
HAL Id: hal-04138796
https://hal.science/hal-04138796

Submitted on 23 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reducing computation time in the R-package ’BayLum’
Frederik Baumgarten, Anne Philippe, Guérin Guillaume, Sebastian Kreutzer

To cite this version:
Frederik Baumgarten, Anne Philippe, Guérin Guillaume, Sebastian Kreutzer. Reducing computation
time in the R-package ’BayLum’. Ancient TL, 2023, 41 (1), pp.1-4. �hal-04138796�

https://hal.science/hal-04138796
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Baumgarten, Ancient TL, Vol. 41, No. 1, 2023

Reducing computation time in the R-package ‘BayLum’

Frederik Baumgarten1∗ , Anne Philippe2 , Guillaume Guérin3 , Sebastian Kreutzer4,5

1 Department of Physics, Technical University of Denmark, DTU Risø Campus, Denmark
2 Laboratoire de Mathématiques Jean Leray, Université de Nantes, 2 rue de la Houssinière,

BP 92208 44322 Nantes Cedex 3, France
3 Université de Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France

4 Institute of Geography, Ruprecht-Karl University of Heidelberg, 69120 Heidelberg, Germany
5 Archéosciences Bordeaux, UMR 6034, CNRS-Université Bordeaux Montaigne, Pessac, France

∗Corresponding Author: fhaba@dtu.dk

Received: April 21, 2023; in final form: June 13, 2023

Abstract
‘BayLum’ is an R-package that facilitates the
application of Bayesian models to the field of
OSL dating. Here we present two recent feature
updates to ‘BayLum’, significantly reducing
computation time and improving general use.
The first feature allows users to parallelize the
computations involved in the MCMC sampling
of values, while the second introduces the
ability to extend a ‘BayLum’ model, which
has run to completion without converging.
All updates are automatically available with
‘BayLum’ v0.3.1.

Keywords: Age model, Chronology, MCMC
algorithm, Luminescence dating, OSL

1. Introduction
‘BayLum’ is an R – package (R Core Team, 2022) that

gives users the tools to easily apply the Bayesian models
presented in Combès et al. (2015) and Combès & Philippe
(2017) to luminescence dating data. See, for example, the
work of Heydari et al. (2020), where an OSL chronology is
provided for the paleolithic site of Mirak, Iran, using ‘Bay-
Lum’. In this work, they showed that the age uncertainty can
be reduced significantly by imposing stratigraphic order – a
feature of ‘BayLum’. Since the introduction of ‘BayLum’
(Philippe et al., 2019), ‘BayLum’ has grown by drawing re-
sources from the ever-developing R-landscape around it. The

latest iteration of ‘BayLum’ (v0.3.1) (Christophe et al., 2023)
now employs `runjags' (Denwood, 2016) as the R to JAGS
(Plummer, 2003) facilitator, which has made possible two
key features of ‘runjags’ to be used inside ‘BayLum’: (i)
MCMC-sampling parallelization and (ii) the ability to extend
a model (drawing additional MCMC samples after a model
has already run to completion). This paper will highlight
these two new features of ‘BayLum’ and show examples of
how to use them.

2. Problem: Stationary distributions require
long run times

The Bayesian models produced with ‘BayLum’ infer pa-
rameter estimates (such as equivalent dose and age) from
marginal posterior distributions of these parameters. This is
to say that ‘BayLum’ takes the output of the Bayesian ap-
proach, a posterior distribution, and evaluates the dimensions
of individual variables. ‘BayLum’ constructs these distri-
butions via Markov Chain Monte Carlo sampling. The re-
sult of the MCMC sampling is a chain of values, each link
consisting of a combination of values from all parameters in
the Bayesian model. A distribution can then be constructed
for each parameter, given its value in each link. To let the
MCMC converge on the solution, we skip a number of the
first iterations (burn-in phase) and only then begin construct-
ing the distributions. To be confident in the results, the dis-
tributions must be stationary – that is, the location and shape
of each distribution must not change if we draw additional
samples. ‘BayLum’ assesses if distributions are stationary
and independent of initialization of the MCMC by construct-

1

licensed under CC BY 4.0

https://orcid.org/0000-0002-4374-5948
https://orcid.org/0000-0002-5331-5087
https://orcid.org/0000-0001-6298-5579
https://orcid.org/0000-0002-0734-2199

Baumgarten, Ancient TL, Vol. 41, No. 1, 2023

ing multiple chains instead of one. If the distributions from
each chain agree with each other, we can be confident that
the chains have converged to a single solution. By default,
‘BayLum’ uses three MCMC chains – a suitable balance be-
tween the power to detect non-convergence and the computa-
tional resources required (the number of chains is fully cus-
tomizable by the user). ‘BayLum’ formalizes the question of
convergence by incorporating as output the Rubin and Gel-
man diagnostic (Gelman & Rubin, 1992), which compares
within-chain and between-chain variance. A common rule
of thumb is that the upper 95 % credible interval limit of this
diagnostic value indicates convergence when below 1.05.
For many practical applications of OSL dating, the number
of iterations (or links in each chain) required to reach con-
vergence is high (>500 000) – and higher still when ‘Bay-
Lum’ models incorporate many OSL samples as is the case
with high-resolution chronologies. Because MCMC chains
are to be processed consecutively, the overall process can
become very time-consuming. For example, using a com-
puter equipped with a 11th Gen i7-1185G7 clocking at 3.0
GHz (which has a relatively high single-core threading per-
formance rating), runtimes can extend beyond several days.
Furthermore, even when a model completes, not all of the
model’s parameters may have converged – a result which
could require a complete re-run of the ‘BayLum’ modelling
function.

3. ‘BayLum’ feature: MCMC parallelization
Previous versions of ‘BayLum’ could only process

MCMC chains consecutively using a single processor core.
With parallelization, it is now possible to assign n chains out
onto n CPU processor cores. This allows each chain to be
processed concurrently, and the runtime will (ideally) ap-
proach 1/n when compared to the time for running n chains
using a single core. We tested this using ‘BayLum’ models
where OSL example sets GDB3 and GDB5 were used (both
included with the ‘BayLum’ package) to produce 2-sample
models. Figure 1A shows that when running 4 000 total
iterations per chain, we see a significant runtime reduction
when running the model using parallelization (jags_method
= "rjparallel") as compared to using only a single CPU
core (jags_method = "rjags"). Reduction increases with
the number of MCMC chains constructed in the model,
which is what we expect. We observed a reduction of 65 %
for a 3-chain setup and 72 % for a 4-chain setup. The mi-
nor differences we see from the theoretical 1/n-rule most
likely arise from runtime inside the ‘BayLum’ model func-
tions, which is not due to the iteration of MCMC sampling.
We also see from Figure 1B that this reduction is consis-
tent with increasing numbers of iterations. Example 1 (Sec.
3.1) shows how to apply parallelization in ‘BayLum’ v0.3.1.
Note that our model testing was carried out using the High-
Performance Computing Cluster “Sophia” (Technical Uni-
versity of Denmark, 2019). The same code run on a desk-
top PC will show the same relative reductions but may show
poorer runtimes, not only because of lower overall compu-

tation power but also - and more likely - due to advanced
power throttling measures of modern CPU architectures im-
plemented to prevent overheating in prolonged high-load sit-
uations.

3.1. Example 1

In the example below, which we kept as simple and
user-friendly as possible, we show how to achieve paral-
lelization. The key argument to set is jags_method =

"rjparallel". We use the example data included within
‘BayLum’ at installation.

Example 1: R Code: Achieving parallelization
1 # MCMC parallelization example ####

2 # load libraries

3 library(BayLum)

4

5 # load example DataFiles GDB3 and GDB5

6 data(DATA1)

7 data(DATA2)

8

9 # combine DataFiles

10 # (we now have a 2-sample DataFile)

11 DF <- combine_DataFiles(DATA1, DATA2)

12

13 # construct BayLum model

14 BayLum_model <- AgeS_Computation(

15 DATA = DF,

16 SampleNames = c("GDB3", "GDB5"),

17 Nb_sample = 2,

18 BinPerSample = c(1, 1),

19 LIN_fit = FALSE,

20 Origin_fit = TRUE,

21 Iter = 1e+03,

22 burnin = 5e+02,

23 adapt = 5e+02,

24 n.chains = 3,

25 jags_method = "rjparallel"

26)

4. ‘BayLum’ feature: extend the ‘BayLum’
model

Unfortunately, ‘BayLum’ model chains will not always
converge within the specified number of iterations. In pre-
vious versions of ‘BayLum’, the ‘BayLum’-model would
likely need to run again with a higher number of iterations.
The added runtime of re-running ‘BayLum’ can now be
avoided by extending the non-converged model instead of
building it again from scratch. In this case, all non-converged
model iterations are treated as burn-in. See Example 2 (Sec.
4.1) for an illustration of how to extend ‘BayLum’ models.

2

Baumgarten, Ancient TL, Vol. 41, No. 1, 2023

 rjparallel−method with 4000 MCMC iterations

0

25

50

75

100

2 3 4 5 6
Number of MCMC chains

R
un

tim
e

re
du

ct
io

n
(%

)

A
 3 MCMC−chain BayLum−model

0

200

400

600

0 8000 16000 24000 32000
MCMC iterations

R
un

tim
e

(s
)

jags_method
rjags
rjparallel

B

Figure 1: (A): Runtime reduction in percentage when running a ‘BayLum’ model with fixed iterations vs a varying number
of MCMC chains using GDB3 and GDB5 example sets included within ‘BayLum’. (B): Runtime in seconds vs the num-
ber of MCMC iterations for a 3-chain ‘BayLum’ model also using GDB3 and GDB5. All estimates show mean±sd (n=8).
To run the model, we used the High-Performance Computing cluster named “Sophia” owned by DTU. Arguments "rjags"
and "rjparallel" entail whether ‘BayLum’ is run using a single CPU core (’rjags’) or run in parallel on several cores
('rjparallel').

4.1. Example 2
In Example 1 (Sec. 3.1), a model was built to show how

parallelization could be achieved. The Rubin and Gelman
convergence diagnostics from that model reveal evidence
that not all MCMC chains converged (see "D (Dose)" for
GDB5, Table 1).

Table 1: Rubin and Gelman convergence diagnostics for
three parameters of the ‘BayLum’-model in Example 1. We
show only the upper 95 % credible interval limit.

Sample A (Age) D (Dose) sD (Stand. deviation)
GDB3 1.006 1.022 1.004
GDB5 1.007 1.065 1.000

However, we can now add iterations to the ‘BayLum’-
model in order to achieve convergence:

Example 2: R Code: Extending model
1 # extend MCMC sampling of BayLum-model

2 BayLum_model_extended <- AgeS_Computation(

3 DATA = BayLum_model,

4 SampleNames = c("GDB3", "GDB5"),

5 Nb_sample = 2,

6 BinPerSample = c(1, 1),

7 LIN_fit = FALSE,

8 Origin_fit = TRUE,

9 Iter = 1e+04,

10 burnin = 0,

11 adapt = 5e02,

12 jags_method = "rjparallel"

13)

Rubin and Gelman’s convergence diagnostics now show
we can be confident about all the parameters (Table 2).

Table 2: Rubin and Gelman convergence diagnostics for
three parameters of the ‘BayLum’ model from example 1
(Sec. 3.1). We show only the upper 95 % credible interval
limit.

Sample A (Age) D (Dose) sD (Stand. deviation)
GDB3 1.002 1.007 1.000
GDB5 1.001 1.010 1.004

5. Conclusions

In this report, we introduced two feature updates to the
R-package ‘BayLum’. Together, they allow users to paral-
lelize MCMC sampling and extend BayLum-models - both
features significantly reduce the time needed to build a vi-
able ‘BayLum’-model.

Acknowledgments

We thank Geoff Duller for his thorough and support-
ive comments. We also gratefully acknowledge the com-
putational and data resources the Sophia HPC Cluster pro-
vided at the Technical University of Denmark, DOI: https:
//doi.org/10.57940/FAFC-6M81.

3

https://doi.org/10.57940/FAFC-6M81
https://doi.org/10.57940/FAFC-6M81

Baumgarten, Ancient TL, Vol. 41, No. 1, 2023

References
Christophe, C., Philippe, A., Kreutzer, S., Guérin, G., and Baum-

garten, F. BayLum: Chronological Bayesian Models Integrat-
ing Optically Stimulated Luminescence and Radiocarbon Age
Dating. https://cran.r-project.org/package=BayLum, 2023. URL
https://cran.r-project.org/package=BayLum. R pack-
age version 0.3.1.

Combès, B. and Philippe, A. Bayesian analysis of individ-
ual and systematic multiplicative errors for estimating ages
with stratigraphic constraints in optically stimulated lumi-
nescence dating. Quaternary Geochronology, 39: 24–34,
2017. ISSN 1871-1014. doi: 10.1016/j.quageo.2017.02.
003. URL https://www.sciencedirect.com/science/

article/pii/S1871101416300838.

Combès, B., Philippe, A., Lanos, P., Mercier, N., Tribolo, C.,
Guérin, G., Guibert, P., and Lahaye, C. A Bayesian central
equivalent dose model for optically stimulated luminescence
dating. Quaternary Geochronology, 28: 62–70, 2015. doi:
10.1016/j.quageo.2015.04.001.

Denwood, M. J. runjags: An R Package Providing Interface Util-
ities, Model Templates, Parallel Computing Methods and Addi-
tional Distributions for MCMC Models in JAGS. Journal of Sta-
tistical Software, 71: 1–25, 2016. doi: 10.18637/jss.v071.i09.

Gelman, A. and Rubin, D. B. Inference from Iterative Simula-
tion Using Multiple Sequences. Statistical Science, 7: 457–
472, 1992. ISSN 08834237. URL http://www.jstor.org/

stable/2246093.

Heydari, M., Guérin, G., Kreutzer, S., Jamet, G., Kharazian,
M. A., Hashemi, M., Nasab, H. V., and Berillon, G. Do
Bayesian methods lead to more precise chronologies? ‘Bay-
Lum’ and a first OSL-based chronology for the Palaeolithic
open-air site of Mirak (Iran). Quaternary Geochronology, 59:
101082, 2020. ISSN 1871-1014. doi: 10.1016/j.quageo.2020.
101082. URL https://www.sciencedirect.com/science/

article/pii/S1871101420300315.

Philippe, A., Guérin, G., and Kreutzer, S. BayLum - An R package
for Bayesian analysis of OSL ages: An introduction. Quaternary
Geochronology, 49: 16–24, 2019. doi: 10.1016/j.quageo.2018.
05.009.

Plummer, M. JAGS: A program for analysis of Bayesian graphical
models using Gibbs sampling. Proceedings of the 3rd Interna-
tional Workshop on Distributed Statistical Computing, Vienna,
pp. 1–10, 2003.

R Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria,
2022. URL https://www.R-project.org/.

Technical University of Denmark. Sophia HPC Cluster. Research
Computing at DTU, 2019. doi: 10.57940/fafc-6m81.

Reviewer
Geoff Duller

4

https://cran.r-project.org/package=BayLum
https://www.sciencedirect.com/science/article/pii/S1871101416300838
https://www.sciencedirect.com/science/article/pii/S1871101416300838
http://www.jstor.org/stable/2246093
http://www.jstor.org/stable/2246093
https://www.sciencedirect.com/science/article/pii/S1871101420300315
https://www.sciencedirect.com/science/article/pii/S1871101420300315
https://www.R-project.org/

	. Introduction
	. Problem: Stationary distributions require long run times
	. `BayLum' feature: MCMC parallelization
	. Example 1

	. `BayLum' feature: extend the `BayLum' model
	. Example 2

	. Conclusions

