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Complete 1D Continuum Model for a Pantographic Beam by Asymptotic Homogenization from Discrete Elements with Shear Deformation Measure

Starting from a discrete model of a pantographic beam based on beam elements with 6 DOF in 2D space, 2 translational and 1 rotational for each end node, and proposing an energy quadratic in elongation, shear, bending and torsion deformation measures, we find by asymptotic homogenization a model of a complete 1D second gradient continuum. Compared to previous models, the discrete model of the present work includes shear deformation by considering the beam element's end nodes relative orientation. The resulting continuum model differs in a stiffness coefficient stemming from the shear deformation, but it coincides in the limit of shear stiff elements.

Introduction

Analyzing structural deformation of materials composed of discrete sub-elements can be tedious and computationally challenging as many degrees of freedom have to be considered [START_REF] Alibert | Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients[END_REF][START_REF] Turco | Hencky-type discrete model for pantographic structures: Numerical comparison with second gradient continuum models[END_REF][START_REF] Turco | Large deformations induced in planar pantographic sheets by loads applied on fibers: Experimental validation of a discrete Lagrangian model[END_REF]. If the structure in question has some form of periodicity, a homogenization procedure might be applicable to achieve a reduced order continuum model [START_REF] Barchiesi | Pantographic beam: A complete second gradient 1D-continuum in plane[END_REF][START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium[END_REF][START_REF] Giorgio | Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis[END_REF][START_REF] Abdoul-Anziz | Strain gradient and generalized continua obtained by homogenizing frame lattices[END_REF][START_REF] Ganghoffer | A variational approach of homogenization of heterogeneous materials towards second gradient continua[END_REF][START_REF] Fedele | Approach à la Piola for the equilibrium problem of bodies with second gradient energies. Part II: Variational derivation of second gradient equations and their transport[END_REF]. Microstructures which got special attention in recent years are pantographic structures [START_REF] Dell'isola | Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium[END_REF][START_REF] Dell'isola | Pantographic metamaterials: An example of mathematically driven design and of its technological challenges[END_REF][START_REF] Dell'isola | Advances in Pantographic Structures: Design, Manufacturing, Models, Experiments and Image Analyses[END_REF][START_REF] Ciallella | Unusual deformation patterns in a second-gradient cylindrical lattice shell: Numerical experiments[END_REF] as their continuum equivalents go beyond the scope of classic continuum mechanics as they may show behavior that is well attributed to a dependency on the second derivative of displacement. These effects become especially (but not exclusively) prevalent if the beam structural elements are conjoined by perfect hinges [START_REF] Spagnuolo | Phenomenological aspects of quasi-perfect pivots in metallic pantographic structures[END_REF]. Under certain boundary conditions, these perfect rotational connections can introduce zero energy deformation modes [START_REF] Eremeyev | Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions[END_REF][START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF]. Pantographic structures show high compliance in experiments and the derived continuum models are suitable predictors [START_REF] Turco | Quantitative analysis of deformation mechanisms in pantographic substructures: Experiments and modeling[END_REF][START_REF] Yildizdag | Three-point bending test of pantographic blocks: Numerical and experimental investigation[END_REF] while at the same time due to slender beams and small joints made by 3D printing [START_REF] Aydin | Investigating infill density and pattern effects in additive manufacturing by characterizing metamaterials along the strain-gradient theory[END_REF], damage phenomena have been studied [START_REF] Ciallella | Shear rupture mechanism and dissipation phenomena in bias-extension test of pantographic sheets: Numerical modeling and experiments[END_REF][START_REF] Valle | The effect of local random defects on the response of pantographic sheets[END_REF][START_REF] Spagnuolo | Out-of-plane deformation reduction via inelastic hinges in fibrous metamaterials and simplified damage approach[END_REF][START_REF] Yildizdag | Modeling and numerical investigation of damage behavior in pantographic layers using a hemivariational formulation adapted for a Hencky-type discrete model[END_REF] to extend these models.

One particular pantographic structure is the pantographic beam [START_REF] Turco | Quantitative analysis of deformation mechanisms in pantographic substructures: Experiments and modeling[END_REF][START_REF] Barchiesi | A 1D Continuum Model for Beams with Pantographic Microstructure: Asymptotic Micro-Macro Identification and Numerical Results[END_REF][START_REF] Barchiesi | Pantographic beam: A complete second gradient 1D-continuum in plane[END_REF][START_REF] Barchiesi | Large in-plane elastic deformations of bi-pantographic fabrics: Asymptotic homogenization and experimental validation[END_REF], a series of beam elements at π 2 angle to each other and hinge joined by e.g. rotational springs along a center line. In previous works [START_REF] Barchiesi | Pantographic beam: A complete second gradient 1D-continuum in plane[END_REF], a homogenization has been performed based on a Henckytype spring model with extensible and rotational springs. Through defining an identification of the micro parameters with macro fields, a variational asymptotic procedure led to a continuum model with a deformation energy dependent on curvature as well as gradient of stretch. The model performs well in comparison to the discrete model [START_REF] Turco | Equilibrium paths of Hencky pantographic beams in a three-point bending problem[END_REF].

The former model and most other models for pantographic structures do not take into account the shear deformability of the sub-structural elements in homogenization approaches. Discrete shear deformable beam element models are available [START_REF] Turco | A Lagrangian Hencky-type non-linear model suitable for meta-materials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory[END_REF] and have been applied to beams and pivots of pantographic sheets [START_REF] Scerrato | On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets[END_REF][START_REF] Giorgio | A twodimensional continuum model of pantographic sheets moving in a 3D space and accounting for the offset and relative rotations of the fibers[END_REF][START_REF] Giorgio | Two layers pantographs: A 2D continuum model accounting for the beams' offset and relative rotations as averages in SO(3) Lie groups[END_REF]. Although, both this and former models result in a nonlinear beam model that has an internal energy density with dependency on the curvature and stretch as well as gradient of stretch, therefore on all second derivatives of displacement. For numerical treatment of this kind of beam, director based descriptions [START_REF] Eugster | Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates[END_REF][START_REF] Harsch | Finite element formulations for constrained spatial nonlinear beam theories[END_REF] or methods aimed at kirchhoff rods [START_REF] Greco | An iso-parametric G1 -conforming finite element for the nonlinear analysis of Kirchhoff rod. Part I: The 2D case[END_REF][START_REF] Giorgio | A discrete formulation of Kirchhoff rods in largemotion dynamics[END_REF] should be extendable.

In this work we start from a discrete model that extends the Hencky-model from [START_REF] Barchiesi | Pantographic beam: A complete second gradient 1D-continuum in plane[END_REF] with a shear deformation measure by distinguishing between the angle of a beam element's end node and its tangent direction described in Section 2. For simplicity, we choose all discrete deformation measures to be linear in either displacement or angles, respectively, and energies quadratic in these deformation measures. The thus formulated discrete model is presented in Section 2.1. We arrive at a model with three nodes per unit cell with two displacement and two rotational degrees of freedom. To reduce the degrees of freedom, we perform a first condensation in Section 2.2 where through energy minimization the four angles of the auxiliary points could be expressed by other kinematic descriptors. In Section 3 and subsections the homogenization procedure is documented. The micro-macro identification is described in Section 3.1 and followed by the expansion of kinematic descriptors to decouple them from the inner lengths ε in Section 3.2. Subsequently, we introduce the stiffness rescaling in Section 3.3 and perform a second condensation in Section 3.7. After complete expan-sion in terms of ε, a continuum energy density is proposed in Section 4. A comparison in Section 4.1 to [START_REF] Barchiesi | Pantographic beam: A complete second gradient 1D-continuum in plane[END_REF] shows a combined shear and bending stiffness coefficient in place of only a bending coefficient and an agreement in the limit of shear stiff beam elements. Due to the similarities of the resulting homogenized energies no simulations were performed in this work. A detailed analysis in comparison to this and further discrete models will follow in future work.

Discrete Model

The discrete model is based on beam elements whose configuration is based on the position of its two end nodes e.g. P i , O i and their angles e.g. ψ P i , ψ O i . The angles are defined in relation to a straight reference configuration as seen in Figure 1. We define two types of connections between two beam elements. First, we can rigidly connect two of the beam elements and fix their nodal positions and angle to create a longer beam element. Secondly, we can connect the positions of two nodes but do not fix their angles. With these rules we can build a pantographic beam with two families of fibers, one family which is rotated + π 2 and the otherπ 2 with respect to its central line in the reference configuration. Beams of the same family meeting in a point P i have a rigid connection while beams from different families are only connected by displacement but not rotation. For example ψ O + i defines the angle of the end node of the beam from P i to O i with length l P i O i while ψ O - i is the angle of the first node of the beam from O i to P i+1 with length l O i P i+1 (See Figure 2 and 3 for details). The centerline of the pantographic beam shall be along the points P i while O i and Q i are called auxiliary points in the following. The geometric angles φ, introduced in Figure 2, can be expressed by the law of cosine in terms of the distance between points l:

cos φ P i O i = ( l P i O i ) 2 + ( l P i P i+1 ) 2 - ( l O i P i+1 ) 2 2l P i O i l P i P i+1 , (1) 
cos φ O i P i+1 = ( l O i P i+1 ) 2 + ( l P i P i+1 ) 2 - ( l P i O i ) 2 2l O i P i+1 l P i P i+1 , ( 2 
)
cos φ P i Q i = ( l P i Q i ) 2 + ( l P i P i+1 ) 2 - ( l Q i P i ) 2 2l P i Q i l P i P i+1 , ( 3 
)
cos φ Q i P i+1 = ( l Q i P i+1 ) 2 + ( l P i P i+1 ) 2 - ( l P i Q i ) 2 2l Q i P i+1 l P i P i+1 . (4) 

Discrete Energy

For a pantographic beam with a reference configuration as in Figure 1 of length L we can define the complete energy as a sum of the elongation, shear and bending energies of each beam element and the torsional energy of the springs between two different fiber families. We define for a beam element the extensional stiffness k e , the shear stiffness k γ , the bending stiffness k f and for rotational springs between two fiber families at one node the torsional stiffness k t . We then propose the following energy contributions:

Elongation

The energy defined using l as a measure for elongation, which can be seen as a first order approximation for small deformations as the true beam length does also depend on the angles ψ. We propose the elongation energy as

W e = ∑ i W P i O i e + W O i P i+1 e + W P i Q i e + W Q i P i+1 e , (5) 
W P i O i e = 1 2 k e ( l P i O i - ε √ 2 ) 2 , ( 6 
)
W O i P i+1 e = 1 2 k e ( l O i P i+1 - ε √ 2 ) 2 , ( 7 
)
W P i Q i e = 1 2 k e ( l P i Q i - ε √ 2 ) 2 , ( 8 
)
W Q i P i+1 e = 1 2 k e ( l Q i P i+1 - ε √ 2 ) 2 . ( 9 
)

Shear

We define the shear deformation measure as the sum of the angles of a beam segment. This measure is the linearized version for small angles of the deformation measure for pivots in [START_REF] Giorgio | Two layers pantographs: A 2D continuum model accounting for the beams' offset and relative rotations as averages in SO(3) Lie groups[END_REF]. Therefore, we conjecture the shear energy as

W γ = ∑ i W P i O i γ + W O i P i+1 γ + W P i Q i γ + W Q i P i+1 γ , ( 10 
)
W P i O i γ = 1 2 k γ ε 2 ( π 4 -ϑ i -φ P i O i + 1 2 
( ψ P + i + ψ O + i ) ) 2 , (11) 
W P i Q i γ = 1 2 k γ ε 2 ( - π 4 -ϑ i + φ P i Q i + 1 2 
( ψ P - i + ψ Q - i ) ) 2 , (12) 
W Q i P i+1 γ = 1 2 k γ ε 2 ( π 4 -ϑ i -φ Q i P i+1 + 1 2 ( ψ Q + i + ψ P + i+1 ) ) 2 , (13) 
W O i P i+1 γ = 1 2 k γ ε 2 ( - π 4 -ϑ i + φ O i P i+1 + 1 2 
( ψ P - i+1 + ψ O - i ) ) 2 . ( 14 
)
The angles φ and ϑ correct for rigid rotations from the perspective of the affected beam as the angles ψ are relative to the reference configuration.

Bending

Bending deformation is measured as the difference of the two angles of a beam segment with

W f = ∑ i W P i O i f + W O i P i+1 f + W P i Q i f + W Q i P i+1 f , (15) 
W P i O i f = 1 2 k f ( ψ O + i -ψ P + i ) 2 , (16) 
W O i P i+1 f = 1 2 k f ( ψ P - i+1 -ψ O - i ) 2 , ( 17 
)
Figure 1: Section of the pantographic beam showing the two beam families in blue and green. For every center line point P i there are two auxiliary points O i and Q i . The parameter ε gives the distance between two points P i and P i+1 in the reference configuration and therefore serves as a periodicity length.

W P i Q i f = 1 2 k f ( ψ Q - i -ψ P - i ) 2 , ( 18 
)
W Q i P i+1 f = 1 2 k f ( ψ P + i+1 -ψ Q + i ) 2 . ( 19 
)

Pivot torsion

The difference of the two angles in one point define the torsional energy of the connection between the two beam families. We only consider torsion in the auxiliary points for better comparison with [START_REF] Barchiesi | Large in-plane elastic deformations of bi-pantographic fabrics: Asymptotic homogenization and experimental validation[END_REF] but an additional term for the torsion in the center line points could be easily added.

W t = ∑ i W O i t + W Q i t , (20) 
W O i t = 1 2 k t ( ψ O + i -ψ O - i ) 2 , (21) 
W Q i t = 1 2 k t ( ψ Q + i -ψ Q - i ) 2 . (22) 

First Condensation

Some inner degrees of freedom can be directly removed by means of energy minimization in the discrete model. This is the case for the angles of the auxiliary points ψ O ± i and ψ Q ± i . We find that

∂W tot ∂ψ O + i ! = 0 (23) 
⇒ ψ O + i = 1 2(4k f + ε 2 k γ )(4k f + ε 2 k γ + 8k t ) [ ( 32k 2 f -2k 2 γ ) ψ P + i + ( 32k f k t -8k γ k t ) ( ψ P + i + ψ P - i+1 ) + ( 4k f k γ + k 2 γ ) ( 4ϑ i -π + 4φ P i O i ) + 16k γ k t ( 2ϑ i + φ P i O i -φ O i P i+1 ) ] . ( 24 
)
3. Homogenization Procedure

Micro-macro Identification

We identify the centerline of the pantographic beam in the limit for small ε as a 1D continuum with arc length s ∈ [0, L] and a placement function χ : [0, L] → R 2 . χ maps s into the Euclidean plane. In the framework of the asymptotic expansion in orders of ε neighboring points p i+1 are then estimated through

p i = χ(s i ) , (25) 
p i+1 = χ(s i+1 ) = χ(s i ) + εχ (s i ) + ε 2 2 χ (s i ) + O(ε 3 ) . ( 26 
)
We also introduce the macro fields ψ P ± : [0, L] → [-π, π] and expansions for the angles at the nodes P i

ψ P ± i = ψ P ± (s i ) , (27) 
ψ P ± i+1 = ψ P ± (s i ) + ε ( ψ P ± ) (s i ) + O(ε 2 ) . (28) 
Similarly, for the placement angle we define the field ϑ :

[0, L] → [-π, π] with ϑ i = ϑ(s i ) , (29) 
ϑ i+1 = ϑ(s i ) + εϑ (s i ) + O(ε 2 ) , (30) 
and for the beam lengths l AB : [0, L] → R + e.g.

l P i O i = l PO (s i ) , (31) 
l O i P i+1 = l OP (s i ) . (32) 

Expansion of the kinematic descriptors

The angles ψ P ± may still depend on ε and we therefore introduce the asymptotic expansions = ψ P ± 0 (s i ) + ε

ψ P ± (s i ) = ψ P ± 0 (s i ) + εψ P ± 1 (s i ) + O(ε 2 ) , (33) 
ψ P ± (s i+1 ) = ψ P ± 0 (s i+1 ) + εψ P ± 1 (s i+1 ) , (34) 
[( ψ P ± 0 ) (s i ) + ψ P ± 1 (s i ) ] + O(ε 2 ) . ( 35 
)
Similarly, we expand the lengths of the beams with lAB :

[0, L] → R to l PO (s i ) = ε √ 2 + ε 2 lPO (s i ) + O(ε 3 ) , ( 36 
)
l PQ (s i ) = ε √ 2 + ε 2 lPQ (s i ) + O(ε 3 ) , ( 37 
)
l OP (s i ) = ε √ 2 + ε 2 lOP (s i ) + O(ε 3 ) , ( 38 
)
l QP (s i ) = ε √ 2 + ε 2 lQP (s i ) + O(ε 3 ) , ( 39 
)
and the distance of neighboring nodes

l P i P i+1 = || p i+1 -p i || = ||χ(s i+1 ) -χ(s i )|| (40) = ε||χ (s i )|| + ε 2 2 χ (s i ) • χ (s i ) ||χ (s i )|| + O(ε 3 ) (41) = ερ(s i ) + ε 2 2 ρ (s i ) + O(ε 3 ) , ( 42 
)
with ρ(s i ) = ||χ (s i )|| as the stretch of the centerline. This results, besides the placement function, in a set of the kinematic descriptors ψ P ± 0 , ψ P ± 1 , lPO , lPQ , lOP , lQP that are independent of ε. Before further identification between the placement function and these descriptors is possible, we need to analyze the dependency of the stiffness coefficients on the size parameter ε to propose a complete asymptotic expansion of the energy.

Stiffness rescaling

The stiffnesses k c generally also depend on ε as they are coupled to the dimensions of the discrete beams. We therefore propose a rescaling of these stiffnesses with

k c → ε α c K c , ( 43 
)
with α c ∈ Z.

We do not claim that there is any general rule for rescaling. However, every rescaling can bring a different continuum energy with additional kinematic conditions.

Rescaling Conjecture

We propose the following heuristic rescaling

k e → ε -3 K e , k γ → ε -3 K γ , k f → ε -1 K f , k t → εK t . (44) 

Expansion of the discrete energy

If we substitute the expansions, rescaling and condensation into the discrete energy, each energy contribution c ∈ {e, γ, f, t} has the following form

W c = ∑ β∈Z ε β K c w (β) c = ∑ β∈Z ε β W (β) c , (45) 
W tot = ∑ β∈Z ε β W (β) tot = ∑ β∈Z ∑ c ε β W (β) c , (46) 
where w (β) c are functions of the kinematic descriptors and their derivatives but independent of ε. In the continuum limit the total energy has the form

W tot = lim ε→0 W tot = lim ε→0 ∑ β∈Z ε β W (β) tot . (47) 
For all β < 1 and W (β) tot 0 the contribution diverges in the limit. For β > 1 all contributions vanish in the limit. Therefore, we get additional kinematic conditions in the former case. There are two angles for every node as there are always two beams. To calculate the true rotation angle of a beam node with respect to its reference configuration we need all three angles φ, θ and ψ to correct rigid rotations of the beam.

Kinematic constraints

The expansion was handled with the computer algebra software Wolfram Mathematica [34]. We find non-zero diverging contributions for β = -1 and β = 0 (see Appendix A for details). For them to vanish we get constraints for two kinematic descriptors with

W (-1) tot ! = 0 (48) 
W (0) tot ! = 0 (49) 
⇒ ψ P + 0 (s i ) = ϑ(s i ) + arccos ( ρ(s i ) 2 ) - π 4 (50) 
⇒ ψ P - 0 (s i ) = ϑ(s i ) -arccos ( ρ(s i ) 2 ) + π 4 . (51) 

Energy density

After removing all diverging terms, we are left with

W tot = lim ε→0 ∑ β ε β W (β) tot = lim ε→0 ∑ i εW (1) i,tot = ∫ Ω w tot (s)ds (52)
where w tot (s) is the macro field energy density of the discrete energy per unit cell length ε with

w tot (s i ) = W (1) i,tot . (53) 

Second Condensation

The remaining kinematic descriptors that stem from the micro kinematics can be identified with the macro kinematic descriptors by minimizing the energy density w tot with respect to lAB and ψ P ± 1 . We find stationary points for

lPO = 2 √ 2ρ ( -C 1 (ρ)ρ + C 2 (ρ)ϑ ) , (54) 
lPQ = 2 √ 2ρ ( -C 1 (ρ)ρ -C 2 (ρ)ϑ ) , (55) 
lOP = 2 √ 2ρ ( C 1 (ρ)ρ + C 2 (ρ)ϑ ) , (56) 
lQP = 2 √ 2ρ ( C 1 (ρ)ρ -C 2 (ρ)ϑ ) , (57) 
ψ P + 1 = - 1 2 ϑ , (58) 
ψ P - 1 = - 1 2 ϑ ( 59 
)
with

C 1 (ρ) = K f γ 8 ( 2 -ρ 2 ) K f γ + ρ 2 K e , (60) 
C 2 (ρ) = √ 2 -ρ 2 K f γ 8ρ 2 K f γ + ( 2 -ρ 2 ) K e , (61) 
K f γ = K f K γ 4K f + K γ . (62) 

Macro Model

In the continuum limit for ε → 0, we identify the discrete variables with their macro fields and find the total internal energy of the pantographic beam with all condensations and kinematic conditions in the form

W tot = L ∫ 0 f (ρ) ( ρ ) 2 + g(ρ) ( ϑ ) 2 + h(ρ) ds , (63) 
with

f (ρ) = C 1 (ρ) ρK e √ 2 ( 2 -ρ 2 ) , (64) 
g(ρ) = C 2 (ρ) ( 2 -ρ 2 ) K e √ 2ρ √ 2 -ρ 2 , ( 65 
)
h(ρ) = K t [ π 2 -2 arccos ( ρ √ 2 
)] 2 .
(66)

Limit Case

In the limit for shear stiff beams with K γ → ∞ we find 

K f γ K γ →∞ = K f , (67) 
f (ρ) K γ →∞ = 2ρ 2 K f K e ( 2 -ρ 2 ) [ 8 ( 2 -ρ 2 ) K f + ρ 2 K e ] , (68) 

g(ρ)

K γ →∞ = 2 ( 2 -ρ 2 ) K f K e 8ρ 2 K f + ( 2 -ρ 2 ) K e . (69) 
We find in [START_REF] Barchiesi | Large in-plane elastic deformations of bi-pantographic fabrics: Asymptotic homogenization and experimental validation[END_REF] Equation 23:

f * (ρ) = ρ 2 K * e K * f (2 -ρ 2 ) [ 4(2 -ρ 2 )K * f + ρ 2 K * e ] , (70) g 
* (ρ) = ( ρ 2 -2 ) K * e K * f ρ 2 ( K * e -4K * f ) -2K * e , (71) 
h * (ρ) = K * t [ π 2 -2 arccos ( ρ √ 2 
)] 2 (72) 
where for agreement with the micro model, we suggest

K * e = K e , (73) 
K * f = 2K f , (74) 
K * t = K t , (75) 
and in comparison we get

f (ρ) K γ →∞ = f * (ρ) , (76) 
g(ρ) K γ →∞ = g * (ρ) , (77) 
h(ρ) = h * (ρ) . (78) 

Relevance of shear deformation

Assuming some simple stiffness coefficients based on a square cross section A = a 2 we find for bending and shear stiffness

k γ = EA γ l ⇒ K γ ∝ a 2 ε 2 , ( 79 
)
k f = EJ f l ⇒ K f ∝ a 4 (80) 
with Young's modulus E, effective shear cross section A γ and second moment of area J f . From this, we find a relation between bending and shear stiffness to be

K f K γ ∝ ( a ε ) 2 ∝ ( a l ) 2 . ( 81 
)
As can be seen in Figure 4, the shear stiffness becomes relevant for beams with smaller length to width ratios.

Discussion and Outlook

A pantographic beam consisting of discrete elements accounting for elongation, bending, shear and torsional deformation has been described. These discrete beam elements consisted of two nodes with deformation measures based on their relative displacement and relative orientation. Through two condensation steps and necessary kinematic constraints an 1D homogenized model of the discrete system's proposed quadratic energy could be found by means of asymptotic expansion and Piola's micro-macro identification. The resulting energy density has dependencies on the stretch and curvature gradient. The bending and shear coefficients from the discrete model can be replaced by one combined coefficient. In the limit for shear stiff beams, the model agrees with an earlier model [START_REF] Barchiesi | Pantographic beam: A complete second gradient 1D-continuum in plane[END_REF][START_REF] Barchiesi | Large in-plane elastic deformations of bi-pantographic fabrics: Asymptotic homogenization and experimental validation[END_REF].

A comparison to simulations of the discrete model will follow in future research.

We believe that this approach can pave to the way towards more systematic modeling of metamaterials with beam structures and for structures based on pantographics beams. As the deformation measures are directly linked to discrete 3D beam elements [START_REF] Turco | A Lagrangian Hencky-type non-linear model suitable for meta-materials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory[END_REF][START_REF] Giorgio | Two layers pantographs: A 2D continuum model accounting for the beams' offset and relative rotations as averages in SO(3) Lie groups[END_REF], the modeling of materials in 3D space, especially pantographic beams, is an important extension of this approach. This will also enable an advancement of synthesis from bi-pantographic sheets [START_REF] Barchiesi | Large in-plane elastic deformations of bi-pantographic fabrics: Asymptotic homogenization and experimental validation[END_REF] to bi-pantographic blocks based on 3D pantographic structures [START_REF] Stilz | A 3D extension of pantographic geometries to obtain metamaterial with semi-auxetic properties[END_REF][START_REF] Stilz | Continuum models for pantographic blocks with second gradient energies which are incomplete[END_REF].
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Figure 2 :

 2 Figure 2: Geometric properties shown for a deformed unit cell. The reference configuration is shown as dotted lines. (a): Deformed beams and displaced nodes. (b): Distance between nodes l used as a measure for elongation deformation. (c): Geometric angles φ and ϑ to determine rigid rotations.

Figure 3 :

 3 Figure 3: Beam angles ψ shown for the two families of beams. There are two angles for every node as there are always two beams. To calculate the true rotation angle of a beam node with respect to its reference configuration we need all three angles φ, θ and ψ to correct rigid rotations of the beam.

Figure 4 :

 4 Figure 4: Ratio of combined shear and bending stiffness to bending stiffness with changing width to length ratio of the beam elements for stiffness coefficients as in Equations 79 and 80. The relevance of the shear stiffness decreases with slenderness.
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Appendix A. Diverging energy contributions

From the expansion in Section 3.4 there are contributions that scale with ε -1 and therefore diverge in the limit of small ε from shear and bending energy:

Solutions for ψ P - 0 , ψ P + 0 ∈ R then bring the constraints

) -π 4 .

(A.7)

There are also contributions for W (0) γ and W (0) f which are lengthy differential equations of ϑ(s), ρ(s), ψ P ± 0 (s) and ψ P ± 1 (s) but with Equations A.5 and A.7 they fulfill W (0) γ = 0 , (A.8)