ ︸
φ`

. (29)

Remark 3. We can see from the dimensionality of the linear
system in (28) that we need N1 ≥ K − 1 in order to
make (28) feasible with high-probability. This is another way
of understanding why we need the restriction that N1 ≥ K−1.
However, the main reason to have this constraint comes from
the limitations of the Distributed CSIT setting. Specifically, it is
known that the use of ZF precoding (or other linear precodings)
in the Distributed CSIT setting can only achieve the DoF of its
centralized counterpart when this constraint is satisfied [38],
and thus limP→∞R?(α(1))−R(αM ) =∞ otherwise.

In (28), it is ensured that the interference received is the
same as for the centralized setting. It is possible also to ensure
that the receive signal ĥ

(1)
i wi is equal to the one of the

centralized setting. This would add an extra equation to the
linear system that would require an extra antenna at TX 1.
However, it is not necessary as the received intended signal
turns out to be statistically equivalent in both distributed and
centralized settings.

3) Feasibility and consistency: In the previous description
of the scheme, it has been assumed that TX 1 obtains a feasible
consistent precoder, such that it correctly estimates the CSI
at the other TXs, and that the obtained precoding vector can
be used for transmission. In fact, the CD-ZF scheme naively
considers that the precoder is always feasible and consistent.

However, the transmission scheme will suffer from the
two main issues described in Section III-B: Power outage,
since it has to satisfy that ‖T1,n‖ ≤ 1 for any n ∈ NN1

,
and Consistency, as the quantization of the CSI at TX j
allows TX 1 to obtain the quantized CSI only with a certain
probability. Further, as explained in Section IV-A, we also
need to demonstrate that the interference cancellation is precise
enough in the feasible consistent cases. In the following we
present some properties that will prove instrumental in dealing
with those limitations. For that, we introduce a set of quantizers
that are essential in the proof of Theorem 1. We first tackle
the probability of inconsistency.

Definition 5 (Asymptotically Consistent Quantizers). A quan-
tizerQ is said to be Asymptotically Consistent if the probability
of correct estimation of the MAP estimator at TX 1 satisfies

Pr
(
Ĥ(j)←(1)
q 6= Ĥ(j)

q

)
= o

(
1

log2(P )

)
, ∀j ∈ NM . (P1)
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Property (P1) implies that it is possible to induce that
the probability of having inconsistent precoding among TXs
vanishes faster than 1/log2(P ). This fact implies that the rate
impact of inconsistent precoding events vanishes asymptotically,
as mentioned in Section IV-A. Clearly, it remains to prove that
there exists some quantizer Qc that satisfies (P1) while also
ensuring both feasibility and an adequate precision for the
consistent cases. Surprisingly, very simple quantizers as the
scalar uniform quantizer satisfy the requirements. To prove this
statement, we first show that this quantizer is an Asymptotically
Consistent Quantizer.

Lemma 1. Let Qu(X) be a scalar uniform quantizer with
quantization step q = P̄−αq , where αq is such that α(j) >
αq > 0, for all j ∈ NM . Then, Qu is an Asymptotically
Consistent Quantizer and

Pr
(
Ĥ(j)←(1)
q 6= Ĥ(j)

q

)
= o

(
1

log2(P )

)
, ∀j ∈ NM . (30)

Proof. The proof is relegated to Appendix V.

Note that Qu is a scalar quantizer. Thus, for a matrix A, the
notation Aq = Qu(A) denotes (with an abuse of notation) that
Aq is composed of the independent scalar quantization of the
real and imaginary part of each element in A. Obviously,
using vector quantization would improve the performance.
However, as the proof of Theorem 1 is constructive, we are
interested in an intuitive example, and thus we use Qu for
the sake of simplicity. The analysis at medium and low SNR,
which requires an optimization on the applied quantizer, is an
interesting research topic that is however out of the scope of
this work.

We focus now on the probability of power outage. Let us
denote the event of power outage as Po and recall that the
precoder at the n-th antenna of TX j is expressed by Tj,n. In
that case,

Po ,
⋃

n∈NNj
j∈NM

{
‖Tj,n‖ > 1

}
. (31)

The power outage probability is handled by the parameter µ
of the precoding vector µwi ∈ CNT×1. The value of µ acts
as power back-off that can be tuned to achieve the required
scaling, as stated in the following lemma.

Lemma 2. Let µ = 1 − $, where $ > 0, $ = Θ(P̄−αµ),
and αµ < αq . Then,

Pr (Po) = o

(
1

log2(P )

)
. (P2)

Proof. See Appendix III.

Similarly to property (P1), property (P2) in Lemma 2 implies
that power outage events are negligible in terms of asymptotic
rate. The only TX that may incur in power outage is TX 1, as
the other TXs apply the naive centralized precoder and hence
they will always satisfy the power constraint.

To this extent, we have shown that the uniform scalar
quantizer Qu enables us to reach the requirements regarding
the probability of the cases that are not feasible consistent.

Hence, it remains to prove that it also attains high enough
precision in the feasible consistent cases. This will be proven in
Section V. Hereinafter, we assume that the uniform quantizer
of Lemma 1 is applied in the CD-ZF.

C. Hierarchical CSIT Setting

Theorem 1 shows that it is possible to asymptotically attain
the rate of the centralized setting. Its performance at low-to-
medium SNR is however limited by the probability of obtaining
a feasible consistent precoder. This probability depends on the
quantizer applied, the power back-off considered, and the values
of α(j), and hence it is challenging to obtain. As shown in
Section IV-B, the precoder is computed assuming a correct
estimation of the CSI at the other TXs. Consequently, if the
probability of consistency is low, the scheme does not perform
properly. Moreover, this probability decreases as the network
size increases, since TX 1 needs to correctly estimate more
parameters.

This limitation is inherent to the D-CSIT setting here
assumed, in which each TX only knows its own CSI. However,
there exist another practical setting with distributed CSI but
in which there is more structure in the network CSI: The
Hierarchical CSIT setting (H-CSIT). In this setting, each TX
is endowed with its own multi-user CSI Ĥ(j), as in the D-
CSIT setting, but it is also endowed with the CSI of the
TXs having less precision than itself. Namely, in the sorted
CSI scenario with α(1) > · · · ≥ α(M), TX j has access to
{Ĥ(j), Ĥ(j+1), . . . , Ĥ(M)}.

This scenario, although it may seem less practical, may arise
in many heterogeneous networks. Fig. 2 depicts an example:
Suppose that the RXs are all connected to the same main TX
(e.g. TX 1), and the other TXs are remote radio-heads that
receive a coarse version of the CSI by means of a wireless
link from TX 1. In this use case, TX 1 will know the CSI
available at each other TX. If the CSI sharing is done through
dedicated links for each TX, each TX would receive CSI with
precision proportional to its own link. If the CSI is broadcast,
they may obtain an estimate with different precision if layered
encoding [55] or analog feedback [56] is used.

Corollary 2. Theorem 1 also holds in the Hierarchical CSIT
setting, and hence limP→∞R?(α(1))−R(αM ) = 0.

Proof. The proof follows directly from the proof of Theorem 1
in Section V.

In this setting, TX 1 already knows Ĥ(j) for any j ∈ NM .
Hence, the discretization of the variables at the other TXs is not
needed, and the precoders are consistent with probability 1. In
fact, the idea of quantizing the CSI in the D-CSIT setting boils
down to making the CSIT setting asymptotically hierarchical
with a high enough probability. The only effect that may restrain
TX 1 to achieve the centralized performance is the power outage.
Therefore, the performance at medium SNR will improve with
respect to the general Distributed CSIT case, and moreover,
this performance is not affected by the size of the network, as
we will see in the numerical examples of Section VI.
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V. PROOF OF THEOREM 1

In order to prove Theorem 1, we need to demonstrate that
the user rate gap ∆Ri = R?i (α

(1))−Ri(αM ) vanishes, which
directly yields that ∆R =

∑
i∈NK ∆Ri will also vanish. The

proof is divided in several steps: First, armed with Lemma 1
and Lemma 2, we show that both power outage and inconsistent
precoding events can be made negligible in terms of rate loss.
Then, we prove that the rate gap also vanishes in the feasible
consistent cases thanks to the fine precision of the CD-ZF
scheme in these cases. We demonstrate this by showing that
both the interference received and the total power received
in the distributed setting converge to their counterparts of the
centralized setting.

A. Neglecting Non-consistent Events

The proof of Theorem 1 builds on Lemma 1 and Lemma 2.
Indeed, the proposed scheme will perform poorly in the cases
in which the precoder is not feasible consistent, as the scheme
is built on the naive assumption that it is always feasible and
consistent. Nevertheless, both Lemma 1 and Lemma 2 illustrate
that those events can be made very unlikely (in particular, the
probability of these events is o( 1

log(P ) )). Let H 6= denote the

set of inconsistent events, i.e., H 6= ,
⋃

2≤j≤M
{
Ĥ

(j)←(1)
q 6=

Ĥ
(j)
q

}
. Hence, the probability of having feasible consistent

precoding is Pr
(
Pc
o ∩ Hc

6=
)
. By means of the law of total

expectation, we can split the expected rate gap for RX i (∆Ri)
as8

∆Ri = Pr (Po ∪H 6=) ∆Ri|Po∪H 6=

+ Pr
(
Pc
o ∩Hc

6=
)

∆Ri|Pc
o ∩Hc

6=
.

(32)

Let us focus on ∆Ri|Po∪H 6= . The rate gap can be upper-bounded
by setting the rate of the D-CSIT setting to 0, such that
∆Ri|Po∪H 6= ≤ R?i|Po∪H 6=(α(1)). By neglecting the received
interference, we can write that

R?i|Po∪H 6=(α(1)) ≤ E|Po∪H 6=
[
log2

(
1 + P |hivi|2

)]
≤ log2(P ) + E|Po∪H 6=

[
log2

(
1 + |hivi|2

)]
.

(33)

Moreover, the set Po ∪H 6= depends on the different estimation
noise at each TX, which is absent in the centralized setting.
Accordingly, (33) implies that R?i|Po∪H 6=(α(1)) = Θ(log2(P )).
Hence, it follows from Lemma 1 and Lemma 2 that

Pr (Po ∪H 6=) ∆Ri|Po∪H 6= = o

(
1

log2(P )

)
Θ(log2(P ))

and consequently

∆Ri = ∆Ri|Pc
o ∩Hc

6=
+ o(1). (34)

Thus, in the remainder of the proof we assume w.l.o.g. that
TX 1 knows Ĥ

(j)
q for any j ∈ NM , and that there is no

power outage, as both cases become negligible at high SNR.
This assumption implies that the setting becomes hierarchical,
because TX 1 correctly estimates the quantized CSI of the other

8Given a certain feasible event A and its complementary event Ac, the law
of total expectation states that E[X] = Pr(A)E[X|A] + Pr(Ac)E[X|Ac].
Furthermore, For any two events A1, A2, and union event A = A1 ∪A2, it
follows that Ac = (A1 ∪A2)c = (Ac

1 ∩Ac
2).

TXs. It is important to remark that this simplification is only
possible because of the proposed scheme, in which we apply
a correct power back-off and quantization step. Indeed, the
more important outcome of this work—and the main purpose
of the careful design of the scheme—is not (34) but the fact
that ∆Ri|Pc

o ∩Hc
6=

converges to the centralized setting rate.

B. Reformulating the Rate Gap
We can rewrite the rate gap for RX i as

∆Ri = E

[
log2

(
1 +

P |hivi|2

1 + P
∑
` 6=i |hiv`|

2

)]

− E

[
log2

(
1 +

P |µhiwi|2

1 + P
∑
` 6=i |µhiw`|2

)]

= E
[

log2

( 1 + P
∑
`∈NK |hiv`|

2

1 + P
∑
`∈NK |µhiw`|2︸ ︷︷ ︸
FD

)]

+ E
[

log2

( 1 + P
∑
` 6=i |µhiw`|2

1 + P
∑
` 6=i |hiv`|

2︸ ︷︷ ︸
FI

)]
.

(35)

This rewriting of ∆Ri allows us to separate the ratio of received
interference power (FI) and the ratio of total received power
(FD). In the following, we will prove that limP→∞∆Ri = 0
by showing that limP→∞ E[log2(Fi)] = 0 for both FD and
FI . We start with FI for simplicity, and later we apply a
similar argument to FD.

C. Analysis of the Interference Ratio (FI)
We prove the convergence by upper and lower-bounding
FI , and then showing that both bounds converge to 0. We
recall that we assume that TX 1 is able to transmit the desired
precoding vector of (26) since the opposite case only yields
an o(1) rate contribution.

1) Upper-bounding E [log2 (FI)]: Note that, since µ ≤ 1,

E

[
log2

(
1 + P

∑
` 6=i |µhiw`|2

1 + P
∑
6̀=i |hiv`|

2

)]

≤ E
[

log2

( 1 + P
∑
` 6=i |hiw`|2

1 + P
∑
` 6=i |hiv`|

2︸ ︷︷ ︸
F ′I

)]
,

(36)

where we have introduced the notation F ′I for the sake of
readability. Let η be a scalar satisfying 0 ≤ η ≤ 1. We can
split the expectation based on whether the term F ′I is smaller
than 1 + η or not. Therefore,

E [log2 (F ′I)]= Pr (F ′I < 1 + η)EF ′I<1+η [log2 (F ′I)]

+ Pr (F ′I ≥ 1 + η)EF ′I≥1+η [log2 (F ′I)].
(37)

Now we present a useful lemma.

Lemma 3. Let η = P̄−ε, with αq > ε > 0 and ε arbitrarily
small. Then,

Pr (F ′I ≥ 1 + η) = o

(
1

log2(P )

)
(38)
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and

Pr

(
1

F ′I
≥ 1 + η

)
= o

(
1

log2(P )

)
. (39)

Proof. The proof is relegated to Appendix II-A.

Let η = P̄−ε, with αq > ε > 0 and ε arbitrarily small.
Then, (37) becomes

E [log2 (F ′I)] ≤ EF ′I<1+η [log2 (F ′I)]

+ o

(
1

log2(P )

)
EF ′I≥1+η [log2 (F ′I)]

≤ log2(1 + η) + o (1)

(40)

since EF ′I≥1+η [log2 (F ′I)] = O(log2(P )). In order to prove
that EF ′I≥1+η [log2 (F ′I)] = O(log2(P )), note that

EF ′I≥1+η [log2 (F ′I)] =
1

Pr (F ′I ≥ 1 + η)

(
E [log2 (F ′I)]

− Pr (F ′I < 1 + η)EF ′I<1+η [log2 (F ′I)]
)

(41)

≤ 1

Pr (F ′I ≥ 1 + η)
E [log2 (F ′I)] .

Furthermore,

E [log2 (F ′I)] ≤ E
[

log2

(
1 + P

∑
` 6=i

|hiw`|2
)]

≤ log2(P ) + E
[
log2

(
1 +

∑
` 6=i

|hiw`|2
)]
.

(42)

From (41), (42), and the fact that Pr (F ′I ≥ 1 + η) = Θ(1),
we obtain that EF ′I≥1+η [log2 (F ′I)] = O(log2(P )).

2) Lower-bounding E [log2 (FI)]: Let us now lower-bound
the expectation. Note that

E [log2 (FI)] ≥ log2(µ2) + E
[

log2

(
F ′I
)]
. (43)

Furthermore, lower-bounding (43) is equivalent to upper-
bounding E

[
log2

(
1
F ′I

)]
. By applying Lemma 3 and in a

similar way as in (40), we obtain that E
[
log2

(
1
F ′I

)]
≤

log2(1 + η) + o (1) and hence

E [log2 (FI)] ≥ log2(µ2)− log2(1 + η) + o (1) . (44)

Consequently, the term E [log2 (FI)] can be bounded as

log2(µ2)− log2(1 + η) + o (1)

≤ E [log2 (FI)] ≤ log2(1 + η) + o (1) .
(45)

Since limP→∞ µ = 1 and limP→∞ η = 0, it follows that

lim
P→∞

E [log2 (FI)] = 0. (46)

D. Analysis of the Received Signal Ratio (FD)

It remains to prove that the first expectation in (35) also
converges to zero. As for FI , we can write

E[log2(FD)] ≤ log2

(
1

µ2

)
+ E

[
log2

( 1 + P
∑
`∈NK |hiv`|

2

1 + P
∑
`∈NK |hiw`|2︸ ︷︷ ︸
F ′D

)]
.

(47)

Moreover, the equivalent to Lemma 3 also holds for F ′D.

Lemma 4. Let η = P̄−ε, with αq > ε > 0 and ε arbitrarily
small. Then,

Pr (F ′D ≥ 1 + η) = o

(
1

log2(P )

)
(48)

and

Pr

(
1

F ′D
≥ 1 + η

)
= o

(
1

log2(P )

)
. (49)

Proof. The proof is relegated to Appendix II-B.

Thus, applying the same step as in (40) yields

E
[

log2

(
F ′D
)]
≤ log2(1 + η) + o(1). (50)

We can similarly lower-bound E[log2(FD)] to obtain that

− log2(1 + η) + o (1) ≤ E[log2(FD)]

≤ log2 (1/µ2) + log2(1 + η) + o (1) .
(51)

The fact that limP→∞ µ = 1 and limP→∞ η = 0 leads to

lim
P→∞

E[log2(FD)] = 0. (52)

E. Merging Previous Sections

Given that limP→∞∆R = limP→∞
∑K
i=1 ∆Ri, we obtain

that

lim
P→∞

∆R = lim
P→∞

K(E[log2(FD)] + E[log2(FI)])

= 0,
(53)

which concludes the proof of Theorem 1.

VI. NUMERICAL RESULTS

In this section, we provide some performance analysis for the
previous asymptotic results. We consider a scenario in which
the most-informed TX has a CSI precision scaling parameter
α(1) = 1 for the whole channel matrix, and the rest of TXs
have a CSI precision scaling parameter α(j) = 0.6, for any
j > 1. Intuitively, this configuration can model a setting in
which a main TX receives a quantized CSI feedback from
all the RXs, and then it shares a compressed version of the
CSI to the other auxiliary transmit antennas. We present the
performance of several schemes:
• The ideal centralized CSIT setting, in which all the TXs

are endowed with the CSI of TX 1.
• The CD-ZF scheme with Hierarchical CSIT (TX 1 knows

the other TXs’ CSI).
• The CD-ZF, AP-ZF, and Naive ZF schemes when the

CSIT is non hierarchical (general D-CSIT setting).
• The performance of transmitting only from TX 1 and

turning off the other TXs.
In Fig. 7, we show the rate performance for a setting with
2 single-antenna TXs and 2 RXs under the assumption of
instantaneous power constraint for the precoder. Several insights
emerge from the figure.

First, we observe how the proposed CD-ZF scheme performs
almost as good as the ideal centralized CSIT setting for the
Hierarchical CSIT configuration. This fact holds for any setting
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Fig. 7: Performance of different precoding schemes for a setting
with 2 single-antenna TXs and 2 RXs with instantaneous power
constraint and α(1) = 1, α(2) = 0.6.

configuration and size, yet considering that N1 ≥ K − 1.
Besides this, the CD-ZF scheme is shown to tend towards the
centralized rate also for the general D-CSIT setting, where the
CSI at TX 2 is not available at TX 1. However, we can see how
the convergence is slow, and at low SNR the CD-ZF scheme
outperforms the single-TX transmission or the Naive ZF only
by a slight gap. This is an aftermath of the scheme definition,
as it is tailored for the asymptotic high-SNR regime. Indeed,
the CD-ZF scheme performs in an almost optimal manner if
TX 1 correctly estimates the CSI at the other TXs; however,
the probability of correct estimation increases slowly. Thus,
the performance at medium SNR is limited.

It is important to note that the CD-ZF scheme here presented
is not optimized, as our objective was to show the asymptotic
behavior. For example, we assume a scalar quantizer that
independently quantizes every real and imaginary part of
each channel coefficient. Considerably higher probabilities
of consistency would be obtained if the quantization phase is
optimized, as it can be seen in [57]. We could, for example,
use vector quantization or consider more complex schemes
such as the ones proposed in [39], [58]. Nevertheless, the
aforementioned points show how important it is to provide
the CSI with structure (or hierarchy), as it has been proven
indispensable to boost the performance. Moreover, this CSI
structure is sometimes given by the network configuration, such
that it does not imply an extra aspect to develop.

Another point to be considered is that CD-ZF allows to
obtain centralized performance with one informed antenna less
than the single-TX transmission. This consideration can be
seen in Fig. 7, as the single-TX transmission does not even
achieve the centralized DoF.

VII. CONCLUSIONS

We have analyzed the achievable rate through linear precod-
ing in a Network MISO setting with Distributed CSIT. We have
developed an achievable scheme that asymptotically attains the
achievable rate of an ideal centralized setting where every TX
is endowed with the best estimate among all the TXs. For the
case in which the CSIT is distributed following a hierarchical
structure among TXs, the previous asymptotic insight is
shown to be valid also at the moderate-SNR regime, where
the performance obtained at both distributed and centralized
settings are alike. This result implies that we are not only able
to reach the DoF performance of the ideal centralized setting
but also its beamforming gain when there is precise CSIT only
at a subset of the transmit antennas. Thus, the performance
degradation on account of the CSI mismatches between TXs can
be overcome by a properly designed precoding scheme which is
aware of the distributed nature of the setting. Besides this, it has
been shown that the quantization of the information available
at certain nodes is helpful as it facilitates the consistency of
the decision at all the transmitters. This last result could be
applied to a broad set of distributed problems, in which the
trade-off between global consistency and local precision has
not been deeply analyzed yet. Furthermore, this work fosters
the question of whether we should enforce heterogeneous CSIT
allocation when designing the CSI sharing mechanism.

APPENDIX I
A USEFUL LEMMA

We present in the following a lemma that is key for the next
proofs. The impact of the channel quantization on the precoder
design can be asymptotically computed as shown below.

Lemma 5. Let TX j, 2 ≤ j ≤ M , quantize its CSIT with a
scalar uniform quantizer with quantization step q = P̄−αq ,
α(M) > αq > 0. The naive precoder of Section IV-B at TX j
for any i ∈ NK satisfies

E [‖vi,j −wi,j‖ ] = O
(
P̄−αq

)
(54)

E
[
‖vi,j −wi,j‖2

]
= O

(
P−αq

)
. (55)

Proof. The proof is provided in Appendix VI.

Lemma 5 is based on error propagation properties of linear
systems. Thus, it is expected to hold for a broad set of noisy
estimation models whose error variance scales as P−a for any
a > 0. For example, it holds for the quantized feedback model
of [42], in which random vector quantization is assumed and
the number of quantization bits scales with P , as shown in
[43]. Furthermore, Lemma 5 leads to the following corollary.

Corollary 3. Let TX j, 2 ≤ j ≤ M , quantize its CSIT with
a scalar uniform quantizer with quantization step q = P̄−αq ,
α(M) > αq > 0. The global precoder of Section IV-B satisfies

E [‖vi −wi‖ ] = O
(
P̄−αq

)
(56)

E
[
‖vi −wi‖2

]
= O

(
P−αq

)
. (57)

Proof. The proof is relegated to Appendix VI.
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APPENDIX II
PROOF OF LEMMA 3 AND LEMMA 4

In this section we prove Lemma 3 and Lemma 4, which are
instrumental for the proof of Theorem 1.

A. Proof of Lemma 3

We aim to prove that, for any η = P̄−ε, with αq > ε > 0
and ε arbitrarily small, it holds that

Pr (F ′I ≥ 1 + η) = o

(
1

log2(P )

)
(58)

and

Pr

(
1

F ′I
≥ 1 + η

)
= o

(
1

log2(P )

)
. (59)

We start by noting that hi can be written as hi = 1
z̆(j) (ĥ

(j)
i −

z(j) δ
(j)
i ) from the definition of the estimate in (13). Let us

introduce the notations z̆(j)
inv = 1

z̆(j) and z(j)
n = z(j)

z̆(j) . Hence, for
any i 6= `, it follows that

|hiw`|
(a)
= |z̆(1)

invĥ
(1)
i w` − z(1)

n δ
(1)
i w`|

(b)
= |z̆(1)

invĥ
(1)
i v` − z(1)

n δ
(1)
i w` + z(1)

n δ
(1)
i v` − z(1)

n δ
(1)
i v`|

(c)
= |hiv` − z(1)

n δ
(1)
i (w` − v`)| , (60)

where (a) and (c) come from the D-CSIT model of (13) and
(b) from the precoder definition in (25) since ĥ

(1)
i v` = ĥ

(1)
i w`.

Let us define dw,v
` , w` − v` for the sake of readability and

space. Hence, from the triangular inequality it follows that

1 + P
∑
` 6=i |hiw`|2

1 + P
∑
` 6=i |hiv`|

2

≤ 1 +
P

1 + P
∑
` 6=i |hiv`|

2

∑
` 6=i

(
|z(1)
n δ

(1)
i dw,v

` |2

+ 2P |hiv`||z(1)
n δ

(1)
i dw,v

` |
)
.

(61)

Let us recall that

Pr
( K∑
k=1

Ak ≥ c
)
≤

K∑
k=1

Pr
(
Ak ≥

c

K

)
. (62)

From (61) and (62), it follows that

Pr (F ′I ≥ 1 + η)

≤
∑
` 6=i

Pr
(P (|z(1)

n δ
(1)
i dw,v

` |2+2P |hiv`||z(1)
n δ

(1)
i dw,v

` |
)

1 + P
∑
` 6=i |hiv`|

2 ≥ η

K

)
≤
∑
` 6=i

Pr

(
|z(1)
n δ

(1)
i dw,v

` |2 + 2|hiv`||z(1)
n δ

(1)
i dw,v

` |
|hiv`|2

≥ η

K

)
(a)
=(K − 1)Pr

( |z(1)
n δ

(1)
i dw,v

` |2+2|hiv`||z(1)
n δ

(1)
i dw,v

` |
|hiv`|2

≥ η

K

)
(b)

≤ (K − 1)

(
Pr

(
|z(1)
n δ

(1)
i dw,v

` |2

|hiv`|2
≥ η

2K

)

+ Pr

(
2|hiv`||z(1)

n δ
(1)
i dw,v

` |
|hiv`|2

≥ η

2K

))

(c)

≤ 2(K − 1) Pr

(
|z(1)
n δ

(1)
i (w` − v`)|
|hiv`|

≥ η

4K

)
(63)

where (a) comes from symmetry, (b) from (62), and (c)
because η < 1 and dw,v

` , w` − v`. Let us now introduce a
parameter γ ∈ R. We can continue as

Pr

(
|z(1)
n δ

(1)
i (w` − v`)|
|hiv`|

≥ η

4K

)
= Pr

(
|δ(1)
i (w` − v`)| ≥

η

4K
|δ(1)
i v`|

)
≤ Pr

(
|δ(1)
i v`| < P̄−γ

)
+

∫
|δ(1)
i v`|≥P̄−γ

E
[
|δ(1)
i (w` − v`)|

]
η

4K y
f|δ(1)

i v`|
(y) dy

(64)

where the first equality comes from the fact that |hiv`| =

z
(1)
n |δ(1)

i v`|, and the last inequality from the Law of Total
Probability and Markov’s Inequality. f|δ(1)

i v`|
stands for the

probability density function of |δ(1)
i v`|. Let us focus first on

the first term of (64), Pr
(
|δ(1)
i v`| < P̄−γ

)
, which satisfies

the following proposition.

Proposition 1. Let γ > 0. Then,

Pr
(
|δ(1)
i v`| < P̄−γ

)
= o

(
1

log2(P )

)
. (65)

Proof. The proof is relegated to Appendix IV.

On the other hand, the integral term of (64) can be
rewritten as∫
|δ(1)
i v`|≥P̄−γ

E
[
|δ(1)
i (w` − v`)|

] f|δ(1)
i v`|

(y)

η
4K y

dy

=
4K

η
E
[
|δ(1)
i (w` − v`)|

]
E||δ(1)

i v`|≥P̄−γ

[
1

|δ(1)
i v`|

]
≤ 4K

η
E
[
|δ(1)
i (w` − v`)|

]
P̄ γ .

(66)

Now, we introduce another useful proposition, whose proof is
also relegated to Appendix IV.

Proposition 2. It holds that

E
[
|δ(1)
i (w` − v`)|

]
= O(P̄−αq ). (67)

By applying Proposition 1 and Proposition 2 into (64), it is
straightforward to see that

Pr (F ′I ≥ 1 + η) ≤ o
(

1

log2(P )

)
+

8K(K − 1)

η
O(P̄−αq )P̄ γ .

(68)

Since η = P̄−ε, with αq > ε > 0,

Pr (F ′I ≥ 1 + η) ≤ o
(

1

log2(P )

)
+ P̄ εO(P̄−αq )P̄ γ . (69)

Let us select γ such that γ > 0 and ε+ γ − αq < 0. Then, it
follows that

Pr (F ′I ≥ 1 + η) = o

(
1

log2(P )

)
, (70)
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which concludes the proof of the first statement of Lemma 3.
We prove in the following the second statement, i.e.,

Pr

(
1

F ′I
≥ 1 + η

)
= o

(
1

log2(P )

)
. (71)

This is obtained by switching the vectors v` and w` and
applying the same steps as in the proof of the first statement.
To begin with, by following the steps in (63) we can easily
obtain that

Pr

(
1

F ′I
≥ 1 + η

)
= Pr

(
1 + P

∑
` 6=i |hiv`|

2

1 + P
∑
` 6=i |hiw`|2

≥ 1 + η

)

≤ 2(K − 1) Pr

(
|z(1)
n δ

(1)
i (w` − v`)|
|hiw`|

≥ η

4K

)
. (72)

Furthermore, the final expression in (72) is equal to the one
in (63) except for the fact that the denominator is |hiw`|
instead of |hiv`|. Hence, continuing as in (64)-(69), we obtain
that

Pr

(
1

F ′I
≥ 1 + η

)
= o

(
1

log2(P )

)
, (73)

which concludes the proof of Lemma 3.

B. Proof of Lemma 4

We aim to prove that, for any η = P̄−ε, with αq > ε > 0
and ε arbitrarily small, it holds that

Pr (F ′D ≥ 1 + η) = o

(
1

log2(P )

)
(74)

and

Pr

(
1

F ′D
≥ 1 + η

)
= o

(
1

log2(P )

)
. (75)

Firstly, we focus on (74). Note that, applying similar steps as
in (60), it holds that

|hiv`|2 ≤ |hiw`|2 + |z(1)
n δ

(1)
i (w` − v`)|2

+ 2|hiw`||z(1)
n δ

(1)
i (w` − v`)|,

(76)

|hivi|2 ≤ |hiwi|2 + |hi(wi − vi)|2

+ 2 |hiwi| |hi(wi − vi)| .
(77)

Hence, following the steps applied in (61)-(63), we can write
that

Pr

(
1 + P

∑
`∈NK |hiv`|

2

1 + P
∑
`∈NK |hiw`|2

≥ 1 + η

)
≤ Pr (D1 +D2 +D3 +D4 ≥ η)

≤
4∑
i=1

Pr
(
Di ≥

η

4

)
,

(78)

where we have introduced the notations

D1 ,
∑
6̀=i

|z(1)
n δ

(1)
i (w` − v`)|2

|hiwi|2
(79)

D2 ,
∑
6̀=i

2 |hiw`| |z(1)
n δ

(1)
i (wi − v`)|

|hiwi|2
(80)

D3 ,
|hi(wi − vi)|2

|hiwi|2
(81)

D4 ,
2 |hiwi| |hi(wi − vi)|

|hiwi|2
. (82)

The first inequality in (78) is obtained by applying (76)-(77) and
eliminating the term 1+P

∑
` 6=i |hiw`|2 from the denominator.

From the analysis of FI in the previous section (see (64)), it
follows easily that, if η = P̄−ε, with αq > ε > 0, then

Pr
(
D1 ≥

η

4

)
≤
∑
` 6=i

Pr

(
z(1)
n

|δ(1)
i (w` − v`)|2

|hiwi|2
≥ η

4K

)

= o

(
1

log2(P )

)
. (83)

Similarly,

Pr
(
D2 ≥

η

4

)
=
∑
6̀=i

Pr
(
z(1)
n

2 |hiw`| |δ(1)
i (wi − v`)|
|hiwi|2

≥ η

4K

)
= o

(
1

log2(P )

)
. (84)

For the two remaining terms, D3 and D4, note that

Pr
(
D3 ≥

η

4

)
+ Pr

(
D4 ≥

η

4

)
= Pr

(
|hi(wi − vi)|2

|hiwi|2
≥ η

4

)

+ Pr

(
2 |hi(wi − vi)|
|hiwi|

≥ η

4

)
≤ 2 Pr

(
|hi(wi − vi)|
|hiwi|

≥ η

16

)
= 2 Pr

(
|h̃i(wi − vi)|
|h̃iwi|

≥ η

16

)
.

(85)

where h̃ = h
‖h‖ is unit-norm and it is isotropically distributed

on the NT -dimensional unit-sphere [42]. We can continue as
in (64) to write

Pr

(
|h̃i(wi − vi)|
|h̃iwi|

≥ η

16

)
≤ Pr

(
|h̃iwi| < P̄−γ

)
+

∫
|h̃iwi|≥P̄−γ

E[|h̃i(wi − vi)|]
η
16y

f|h̃iwi|(y) dy

≤ O(P̄−γ) + 16P̄ εE[|h̃i(wi − vi)|] P̄ γ .

(86)

The fact that ‖h̃i‖ = 1 implies that E[|h̃i(wi − vi)|] ≤
E[‖wi − vi‖]. Moreover, Corollary 3 states that
E[‖wi − vi‖] = O(P̄−αq ). Consequently, by selecting
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γ such that γ > 0 and ε + γ − αq < 0, it follows from (86)
that

Pr

(
|h̃i(wi − vi)|
|h̃iwi|

≥ η

16

)
≤ O(P̄−γ) + P̄ εO(P̄−αq )P̄ γ

= o

(
1

log2(P )

)
. (87)

We introduce the result of (87) into (85) to obtain from (78) that

Pr (F ′D ≥ 1 + η) = o

(
1

log2(P )

)
. (88)

It would remain to prove that Pr
(

1
F ′D
≥ 1 + η

)
= o

(
1

log2(P )

)
.

To do so, we just need to apply the same previous steps, but
interchanging w and v. Following those steps and following
a similar argument as in the proof for Pr

(
1
F ′I

)
, we directly

obtain the result. For this reason, and for the sake of concision,
we omit the derivation.

APPENDIX III
PROOF OF LEMMA 2 (PROBABILITY OF POWER OUTAGE)

We denote the event of power outage as Po. Note that

Pr (Po) ≤ N1 Pr (‖T1,1‖ > 1) , (89)

and T1,1 = µ[w1,1,1,w2,1,1, . . . ,wK,1,1], where wi,j,n repre-
sents the n-th element of the precoding vector at TX j for the
data symbols of RX i. Therefore,

Pr (Po) ≤ N1 Pr (‖µ[w1,1,1,w2,1,1, . . . ,wK,1,1]‖ > 1)

(a)

≤ N1 Pr

( ⋃
i∈NK

‖µwi,1,1‖ > ‖vi,1,1‖

)
(b)

≤ N1K Pr (‖µw1,1,1‖ > ‖v1,1,1‖)
(c)

≤ N1K Pr (µ‖v1,1,1‖+ µ‖φ1‖ > ‖v1,1,1‖)

= N1K Pr

(
‖φ1‖ >

1− µ
µ
‖v1,1,1‖

)
(90)

where (a) is obtained from the precoder definition as
‖[v1,1,1 . . . vK,1,1]‖ ≤ 1, (b) follows because wi,1,1 (resp.
vi,1,1) is equally distributed for any i ∈ NK , and (c) from (29).
Now, we obtain the probability by conditioning on ‖v1,1‖ and
then averaging over the distribution of ‖v1,1,1‖. Let us denote
µ′ , 1−µ

µ . Hence,

Pr (Po) ≤ N1K

∫ ∞
−∞

Pr (‖φ1‖ > µ′ν) f‖v1,1,1‖(ν) dν. (91)

Using Markov’s inequality we obtain that

Pr (Po) ≤ N1K

∫ ∞
−∞

E[‖φ1‖]
µ′ν

f‖v1,1,1‖(ν) dν

= N1K E[‖φ1‖]
1

µ′
E
[
‖v1,1,1‖−1

]
,

(92)

where E
[
‖v1,1,1‖−1

]
exists from property (ZF2). Let us focus

on the first expectation term of (92) (E[‖φ1‖]). Recalling (29),
φi is defined as

φi = Ĥ†
ī,1

Ĥī,1̄(vi,1̄ −wi,1̄). (93)

Then,

E [‖φi‖]
(a)

≤ E
[
‖Ĥ†

ī,1
Ĥī,1̄‖‖vi,1̄ −wi,1̄‖

]
(b)

≤
√

E
[
‖Ĥ†

ī,1
Ĥī,1̄‖2

]
E
[
‖vi,1̄ −wi,1̄‖2

]
,

(94)

where (a) comes from the sub-multiplicative property of the
Frobenius norm and (b) from Cauchy–Schwarz inequality. Let
us denote gm ,

√
E
[
‖Ĥ†

ī,1
Ĥī,1̄‖2

]
, which is a value that

does not depend on P since the channel estimates are equally
distributed for any estimation error variance. Then, we have
that

E [‖φi‖] ≤ gm
√
E
[
‖vi,1̄ −wi,1̄‖2

]
. (95)

Lemma 5 and the fact that E
[
‖vi,1̄ −wi,1̄‖2

]
=∑M

j=2 E
[
‖vi,j −wi,j‖2

]
yield

E [‖φ1‖] = O
(
P̄−αq

)
. (96)

Since µ = 1−$, with $ = Θ(P̄−αµ) and $ > 0, the term
1
µ′ = µ

1−µ satisfies 1
µ′ = Θ(P̄αµ). From (ZF2), E

[
‖v1,1,1‖−1

]
is Θ(1). Hence, recalling (92),

Pr (Po) ≤ N1KE
[
‖v1,1,1‖−1

]
E[‖φ1‖]

1

µ′

= Θ(1)O
(
P̄−αq

)
Θ(P̄αµ),

(97)

which implies that Pr (Po) = O
(
P̄αµ−αq

)
. By selecting αµ <

αq , the probability of power outage vanishes and it holds that

Pr (Po) = o

(
1

log2(P )

)
, (98)

which concludes the proof.

APPENDIX IV
PROOF OF PROPOSITION 1 AND PROPOSITION 2

A. Proof of Proposition 1

We prove in the following that Pr
(
|δ(1)
i v`| < P̄−γ

)
=

o
(

1
log2(P )

)
for any γ > 0 and i, ` ∈ NK such that ` 6= i.

Let us denote the precoder for RX ` obtained with perfect
knowledge of H as u`. Then,

Pr
(
|δ(1)
i v`| < P̄−γ

)
=Pr

(
|δ(1)
i u` + δ

(1)
i (v` − u`)| < P̄−γ

)
≤ Pr

(∣∣|δ(1)
i u`| − |δ(1)

i (v` − u`)|
∣∣ < P̄−γ

)
, (99)

where we have applied the inverse triangle inequality. In order
to prove Proposition 1, we capitalize the intuition that the term
|δ(1)
i u`| is independent of the quality of the estimate and P , but

the value of |δ(1)
i (v` − u`)| is directly proportional to P−α

(1)

.
Before applying this intuition to (99), we first analyze the term
|δ(1)
i (v`−u`)| and the probability Pr

(
|δ(1)
i (v`−u`)| > P̄−β

)
for any β < α(1).

Proposition 3. For any β < α(1), it holds that

Pr
(
|δ(1)
i (v` − u`)| > P̄−β

)
= o

(
1

log2(P )

)
. (100)

Proof. It follows by the Cauchy-Schwarz inequality that
|δ(1)
i (v` − u`)| < ‖δ(1)

i ‖‖v` − u`‖, which implies that
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Pr
(
|δ(1)
i (v`−u`)| > P̄−β

)
≤ Pr

(
‖δ(1)
i ‖‖v` − u`‖ > P̄−β

)
.

Let us define the scalar ε > 0 such that β < β + ε < α(1). By
applying the law of total probability, we obtain that

Pr
(
|δ(1)
i (v` − u`)| > P̄−β

)
≤ Pr

(
‖δ(1)
i ‖‖v` − u`‖ > P̄−β

)
≤ Pr

(
‖δ(1)
i ‖‖v` − u`‖ > P̄−β | ‖v` − u`‖ > P̄−β−ε

)
× Pr

(
‖v` − u`‖ > P̄−β−ε

)
+ Pr

(
‖δ(1)
i ‖‖v` − u`‖ > P̄−β | ‖v` − u`‖ ≤ P̄−β−ε

)
× Pr

(
‖v` − u`‖ ≤ P̄−β−ε

)
≤ Pr

(
‖v` − u`‖ > P̄−β−ε

)
+ Pr

(
‖δ(1)
i ‖ > P̄ ε | ‖v` − u`‖ ≤ P̄−β−ε

)
. (101)

The term Pr
(
‖v` − u`‖ > P̄−β−ε

)
can be upper-bounded by

means of the Markov’s inequality, such that

Pr
(
‖v` − u`‖ > P̄−β−ε

)
≤ P̄ β+ε E[‖v` − u`‖]

(a)
= O(P̄ β+ε−α(1)

) = o

(
1

log2(P )

)
,

(102)

where (a) follows after applying Lemma 5 to vectors whose
respective input estimates differ by a O(P̄−α

(1)

) additive
error term. For the last term in (101), Pr

(
‖δ(1)
i ‖ > P̄ ε |

‖v` − u`‖ ≤ P̄−β−ε
)
, it follows that

Pr
(
‖δ(1)
i ‖ > P̄ ε | ‖v` − u`‖ ≤ P̄−β−ε

)
≤

Pr
(
‖δ(1)
i ‖ > P̄ ε

)
Pr
(
‖v` − u`‖ ≤ P̄−β−ε

) . (103)

From (102), it holds that Pr
(
‖v` − u`‖ ≤ P̄−β−ε

)
= 1 −

O(P̄ β+ε−α(1)

). Besides this, ‖δ(1)
i ‖2 =

∑NT
n=1 |δ

(1)
i,n |2, where

δ
(1)
i,n are i.i.d. as NC(0, 1). Consequently, |δ(1)

i,n |2 is distributed
following a Rayleigh distribution and

‖δ(1)
i ‖

2 ∼ Γd(NT , 1), (104)

where Γd(NT , 1) denotes the Gamma distribution. Moreover,
Γd(NT , 1) is also called the Erlang distribution, and it satisfies
that

Pr
(
X ∼ Γd(NT , 1) < x

)
= 1−

NT−1∑
n=0

1

n!
e−xxn. (105)

Hence,

Pr
(
‖δ(1)
i ‖ > P̄ ε

)
= Pr

(
‖δ(1)
i ‖

2 > P̄ 2ε
)

=

NT−1∑
n=0

1

n!
e−P̄

2ε

P̄ 2nε.
(106)

Since ε > 0, Pr
(
‖δ(1)
i ‖ > P̄ ε

)
= o(P̄ x), for any x ∈ R, and

hence it is o(1/ log2(P )). This implies that

Pr
(
‖δ(1)
i ‖ > P̄ ε

)
Pr
(
‖v` − u`‖ ≤ P̄−β−ε

) =
o
(

1
log2(P )

)
1−O(P̄ β+ε−α(1))

, (107)

which, together with (102) and (101), leads to

Pr
(
|δ(1)
i (v` − u`)| > P̄−β

)
= o

(
1

log2(P )

)
(108)

for any β < α(1).

Equipped with this result from Proposition 3, now we focus
back on (99). Before, let us introduce the notation dv,u

` ,
v`−u` for the sake of readability. Then, (99) can be expanded
by means of the Law of total probability as

Pr
(∣∣|δ(1)

i u`| − |δ(1)
i dv,u

` |
∣∣ < P̄−γ

)
= Pr

(∣∣|δ(1)
i u`| − |δ(1)

i dv,u
` |
∣∣ < P̄−γ

∣∣∣ |δ(1)
i dv,u

` | ≤ P̄
−β
)

× Pr
(
|δ(1)
i dv,u

` | ≤ P̄
−β)

+ Pr
(∣∣|δ(1)

i u`| − |δ(1)
i dv,u

` |
∣∣<P̄−γ ∣∣∣ |δ(1)

i dv,u
` | > P̄−β

)
× Pr

(
|δ(1)
i dv,u

` | > P̄−β
)

= Pr
(∣∣|δ(1)

i u`| − |δ(1)
i dv,u

` |
∣∣ < P̄−γ

∣∣∣ |δ(1)
i dv,u

` | ≤ P̄
−β
)

+ o

(
1

log2(P )

)
≤ Pr

(
|δ(1)
i u`| < P̄−γ + P̄−β

)
+ o

(
1

log2(P )

)
.

Let us assume w.l.o.g. that β < γ, such that Pr
(
|δ(1)
i u`| <

P̄−γ + P̄−β
)
≤ Pr

(
|δ(1)
i u`| < 2P̄−β

)
. Therefore, it remains

to prove that Pr
(
|δ(1)
i u`| < 2P̄−β

)
= o

(
1

log2(P )

)
. Let εβ be

a scalar such that 0 < εβ < β and let us define ψ as the angle
satisfying

cos(ψ) ,
|δ(1)
i u`|

‖δ(1)
i ‖‖u`‖

. (109)

Then, we use again the Law of Total Probability to obtain

Pr
(
|δ(1)
i u`| < 2P̄−β

)
= Pr

(
‖δ(1)
i ‖‖u`‖ cos(ψ) < 2P̄−β | ‖u`‖ ≤ P̄−εβ

)
× Pr

(
‖u`‖ ≤ P̄−εβ

)
+ Pr

(
‖δ(1)
i ‖‖u`‖ cos(ψ) < 2P̄−β | ‖u`‖ > P̄−εβ

)
× Pr

(
‖u`‖ > P̄−εβ

)
(110)

≤ Pr
(
‖u`‖ ≤ P̄−εβ

)
+ Pr

(
‖δ(1)
i ‖‖u`‖ cos(ψ) < 2P̄−β | ‖u`‖ > P̄−εβ

)
≤ Pr

(
‖u`‖ ≤ P̄−εβ

)
+ Pr

(
‖δ(1)
i ‖ cos(ψ) < 2P̄−βP̄ εβ | ‖u`‖ > P̄−εβ

)
.

Importantly, δ(1)
i is isotropically distributed (i.e., the normalized

value δ(1)
i /‖δ(1)

i ‖ is uniformly distributed in the sphere surface).
Besides this, u` is a function of H. Since H and δ(1)

i are
mutually independent, so δ(1)

i and u` are. Hence, from isotropy
of δ(1)

i , cos(ψ) is independent of u`. On this basis, we can
select u` = [1,01×NT−1] to obtain that

Pr
(
‖δ(1)
i ‖ cos(ψ) < 2P̄ εβ−β | ‖u`‖ > P̄−εβ

)
= Pr

(
|δ(1)
i,1,1| < 2P̄ εβ−β

)
,

(111)
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where δ(1)
i,1,1 denotes the first element of the vector δ(1)

i , and
it is distributed as NC(0, 1). Then,

Pr
(
|δ(1)
i,1,1| < 2P̄ εβ−β

)
=

2√
2π

∫ 2P̄ εβ−β

0

e−x
2/2 dx

≤ 4√
2π
P̄ εβ−β .

(112)

On the other hand, the term Pr
(
‖u`‖ ≤ P̄−εβ

)
is bounded by

Pr
(
‖u`‖ ≤ P̄−εβ

)
=

∫ P̄−εβ

0

f‖ui‖(x) dx

≤ fmax
‖ui‖P̄

−εβ ,

(113)

which follows from (ZF3). By introducing (112) and (113)
in (110) we obtain that

Pr
(
|δ(1)
i u`| < 2P̄−β

)
≤ O(P̄max(−εβ , εβ−β)). (114)

Note that εβ satisfies 0 < εβ < β. Hence,

Pr
(
|δ(1)
i v`| < P̄−γ

)
≤ Pr

(∣∣|δ(1)
i u`| − |δ(1)

i (v` − u`)|
∣∣ < P̄−γ

)
≤ Pr

(
|δ(1)
i u`| < 2P̄−β

)
+ o

(
1

log2(P )

)
= o

(
1

log2(P )

)
,

(115)

which concludes the proof of Proposition 1.

B. Proof of Proposition 2

We prove in the following that E[|δ(1)
i (w` − v`)|] =

O(P̄−αq ) for any i, ` ∈ NK : ` 6= i. It follows that

E
[
|δ(1)
i (w` − v`)|

]
≤ E

[
‖δ(1)
i ‖‖w` − v`‖

]
= cov

(
‖δ(1)
i ‖, ‖w` − v`‖

)
+ E

[
‖δ(1)
i ‖

]
E[‖w` − v`‖]

≤
√
E
[
‖δ(1)
i ‖2

]
σ‖w`−v`‖ + E

[
‖δ(1)
i ‖

]
E[‖w` − v`‖] ,

where cov(X,Y ) , E[(X − E(X))(Y − E(Y ))] is the
covariance between X and Y and σ2

X represents the variance
of the random variable X . The last inequality comes from
the fact that cov(x, y) ≤ σxσy and σ2

x ≤ E
[
x2
]
. Besides this,

it holds from ‖δ(1)
i ‖2 ∼ Γd(NT , 1) that E

[
‖δ(1)
i ‖2

]
= NT .

From this point and the fact that E[x] ≤
√
E[x2], we can write

E
[
|δ(1)
i (w` − v`)|

]
≤
√
NT

(
σ‖w`−v`‖ + E[‖w` − v`‖]

)
(a)

≤
√
NT 2

√
E[‖w` − v`‖2]

(b)
= O(P̄−αq ),

where (a) comes from the fact that σx +E[x] ≤ 2
√
E[x2] and

(b) from Corollary 3.

APPENDIX V
PROOF OF LEMMA 1 (QUANTIZER CONSISTENCY)

Let q , P̄−αq be the quantization step size of the quantizer
Qu. Then, Qu is defined such that, for a scalar value x ∈ R,

Qu(x) , q

⌊
x

q
+

1

2

⌋
. (116)

We extend the notation for any complex matrix A ∈ Cn×m
such that Aq = Qu(A) denotes the element-wise quantization,
i.e.,

(Aq)i,k , Qu
(

Re(Ai,k)
)

+ iQu
(

Im(Ai,k)
)
, (117)

where Re(x) and Im(x) stand for the real imaginary part of
x ∈ C, and i ,

√
−1. In this appendix we prove that, for a

scalar uniform quantizer Qu with q = P̄−αq and α(j) > αq >
0, ∀j ∈ NM , it follows that

Pr
(
Ĥ(j)←(1)
q 6= Ĥ(j)

q

)
= o

(
1

log2(P )

)
, (118)

where Ĥ
(j)
q = Qu(Ĥ(j)) and Ĥ

(j)←(1)
q is the MAP estimator

of Ĥ
(j)
q given Ĥ(1). We start by noting that, by definition of

the MAP estimator,

Pr
(
Ĥ(j)←(1)
q 6= Ĥ(j)

q

)
≤ Pr

(
Qu(Ĥ(1)) 6= Ĥ(j)

q

)
. (119)

Since Re(Ĥ
(1)
i,k ) and Im(Ĥ

(1)
i,k ) are i.i.d. for any i, k, it follows

that

Pr
(
Qu(Ĥ(1)) 6= Ĥ(j)

q

)
≤ 2KNT Pr

(
Qu(Re(Ĥ

(1)
1,1)) 6= Qu(Re(Ĥ

(j)
1,1))

)
,

(120)

where we have selected w.l.o.g. the real part of the (1,1) channel
element. Hence, it is sufficient to obtain the probability of
disagreement for Re(Ĥ

(j)
1,1). For that purpose, we split each

reconstruction level of the quantizer in two parts: The edge of
the cell and the center of the cell. This is done in order to show
that, as P increases, the probability of disagreement vanishes
if Ĥ

(1)
1,1 is in the center of the quantization level and, besides

this, the probability that Ĥ
(1)
1,1 is in the edge area also vanishes.

We rigorously show it in the following. Before starting, we
introduce the simplified notation h(j) , Re(Ĥ

(j)
1,1) to ease the

readability. Accordingly, we also introduce the notation h ,
Re(H1,1) and δ , Re(δ

(j)
1,1) such that h(j) = z̆(j)h + z(j)δ(j),

with z(j) = P̄−α
(j)

and z̆(j) ,
√

1− (z(j))2. Furthermore,
we recall the notations z̆(j)

inv , 1
z̆(j) and z(j)

n , z(j)

z̆(j) , introduced
in Appendix II.

A. Egde and center of the reconstruction level

Let `n be the n-th quantization level of Qu, n ∈ Z, with
`0 = 0. Let us define Ln as the input interval that outputs `n,
i.e.,

Ln , {x | Qu(x) = `n}. (121)

Ln has a range [Lmin
n , Lmax

n ) such that |Ln| , Lmax
n −Lmin

n =
P̄−αq . We split Ln in two areas, the edge area En and the
center area Cn, depicted in Fig. 8. The edge area is defined
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︸ ︷︷ ︸
Ln

En−1︷ ︸︸ ︷ En︷ ︸︸ ︷ En︷ ︸︸ ︷Cn︷ ︸︸ ︷ Cn+1︷ ︸︸ ︷En+1︷ ︸︸ ︷ En+1︷ ︸︸ ︷`n `n+1 `n+2

Fig. 8: Illustration of a reconstruction level Ln of the quantizer
and the two sub-areas in which we divide it: The central area
Cn and the edge area En.

as the part of Ln that is at most at distance P̄−ceαq of the
boundary of the cell, with ce > 1.

En ,
{
x∈Ln | x− Lmin

n < P̄−ceαq ∨ Lmax
n − x < P̄−ceαq

}
.

The center area is given by

Cn , {x ∈ Ln\En} . (122)

Intuitively, the probability of disagreement is very high if h(1)

lies in the edge area En, whereas this probability vanishes in
the central area Cn. Mathematically, we have that

Pr

(
Qu(h(1)) 6= Qu(h(j))

)
≤ Pr

(
h(1) ∈

⋃
n∈Z

En

)
+ Pr

(
Qu(h(1)) 6= Qu(h(j)) | h(1) ∈

⋃
n∈Z

Cn

)
.

(123)

Let us analyze separately the two probabilities in the right-hand
side of (123).

B. Probability of belonging to the edge area

Consider an arbitrary quantization level `n. Let fmax
Ln

be the
maximum value of the pdf of h(1) in Ln = {x | Qu(x) = `n}.
It follows that the probability that h(1) is in En is upper-
bounded by

Pr
(
h(1) ∈ En

)
≤ fmax

Ln |En|
= 2fmax

Ln P̄−ceαq ,
(124)

where |En| denotes the length of En. The standard normal
distribution has a derivative that is, at most, 1/

√
2πe. Thus,

the probability of being in Ln satisfies

Pr
(
h(1) ∈ Ln

)
≥
(
fmax
Ln − 1/

√
2πe|Ln|

)
|Ln|

=
(
fmax
Ln − 1/

√
2πeP̄−αq

)
P̄−αq .

(125)

Hence, the probability that h(1) is in En, given that it is in
Ln, satisfies for any n that

Pr
(
h(1) ∈ En | Ln

)
=

Pr
(
h(1) ∈ En

)
Pr
(
h(1) ∈ Ln

)
≤

2fmax
Ln(

fmax
Ln
− 1/

√
2πeP̄−αq

) P̄−(ce−1)αq .

(126)

Let us define gmax as gmax , maxn∈Z
2fmax
Ln(

fmax
Ln
−1/
√

2πeP̄−αq
) .

Note that gmax = Θ(1). Hence, from (126) and the fact that∑
n∈Z Pr

(
h(1) ∈ Ln

)
= 1, we can write

Pr
(
h(1) ∈

⋃
n∈Z

En
)

=
∑
n∈Z

Pr
(
h(1) ∈ En

)
Pr
(
h(1) ∈ Ln

) Pr
(
h(1) ∈ Ln

)
≤ gmaxP̄

−(ce−1)αq
∑
n∈Z

Pr
(
h(1) ∈ Ln

)
= O

(
P̄−(ce−1)αq

)
. (127)

Consequently, it holds that

Pr
(
h(1) ∈

⋃
n∈Z

En
)

= o

(
1

log2(P )

)
. (128)

C. Probability of disagreement in the center area
From the fact that the minimum distance from any point of

Cn to the border of Ln is P̄−ceαq , it holds that

Pr

(
Qu(h(1)) 6= Qu(h(j))

∣∣∣ h(1) ∈
⋃
n∈Z

Cn

)

≤ Pr

(∣∣h(1) − h(j)
∣∣ ≥ P̄−ceαq ∣∣∣ h(1) ∈

⋃
n∈Z

Cn

)
.

(129)

Given that, for two events A,C, Pr(A | C) ≤ Pr(A)/Pr(C),
it follows that

Pr

(∣∣h(1) − h(j)
∣∣ ≥ P̄−ceαq ∣∣∣ h(1) ∈

⋃
n∈Z

Cn

)

≤ 1

Pr
(
h(1) ∈

⋃
n∈Z Cn

) Pr
(
|h(1) − h(j)| ≥ P̄−ceαq

)
≤ 1

Pr
(
h(1) ∈

⋃
n∈Z Cn

) E
[∣∣h(1) − h(j)

∣∣]
P̄−ceαq

, (130)

which comes from Markov’s Inequality. In the following, we
obtain the expectation E

[∣∣h(1) − h(j)
∣∣]. Then,

h(1) − h(j) = h(z̆(1) − z̆(j)) + (z(1)δ(1) − z(j)δ(j)). (131)

From the assumption of Gaussian variables, it holds that

h(z̆(1) − z̆(j)) ∼ N
(

0, (z̆(1) − z̆(j))2
)
, (132)

z(1)δ(1) − z(j)δ(j) ∼ N
(

0, (z(1))2 + (z(j))2
)
. (133)

Since h(1) is independent of δ(1) and δ(j), it follows that

h(1) − h(j) ∼ N
(
0, σ2

d

)
, (134)

where σ2
d is given by

σ2
d = (z̆(1) − z̆(j))2 + (z(1))2 + (z(j))2. (135)

Substituting the variables for their values yields

σ2
d = 2

(
1−

√
1− P−α(1) − P−α(j) + P−α(1)−α(j)

)
. (136)

Furthermore, if h(1)−h(j) is drawn from a zero-mean Normal
distribution of variance σ2

d, |h(1) − h(j)| is distributed as a
half-normal distribution of mean

E
[∣∣h(1) − h(j)

∣∣] = σd

√
2

π
. (137)
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From (136) and the fact that, for any x such that 0 ≤ x ≤ 1,
it holds that

√
1− x ≥ 1− x, it follows that

E
[∣∣h(1) − h(j)

∣∣] ≤√ 4

π

(
P−α(1) + P−α(j) − P−α(1)−α(j)

)
= O(P̄−α

(j)

). (138)

Besides this, it holds from (128) that

Pr
(

h(1) ∈
⋃
n∈Z

Cn

)
= 1− Pr

(
h(1) ∈

⋃
n∈Z

En

)
= 1−O(P̄−αq ).

(139)

From (130), both (138) and (139) lead to

Pr

(
Qu(h(1)) 6= Qu(h(j))

∣∣∣ h(1) ∈
⋃
n∈Z

Cn

)

≤ 1

Pr
(

h(1) ∈
⋃
n∈Z Cn

) E
[∣∣h(1) − h(j)

∣∣]
P̄−ceαq

= O
(
P̄ ceαq−α

(j)
)

= o

(
1

log2(P )

)
.

(140)

The last inequality is obtained only if ceαq < α(j) for any j ∈
NM . Thus, it follows from (140) that it is necessary to satisfy
that ceαq < α(j) for any j ∈ NM . Since for any αq < α(j)

we can find a ce > 1 such that ceαq < α(j), any αq < α(j)

will satisfy (140) as long as a correct ce is selected.

D. Assembling probabilities

We make use of (128) and (140) to show that (123) satisfies

Pr

(
Qu(h(1)) 6= Qu(h(j))

)
≤ Pr

(
h(1) ∈

⋃
n∈Z

En

)
+ Pr

(
Qu(h(1)) 6= Qu(h(j)) | h(1) ∈

⋃
n∈Z

Cn

)
= o

(
1

log2(P )

)
,

(141)

which concludes the proof of Lemma 1.

APPENDIX VI
PROOF OF LEMMA 5 (ERROR ON NAIVE PRECODER)

In this appendix, we prove both Lemma 5 and Corollary 3.
First, we focus on demonstrating that

E
[
‖vi,2 −wi,2‖2

]
= O

(
P−αq

)
. (142)

The generalization of (142) for any E
[
‖vi,k −wi,k‖2

]
, k ∈

NM\1 is straightforward. Then, the proof of the other results in
the lemma and the corollary will be shown to follow from (142).

In order to prove (142), we make use of the fact that, as
presented in Section III-A, we assume that the precoding
vectors and matrices can be expressed as a combination of
summations, products, and generalized inverses of the channel
estimate. Note that, with the previous operations, it is also
possible to compute divisions and norms of the channel estimate
coefficients.

First, note that both wi,2 and vi,2 are obtained following the
same algorithm but based on different information (input).
Specifically, wi,2 is computed on the basis of Ĥ

(2)
q =

Qu(Ĥ(2)), where Qu is a scalar uniform quantizer with
quantization step q = P̄−αq , and vi,2 is computed on the
basis of Ĥ(1). As in the previous appendix, let h

(2)
q (resp. h(j)

and h) denote the real or imaginary part of an arbitrary element
of the matrix Ĥ

(2)
q (resp. Ĥ(j) and H). Let us define h

(2)
ς as

h(2)
ς , h(2) + ςq, (143)

where ςq is distributed as a binary symmetric distribution with
points [−q, q], independent of the other variables, such that
σ2
ςq = q2. Note that the error h

(2)
q − h(1) has smaller or equal

variance than h
(2)
ς − h(1) = h(2) − h(1) + ςq. Hence, we can

assume that wi,2 is computed on the basis of the estimate h
(2)
ς ,

since increasing the error variance can only hurt. Consequently,
the error ξ , h

(2)
ς − h(1) has a variance σ2

ξ given by

σ2
ξ ≤ σ2

d + σ2
ςq + 2σdσςq

= O(P−αq ),
(144)

where σ2
d is given in (136). Therefore, we can write that

h(2)
ς = h(1) + P̄−αqδξ, (145)

where δξ is a variable of variance Θ(1) and bounded density.
We continue by showing that the error-variance scaling remains
being at most Θ(P−αq ) after applying addition, product,
inverse or pseudo-inverse operations. Afterward, based on those
results, we prove (142).

A. Error in the addition

Let a
(2)
ξ , b

(2)
ξ , be distributed as (145), i.e., a

(2)
ξ , a(1) +

P̄−αqδa
ξ , b

(2)
ξ , b(1) + P̄−αqδb

ξ , where δa
ξ , δb

ξ , are variables
with variance Θ(1) and bounded density. It is easy to see that,
for any a

(2)
ξ , b

(2)
ξ ,

a
(2)
ξ + b

(2)
ξ = a(1) + P̄−αqδa

ξ + b(1) + P̄−αqδb
ξ

= a(1) + b(1) + P̄−αq (δa
ξ + δb

ξ ).
(146)

This implies that the error variance of the sum is also O(P−αq )
as (144).

B. Error in the product

In a similar way, it follows that

a
(2)
ξ b

(2)
ξ =

(
a(1) + P̄−αqδa

ξ

)(
b(1) + P̄−αqδb

ξ

)
= a(1)b(1) + P̄−αq

(
a(1)δb

ξ + b(1)δa
ξ + P̄−αqδa

ξδ
b
ξ

)
,

(147)

which implies that the product also maintains the scaling of
the variance as O(P−αq ). Moreover, as the sum and product
of matrices is a composition of sums and products of its
coefficients, the result extends to any two matrices of suitable
dimension.
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C. Error in the inverse

Let us first assume that A
(2)
ξ and A(1) are square matrices

with full rank with probability one, and with coefficients
following (145). We can then write that

(A
(2)
ξ )−1 =

(
A(1) + P̄−αq∆A

ξ

)−1

= (A(1))−1

− P̄−αq (A(1))−1∆A
ξ

(
A(1) + P̄−αq∆A

ξ

)−1

(148)

which is obtained from the Woodbury matrix identity [59].
Hence, the error variance of the inverse is again O(P−αq ).
Once that it is proved that the inverse operation generates
an error with variance O(P−αq ), we extend it for the
Moore–Penrose inverse (pseudo-inverse) (A

(2)
ξ )†. We assume

(as throughout the rest of the document) that each sub-matrix
has maximum rank, i.e.,

rank
(
A

(2)
ξ ∈ CN×M

)
= min(N,M). (149)

Let us assume that A
(2)
ξ is full row-rank matrix, i.e., N ≤M .

Under this assumption, the pseudo-inverse is given by

(A
(2)
ξ )† = (A

(2)
ξ )H

(
A

(2)
ξ (A

(2)
ξ )H

)−1

. (150)

The case in which A
(2)
ξ is full column-rank matrix (N ≥M )

will follow the same steps and thus we omit it. It follows
from (147) that A

(2)
ξ (A

(2)
ξ )H = A(1)(A(1))H + P̄−αq∆eq,

where ∆eq has variance Θ(1). This, together with (148),
implies that(

A
(2)
ξ (A

(2)
ξ )H

)−1

=
(
A(1)(A(1))H

)−1

+ P̄−αq∆′eq, (151)

and, by applying again (147), it holds that

(A
(2)
ξ )† = (A(1))H

(
A(1)(A(1))H

)−1

+ P̄−αq∆
′′

eq, (152)

where ∆′eq and ∆
′′

eq have variance Θ(1). As explained in [53],
under the assumption that X̂ is a full row-rank matrix, any
generalized inverse may be expressed as X̂− = X̂† + P⊥U,
where P⊥ = I− X̂†X̂ is the orthogonal projection onto the
null space of X̂ and U is an arbitrary matrix. Hence, a similar
result could be obtained for a broad set of generalized inverses.

D. Error variance of the difference of precoders

The centralized precoder vi,2 is based on Ĥ(1), i.e., V =
V(Ĥ(1)). The distributed precoder at TX 2 is based on its
own quantized CSIT Ĥ

(2)
q , and thus wi,2 is obtained from

W = V(Ĥ
(2)
q ). Based on the previous results and the definition

of linear precoders, it follows that we can write the distributed
precoder based on the CSIT of TX 2 (Ĥ(2)

q ) as

wi,2 = vi,2 + P̄−αqew, (153)

where E
[
‖ew‖2

]
= O(1). Consequently,

E
[
‖vi,2 −wi,2‖2

]
= E

[
‖vi,2 − (vi,2 + P̄−αqew)‖2

]
= P−αq E

[
‖ew‖2

]
(154)

= O
(
P−αq

)
,

which concludes the proof of (142) and thus of (55). Moreover,
since E[‖x‖] ≤

√
E[‖x‖2], it follows that

E [‖vi,j −wi,j‖] = O
(
P̄−αq

)
, (155)

which concludes the proof of Lemma 5.

E. Proof of Corollary 3

In order to prove that E
[
‖vi −wi‖2

]
= O (P−αq ) for any

i ∈ NK , let us recall that the vector wi − vi can be written as

wi − vi =

[
φi

wi,1̄ − vi,1̄

]
, (156)

where φi (defined in (29) as φi = Ĥ†
ī,1

Ĥī,1̄(vi,1̄ −wi,1̄)) is
the difference at TX 1, and wi,1̄ − vi,1̄ denotes the difference
for the coefficients of all the TXs but TX 1, i.e.,

wi,1̄ − vi,1̄ = [(wi,2 − vi,2)T, . . . , (wi,K − vi,K)T]T.

Let us recall that N1̄ has been defined as N1̄ , NT −N1, and
let us further define GI as

GI ,

[
Ĥ†
ī,1

Ĥī,1̄

IN1̄

]
. (157)

From the definition of φi, we can rewrite (156) as

wi − vi = GI(wi,1̄ − vi,1̄). (158)

Generalizing (153) for any j ∈ {NK\1}, it holds that

wi,j = vi,j + P̄−αqew,j ∀j ∈ {NK\1}, (159)

where E[‖ew,j‖2] = O(1). Then, upon defining ew,1̄ =
[eT

w,2, . . . , eT
w,K ]T, it follows that

E
[
‖wi − vi‖2

]
= E

[
‖GI(wi,1̄ − vi,1̄)‖2

]
= P−αqE

[
‖GIew,1̄‖2

]
= O

(
P−αq

) (160)

since E
[
‖GIew,1̄‖2

]
= O (1), which proves (57). In order to

prove (56), it follows from from E[‖x‖] ≤
√

E[‖x‖2] that

E [‖vi −wi‖] = O
(
P̄−αq

)
, (161)

which concludes the proof of Corollary 3.
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