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Abstract

Starting from a discrete model of a pantographic beam based on beam elements with 6 DOF in 2D space, 2 translational
and 1 rotational for each end node, and proposing an energy quadratic in elongation, shear, bending and torsion
deformation measures, we find by asymptotic homogenization a model of a complete 1D second gradient continuum.
Compared to previous models, the discrete model of the present work includes shear deformation by considering the
beam element’s end nodes relative orientation. The resulting continuum model differs in a stiffness coefficient stemming
from the shear deformation, but it coincides in the limit of shear stiff elements.

1. Introduction

Analyzing structural deformation of materials composed
of discrete sub-elements can be tedious and computation-
ally challenging as many degrees of freedom have to be
considered [1, 2, 3]. If the structure in question has
some form of periodicity, a homogenization procedure
might be applicable to achieve a reduced order contin-
uum model [4, 5, 6, 7, 8, 9]. Microstructures which got
special attention in recent years are pantographic struc-
tures [5, 10, 11, 12] as their continuum equivalents go be-
yond the scope of classic continuum mechanics as they
may show behavior that is well attributed to a depen-
dency on the second derivative of displacement. These
effects become especially (but not exclusively) prevalent
if the beam structural elements are conjoined by perfect
hinges [13]. Under certain boundary conditions, these per-
fect rotational connections can introduce zero energy de-
formation modes [14, 15]. Pantographic structures show
high compliance in experiments and the derived contin-
uum models are suitable predictors [16, 17] while at the
same time due to slender beams and small joints made
by 3D printing [18], damage phenomena have been stud-
ied [19, 20, 21, 22] to extend these models.

One particular pantographic structure is the panto-
graphic beam [16, 23, 4, 24], a series of beam elements
at π

2 angle to each other and hinge joined by e.g. rota-
tional springs along a center line. In previous works [4],
a homogenization has been performed based on a Hencky-
type spring model with extensible and rotational springs.
Through defining an identification of the micro parameters
with macro fields, a variational asymptotic procedure led
to a continuum model with a deformation energy depen-
dent on curvature as well as gradient of stretch. The model
performs well in comparison to the discrete model [25].

The former model and most other models for panto-
graphic structures do not take into account the shear de-
formability of the sub-structural elements in homogeniza-
tion approaches. Discrete shear deformable beam element
models are available [26] and have been applied to beams
and pivots of pantographic sheets [27, 28, 29]. Although,
both this and former models result in a nonlinear beam
model that has an internal energy density with depen-
dency on the curvature and stretch as well as gradient of
stretch, therefore on all second derivatives of displacement.
For numerical treatment of this kind of beam, director
based descriptions [30, 31] or methods aimed at kirchhoff
rods [32, 33] should be extendable.

In this work we start from a discrete model that ex-
tends the Hencky-model from [4] with a shear deformation
measure by distinguishing between the angle of a beam el-
ement’s end node and its tangent direction described in
Section 2. For simplicity, we choose all discrete defor-
mation measures to be linear in either displacement or
angles, respectively, and energies quadratic in these de-
formation measures. The thus formulated discrete model
is presented in Section 2.1. We arrive at a model with
three nodes per unit cell with two displacement and two
rotational degrees of freedom. To reduce the degrees of
freedom, we perform a first condensation in Section 2.2
where through energy minimization the four angles of the
auxiliary points could be expressed by other kinematic de-
scriptors. In Section 3 and subsections the homogenization
procedure is documented. The micro-macro identification
is described in Section 3.1 and followed by the expansion
of kinematic descriptors to decouple them from the in-
ner lengths ε in Section 3.2. Subsequently, we introduce
the stiffness rescaling in Section 3.3 and perform a sec-
ond condensation in Section 3.7. After complete expan-
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sion in terms of ε, a continuum energy density is proposed
in Section 4. A comparison in Section 4.1 to [4] shows a
combined shear and bending stiffness coefficient in place
of only a bending coefficient and an agreement in the limit
of shear stiff beam elements. Due to the similarities of the
resulting homogenized energies no simulations were per-
formed in this work. A detailed analysis in comparison to
this and further discrete models will follow in future work.

2. Discrete Model

The discrete model is based on beam elements whose
configuration is based on the position of its two end nodes
e.g. Pi, Oi and their angles e.g. ψPi , ψOi . The angles are
defined in relation to a straight reference configuration as
seen in Figure 1. We define two types of connections be-
tween two beam elements. First, we can rigidly connect
two of the beam elements and fix their nodal positions and
angle to create a longer beam element. Secondly, we can
connect the positions of two nodes but do not fix their an-
gles. With these rules we can build a pantographic beam
with two families of fibers, one family which is rotated + π2
and the other − π2 with respect to its central line in the
reference configuration. Beams of the same family meet-
ing in a point Pi have a rigid connection while beams from
different families are only connected by displacement but
not rotation. For example ψO+i defines the angle of the
end node of the beam from Pi to Oi with length lPiOi while
ψO−i is the angle of the first node of the beam from Oi to
Pi+1 with length lOiPi+1 (See Figure 2 and 3 for details).
The centerline of the pantographic beam shall be along
the points Pi while Oi and Qi are called auxiliary points in
the following.
The geometric angles φ, introduced in Figure 2, can be
expressed by the law of cosine in terms of the distance
between points l:

cosφPiOi =

(
lPiOi

)2
+

(
lPiPi+1

)2 −
(
lOiPi+1

)2

2lPiOi lPiPi+1
, (1)

cosφOiPi+1 =

(
lOiPi+1

)2
+

(
lPiPi+1

)2 −
(
lPiOi

)2

2lOiPi+1 lPiPi+1
, (2)

cosφPiQi =

(
lPiQi

)2
+

(
lPiPi+1

)2 −
(
lQiPi

)2

2lPiQi lPiPi+1
, (3)

cosφQiPi+1 =

(
lQiPi+1

)2
+

(
lPiPi+1

)2 −
(
lPiQi

)2

2lQiPi+1 lPiPi+1
. (4)

2.1. Discrete Energy
For a pantographic beam with a reference configuration

as in Figure 1 of length L we can define the complete energy
as a sum of the elongation, shear and bending energies of
each beam element and the torsional energy of the springs
between two different fiber families. We define for a beam
element the extensional stiffness ke, the shear stiffness kγ,
the bending stiffness k f and for rotational springs between

two fiber families at one node the torsional stiffness kt. We
then propose the following energy contributions:

Elongation
The energy defined using l as a measure for elongation,

which can be seen as a first order approximation for small
deformations as the true beam length does also depend on
the angles ψ. We propose the elongation energy as

We =
∑

i

WPiOi
e +WOiPi+1

e +WPiQi
e +WQiPi+1

e , (5)

WPiOi
e =

1
2

ke

(
lPiOi − ε

√
2

)2

, (6)

WOiPi+1
e =

1
2

ke

(
lOiPi+1 − ε

√
2

)2

, (7)

WPiQi
e =

1
2

ke

(
lPiQi − ε

√
2

)2

, (8)

WQiPi+1
e =

1
2

ke

(
lQiPi+1 − ε

√
2

)2

. (9)

Shear
We define the shear deformation measure as the sum

of the angles of a beam segment. This measure is the
linearized version for small angles of the deformation mea-
sure for pivots in [29]. Therefore, we conjecture the shear
energy as

Wγ =
∑

i

WPiOi
γ +WOiPi+1

γ +WPiQi
γ +WQiPi+1

γ , (10)

WPiOi
γ =

1
2

kγε2
(
π

4
− ϑi − φPiOi +

1
2

(
ψP+i + ψO+i

))2

, (11)

WPiQi
γ =

1
2

kγε2
(
−π

4
− ϑi + φ

PiQi +
1
2

(
ψP−i + ψQ−i

))2

, (12)

WQiPi+1
γ =

1
2

kγε2
(
π

4
− ϑi − φQiPi+1 +

1
2

(
ψQ+i + ψP+i+1

))2

, (13)

WOiPi+1
γ =

1
2

kγε2
(
−π

4
− ϑi + φ

OiPi+1 +
1
2

(
ψP−i+1 + ψO−i

))2

.

(14)

The angles φ and ϑ correct for rigid rotations from the
perspective of the affected beam as the angles ψ are relative
to the reference configuration.

Bending
Bending deformation is measured as the difference of the

two angles of a beam segment with

W f =
∑

i

WPiOi
f +WOiPi+1

f +WPiQi
f +WQiPi+1

f , (15)

WPiOi
f =

1
2

k f

(
ψO+i − ψP+i

)2
, (16)

WOiPi+1
f =

1
2

k f

(
ψP−i+1 − ψO−i

)2
, (17)
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Figure 1: Section of the pantographic beam showing the two beam families in blue and green. For every center line point Pi there are two
auxiliary points Oi and Qi. The parameter ε gives the distance between two points Pi and Pi+1 in the reference configuration and therefore
serves as a periodicity length.

WPiQi
f =

1
2

k f

(
ψQ−i − ψP−i

)2
, (18)

WQiPi+1
f =

1
2

k f

(
ψP+i+1 − ψQ+i

)2
. (19)

Pivot torsion
The difference of the two angles in one point define the

torsional energy of the connection between the two beam
families. We only consider torsion in the auxiliary points
for better comparison with [24] but an additional term for
the torsion in the center line points could be easily added.

Wt =
∑

i

WOi
t +WQi

t , (20)

WOi
t =

1
2

kt

(
ψO+i − ψO−i

)2
, (21)

WQi
t =

1
2

kt

(
ψQ+i − ψQ−i

)2
. (22)

2.2. First Condensation

Some inner degrees of freedom can be directly removed
by means of energy minimization in the discrete model.
This is the case for the angles of the auxiliary points ψO±i

and ψQ±i . We find that

∂Wtot

∂ψO+i

!
= 0 (23)

⇒ ψO+i =
1

2(4k f + ε2kγ)(4k f + ε2kγ + 8kt)[ (
32k2

f − 2k2
γ

)
ψP+i

+
(
32k f kt − 8kγkt

) (
ψP+i + ψP−i+1

)
+

(
4k f kγ + k2

γ

) (
4ϑi − π + 4φPiOi

)
+ 16kγkt

(
2ϑi + φ

PiOi − φOiPi+1
) ]
. (24)

3. Homogenization Procedure

3.1. Micro-macro Identification
We identify the centerline of the pantographic beam in

the limit for small ε as a 1D continuum with arc length
s ∈ [0, L] and a placement function χ : [0, L] 7→ R2. χ
maps s into the Euclidean plane. In the framework of the
asymptotic expansion in orders of ε neighboring points pi+1
are then estimated through

pi = χ(si) , (25)

pi+1 = χ(si+1) = χ(si) + εχ′(si) +
ε2

2
χ′′(si) + O(ε3) . (26)

We also introduce the macro fields ψP± : [0, L] 7→ [−π, π]
and expansions for the angles at the nodes Pi

ψP±i = ψP± (si) , (27)

ψP±i+1 = ψP± (si) + ε
(
ψP±

)′
(si) + O(ε2) . (28)

Similarly, for the placement angle we define the field ϑ :
[0, L] 7→ [−π, π] with

ϑi = ϑ(si) , (29)
ϑi+1 = ϑ(si) + εϑ′(si) + O(ε2) , (30)

and for the beam lengths lAB : [0, L] 7→ R+ e.g.

lPiOi = lPO(si) , (31)
lOiPi+1 = lOP(si) . (32)

3.2. Expansion of the kinematic descriptors
The angles ψP± may still depend on ε and we therefore

introduce the asymptotic expansions

ψP± (si) = ψP±
0 (si) + εψP±

1 (si) + O(ε2) , (33)
ψP± (si+1) = ψP±

0 (si+1) + εψP±
1 (si+1) , (34)
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(a)

(b)

(c)

Figure 2: Geometric properties shown for a deformed unit cell. The
reference configuration is shown as dotted lines. (a): Deformed
beams and displaced nodes. (b): Distance between nodes l used
as a measure for elongation deformation. (c): Geometric angles φ
and ϑ to determine rigid rotations.

= ψP±
0 (si) + ε

[(
ψP±

0

)′
(si) + ψP±

1 (si)
]
+ O(ε2) . (35)

Similarly, we expand the lengths of the beams with l̃AB :
[0, L] 7→ R to

lPO(si) =
ε
√

2
+ ε2 l̃PO(si) + O(ε3) , (36)

lPQ(si) =
ε
√

2
+ ε2 l̃PQ(si) + O(ε3) , (37)

lOP(si) =
ε
√

2
+ ε2 l̃OP(si) + O(ε3) , (38)

lQP(si) =
ε
√

2
+ ε2 l̃QP(si) + O(ε3) , (39)

and the distance of neighboring nodes

lPiPi+1 = ||pi+1 − pi|| = ||χ(si+1) − χ(si)|| (40)

= ε||χ′(si)|| +
ε2

2
χ′(si) · χ′′(si)
||χ′(si)||

+ O(ε3) (41)

= ερ(si) +
ε2

2
ρ′(si) + O(ε3) , (42)

with ρ(si) = ||χ′(si)|| as the stretch of the centerline.
This results, besides the placement function, in a set

of the kinematic descriptors ψP±
0 , ψP±

1 , l̃PO, l̃PQ, l̃OP, l̃QP

that are independent of ε. Before further identification
between the placement function and these descriptors is
possible, we need to analyze the dependency of the stiffness
coefficients on the size parameter ε to propose a complete
asymptotic expansion of the energy.

3.3. Stiffness rescaling

The stiffnesses kc generally also depend on ε as they
are coupled to the dimensions of the discrete beams. We
therefore propose a rescaling of these stiffnesses with

kc → εαc Kc , (43)

with αc ∈ Z.
We do not claim that there is any general rule for rescal-

ing. However, every rescaling can bring a different contin-
uum energy with additional kinematic conditions.

3.3.1. Rescaling Conjecture
We propose the following heuristic rescaling

ke → ε−3Ke, kγ → ε−3Kγ, k f → ε−1K f , kt → εKt .
(44)

3.4. Expansion of the discrete energy

If we substitute the expansions, rescaling and conden-
sation into the discrete energy, each energy contribution
c ∈ {e, γ, f , t} has the following form

Wc =
∑
β∈Z

εβKcw(β)
c =

∑
β∈Z

εβW (β)
c , (45)

Wtot =
∑
β∈Z

εβW (β)
tot =

∑
β∈Z

∑
c

εβW (β)
c , (46)

where w(β)
c are functions of the kinematic descriptors and

their derivatives but independent of ε. In the continuum
limit the total energy has the form

Wtot = lim
ε→0

Wtot = lim
ε→0

∑
β∈Z

εβW (β)
tot . (47)

For all β < 1 and W (β)
tot , 0 the contribution diverges in

the limit. For β > 1 all contributions vanish in the limit.
Therefore, we get additional kinematic conditions in the
former case.
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Figure 3: Beam angles ψ shown for the two families of beams. There are two angles for every node as there are always two beams. To calculate
the true rotation angle of a beam node with respect to its reference configuration we need all three angles φ, θ and ψ to correct rigid rotations
of the beam.

3.5. Kinematic constraints
The expansion was handled with the computer algebra

software Wolfram Mathematica [34]. We find non-zero di-
verging contributions for β = −1 and β = 0 (see Appendix
A for details). For them to vanish we get constraints for
two kinematic descriptors with

W (−1)
tot

!
= 0 (48)

W (0)
tot

!
= 0 (49)

⇒ ψP+
0 (si) = ϑ(si) + arccos

(
ρ(si)

2

)
− π

4
(50)

⇒ ψP−
0 (si) = ϑ(si) − arccos

(
ρ(si)

2

)
+
π

4
. (51)

3.6. Energy density
After removing all diverging terms, we are left with

Wtot = lim
ε→0

∑
β

εβW (β)
tot = lim

ε→0

∑
i

εW (1)
i,tot =

∫
Ω

wtot(s)ds (52)

where wtot(s) is the macro field energy density of the dis-
crete energy per unit cell length ε with

wtot(si) = W (1)
i,tot . (53)

3.7. Second Condensation
The remaining kinematic descriptors that stem from the

micro kinematics can be identified with the macro kine-
matic descriptors by minimizing the energy density wtot
with respect to l̄AB and ψP±

1 . We find stationary points for

l̄PO = 2
√

2ρ
(−C1(ρ)ρ′ +C2(ρ)ϑ′

)
, (54)

l̄PQ = 2
√

2ρ
(−C1(ρ)ρ′ −C2(ρ)ϑ′

)
, (55)

l̄OP = 2
√

2ρ
(
C1(ρ)ρ′ +C2(ρ)ϑ′

)
, (56)

l̄QP = 2
√

2ρ
(
C1(ρ)ρ′ −C2(ρ)ϑ′

)
, (57)

ψP+
1 = −

1
2
ϑ′ , (58)

ψP−
1 = −

1
2
ϑ′ (59)

with

C1(ρ) =
K fγ

8
(
2 − ρ2) K fγ + ρ2Ke

, (60)

C2(ρ) =

√
2 − ρ2K fγ

8ρ2K fγ +
(
2 − ρ2) Ke

, (61)

K fγ =
K f Kγ

4K f + Kγ
. (62)

4. Macro Model

In the continuum limit for ε→ 0, we identify the discrete
variables with their macro fields and find the total internal
energy of the pantographic beam with all condensations
and kinematic conditions in the form

Wtot =

L∫
0

f (ρ)
(
ρ′

)2
+ g(ρ)

(
ϑ′

)2
+ h(ρ) ds , (63)

with

f (ρ) = C1(ρ)
ρKe√

2
(
2 − ρ2) , (64)

g(ρ) = C2(ρ)

(
2 − ρ2

)
Ke

√
2ρ

√
2 − ρ2

, (65)

h(ρ) = Kt

[
π

2
− 2 arccos

(
ρ
√

2

)]2

. (66)

4.1. Limit Case
In the limit for shear stiff beams with Kγ → ∞ we find

K fγ
Kγ→∞
= K f , (67)

f (ρ)
Kγ→∞
=

2ρ2K f Ke(
2 − ρ2) [8 (

2 − ρ2) K f + ρ2Ke

] , (68)
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Figure 4: Ratio of combined shear and bending stiffness to bending
stiffness with changing width to length ratio of the beam elements
for stiffness coefficients as in Equations 79 and 80. The relevance of
the shear stiffness decreases with slenderness.

g(ρ)
Kγ→∞
=

2
(
2 − ρ2

)
K f Ke

8ρ2K f +
(
2 − ρ2) Ke

. (69)

We find in [24] Equation 23:

f ∗(ρ) =
ρ2K∗e K∗f

(2 − ρ2)
[
4(2 − ρ2)K∗f + ρ

2K∗e
] , (70)

g∗(ρ) =

(
ρ2 − 2

)
K∗e K∗f

ρ2
(
K∗e − 4K∗f

)
− 2K∗e

, (71)

h∗(ρ) = K∗t

[
π

2
− 2 arccos

(
ρ
√

2

)]2

(72)

where for agreement with the micro model, we suggest

K∗e = Ke , (73)
K∗f = 2K f , (74)
K∗t = Kt , (75)

and in comparison we get

f (ρ)
Kγ→∞
= f ∗(ρ) , (76)

g(ρ)
Kγ→∞
= g∗(ρ) , (77)

h(ρ) = h∗(ρ) . (78)

4.2. Relevance of shear deformation
Assuming some simple stiffness coefficients based on a

square cross section A = a2 we find for bending and shear
stiffness

kγ =
EAγ

l
⇒ Kγ ∝ a2ε2 , (79)

k f =
EJ f

l
⇒ K f ∝ a4 (80)

with Young’s modulus E, effective shear cross section Aγ

and second moment of area J f . From this, we find a rela-
tion between bending and shear stiffness to be

K f

Kγ
∝

(a
ε

)2
∝

(a
l

)2
. (81)

As can be seen in Figure 4, the shear stiffness becomes
relevant for beams with smaller length to width ratios.

5. Discussion and Outlook

A pantographic beam consisting of discrete elements ac-
counting for elongation, bending, shear and torsional de-
formation has been described. These discrete beam ele-
ments consisted of two nodes with deformation measures
based on their relative displacement and relative orienta-
tion. Through two condensation steps and necessary kine-
matic constraints an 1D homogenized model of the discrete
system’s proposed quadratic energy could be found by
means of asymptotic expansion and Piola’s micro-macro
identification. The resulting energy density has dependen-
cies on the stretch and curvature gradient. The bending
and shear coefficients from the discrete model can be re-
placed by one combined coefficient. In the limit for shear
stiff beams, the model agrees with an earlier model [4, 24].

A comparison to simulations of the discrete model will
follow in future research.

We believe that this approach can pave to the way to-
wards more systematic modeling of metamaterials with
beam structures and for structures based on pantographics
beams. As the deformation measures are directly linked
to discrete 3D beam elements [26, 29], the modeling of
materials in 3D space, especially pantographic beams, is
an important extension of this approach. This will also
enable an advancement of synthesis from bi-pantographic
sheets [24] to bi-pantographic blocks based on 3D panto-
graphic structures [35, 36].
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Appendix A. Diverging energy contributions

From the expansion in Section 3.4 there are contribu-
tions that scale with ε−1 and therefore diverge in the limit
of small ε from shear and bending energy:

W (−1)
tot = W (−1)

γ +W (−1)
f , (A.1)
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Solutions for ψP−
0 , ψP+

0 ∈ R then bring the constraints
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There are also contributions for W (0)
γ and W (0)

f which are
lengthy differential equations of ϑ(s), ρ(s), ψP±

0 (s) and
ψP±

1 (s) but with Equations A.5 and A.7 they fulfill

W (0)
γ = 0 , (A.8)

W (0)
f = 0 . (A.9)
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