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ABSTRACT

Context. The gas density structure of the cold molecular phase of the interstellar medium is the main controller of star formation.
Aims. A theoretical framework is proposed to describe the structural content of the density field in isothermal supersonic turbulence.
Methods. It makes use of correlation and structure functions of the phase indicator field defined for different iso-density values. The
relations between these two-point statistics and the geometrical features of iso-density sets such as the volume fraction, the surface
density, the curvature, and fractal characteristics are provided. An exact scale-by-scale budget equation is further derived revealing
the role of the turbulent cascade and dilation on the structural evolution of the density field. Although applicable to many flow situ-
ations, this tool is here first invoked for characterising supersonic isothermal turbulence, using data from the currently best-resolved
numerical simulation.
Results. We show that iso-density sets are surface fractals rather than mass fractals, with dimensions that markedly differ between
dilute, neutral, and dense regions. The surface–size relation is established for different iso-density values. We further find that the tur-
bulent cascade of iso-density sets is directed from large towards smaller scales, in agreement with the classical picture that turbulence
acts to concentrate more surface into smaller volumes. Intriguingly, there is no range of scales that complies with a constant transfer
rate in the cascade, challenging our fundamental understanding of interstellar turbulence. Finally, we recast the virial theorem in a
new formulation drawing an explicit relation between the aforementioned geometrical measures and the dynamics of iso-density sets.

Key words. ISM: kinematics and dynamics – hydrodynamics – turbulence

1. Introduction

Turbulence is one of the key processes that shapes the spa-
tial and temporal evolution of matter and energy across nearly
all scales, from the laboratory up to astrophysical scales.
When associated with the interstellar medium (ISM), turbu-
lence is observed to lie in the supersonic regime (see for
example Elmegreen & Scalo 2004; Mac Low & Klessen 2004;
McKee & Ostriker 2007; Hennebelle & Falgarone 2012, and
references therein), yielding coupled correlations between veloc-
ity and density fluctuations at all scales. Therefore, a physical
model for predicting the spatial organisation of the gas density
(and its tracers) throughout the ISM needs to account for the
interactions between the velocity and density fields. This con-
stitutes one of the open challenges in the astrophysics commu-
nity and has key relevance for understanding the structure and
dynamics of the ISM, and in particular the physical conditions
for the formation of stars (Padoan et al. 2014).

There has been significant progress in the statistical char-
acterisation of density fluctuations inferred from either obser-
vations or numerical simulations of the ISM. One of the
most popular statistical tool is the one-point probability den-
sity function as it comes as input in several star formation
models (Padoan & Nordlund 2002, 2011; Krumholz & McKee
2005; Hennebelle & Chabrier 2008; Federrath & Klessen 2012;
Burkhart & Mocz 2019; Appel et al. 2022). It has been shown

that for an isothermal gas in supersonic turbulence, the
volume- and mass-weighted density fluctuations comply rela-
tively well with a log-normal distribution. The latter arises nat-
urally by assuming a random multiplicative process and the
application of the central limit theorem for the density evo-
lution (Vazquez-Semadeni 1994; Passot & Vázquez-Semadeni
1998; Kritsuk et al. 2007; Federrath et al. 2008, 2010). Signif-
icant deviations from the log-normal distribution are however
observed when gravity (see for instance Kritsuk et al. 2011;
Federrath & Klessen 2013; Girichidis et al. 2014; Khullar et al.
2021), magnetic fields, and/or stellar feedback (see for instance
Krumholz et al. 2012; Myers et al. 2014; Kainulainen et al.
2014; Federrath 2015; Schneider et al. 2016) are included.

More insights into the spatial distribution of matter in
the ISM can be provided by probing the microstructure of
the density field. By microstructure, we refer here to any
scale-dependent features of the density field and its tracers (the
reader may refer to Elmegreen & Scalo 2004, for a complete
review of several micro-structural descriptors). Such analysis
can be carried out using two-point statistics: for example,
correlation functions, structure functions, Fourier spectra or
∆-variance techniques, or principal component analysis (see
for instance Stutzki et al. 1998; Ossenkopf & Mac Low 2002;
Padoan et al. 2004; Heyer & Brunt 2004; Kim & Ryu 2005;
Kritsuk et al. 2006; Federrath et al. 2010; Roman-Duval et al.
2010). The micro-structural content of the density field
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can also be assessed using geometrical approaches, which
include fractal techniques (Elmegreen & Falgarone 1996;
Stutzki et al. 1998; Federrath et al. 2009; Audit & Hennebelle
2010; Kritsuk et al. 2007; Beattie et al. 2019a,b) or multi-
fractal spectra (Chappell & Scalo 2001). Independent of the
tool, one generally seeks to find some power-law variations
of the observable with respect to the scale. This power-law
behaviour is very useful to spark phenomenological scenarios
that describe the physics at play in the structural evolution
of the gas density in the ISM. However, the existence of
some power laws is generally observed, sometimes predicted
using dimensional arguments, but it is not generally derived
from first principles. One attempt to fill this gap is presented
by Galtier & Banerjee (2011) and Ferrand et al. (2020) who
derived the exact generalised Kolmogorov equation directly
from the compressible Navier-Stokes equations. The work
by Aluie (2013) also provides some theoretical insights into
the scale distribution of compressible turbulence based on the
coarse grained Navier-Stokes equations. Nevertheless, such
exact scale-by-scale budget equations, although extremely
valuable to describe the physics at play, still require some
closures for being used as a predictive tool.

In the present study, we aim to provide new insights into the
role of supersonic turbulence in determining the spatial struc-
ture of the gas density in the ISM. We propose using a two-point
statistical analysis of the phase indicator field defined from dif-
ferent density thresholds. Such an approach is encountered in
other branches of physics, dealing with for example, hetero-
geneous materials (Adler et al. 1990; Torquato 2002; Teubner
1990; Kirste & Porod 1962; Frisch & Stillinger 1963; Berryman
1987) or fractal aggregates (Sorensen 2001; Morán et al. 2019).
Its application to fluid mechanics is relatively scarce, although
it has been applied with success in single-phase turbulence
(Hentschel & Procaccia 1984; Vassilicos & Hunt 1991, 1996;
Vassilicos 1992; Elsas et al. 2018; Gauding et al. 2022) and
multiphase turbulent flows (Lu & Tryggvason 2018, 2019;
Thiesset et al. 2020, 2021). There are several theoretical results
based on robust mathematical grounds allowing the two-point
statistics of iso-value sets to be related to some geometrical
and/or fractal properties. An exact transport equation for such
two-point statistics was further derived (Thiesset et al. 2020;
Gauding et al. 2022), which makes the interactions explicit
between the probed field variable and the turbulent velocity
field. It is therefore believed that this tool could be promising
to investigate the density fluctuations in supersonic turbulence.
Although virtually applicable to all scenarios involving turbu-
lent flows, this framework was first appraised using data from a
high-resolution simulation of supersonic isothermal turbulence
(Federrath et al. 2021).

The rest of the paper is organised as follows. Section 2 gath-
ers the main theoretical derivations. The numerical database and
post-processing procedures are introduced in Sect. 3. Our results
are presented in Sect. 4 and conclusions are drawn in Sect. 5.

2. A structural descriptor of iso-density sets

2.1. The phase indicator field

The analysis is based on the phase indicator function φ(x, t)
defined as:

φ(x, t) =

{
1 when ρ(x, t) > ρth

0 otherwise.
(1)

This quantity reads as the probability that the density ρ is larger
than a certain threshold ρth at a given position in space x and time
t. It is also sometimes referred to as the excursion set or here iso-
density set. The phase indicator function was introduced notably
to characterise heterogeneous media such as composite mate-
rials and/or porous media (see for instance Debye et al. 1957;
Porod 1951). Such fields are discontinuous by nature with two
(or more) phases separated by an interface. In supersonic turbu-
lence, the presence of shocks may lead also to local discontinu-
ities of the density field. Despite, one can always define a phase
indicator field, in the presence or absence of discontinuities, and
hence it is applicable here to the density field, even in presence
of shocks.

Investigating the properties of φ(x, t) for different iso-values
ρth allows the geometry of the density field to be characterised.
Low and high values of ρth correspond the dilute and dense
regions, respectively. The relevant geometrical properties of φ
investigated here are detailed below.

The first quantity is the volume fraction, which is simply
defined as the ratio between the phase indicator volume and the
averaging volume:

〈φ〉 =
1
V

∫
φ(x, t)dV. (2)

The brackets in Eq. (2) denote a volume average over the vol-
ume V . The volume fraction 〈φ〉 has no units and is comprised
between 0 and 1.

The second relavant geometrical feature of the field φ is the
surface density, which represents the surface area of the interface
separating φ = 1 and φ = 0, divided by the averaging volume:

Σ = 〈|∇φ(x, t)|〉 =
1
V

∫
|∇φ(x, t)|dV. (3)

We note that in the astrophysics community, the surface density
generally refers to the cloud mass divided by the cloud bounding
surface area. It is thus given in units of mass per area. Let this
quantity be noted Σm. In Eq. (3), what we call surface density Σ,
is a purely geometrical quantity with no connection to the mass,
defined by the area of the iso-density surface divided by the aver-
aging volume. Hence, it is in units of inverse of length. Con-
sequently, for a cloud with fixed mass, if its bounding surface
increases, the mass surface density Σm decreases while, the geo-
metrical surface density Σ increases. Therefore, they evolve in
opposite directions. One possible way to relate these two quan-
tities is to compute the mass fraction 〈ρφ〉 (that is the mass con-
tained in the iso-volume defined by ρ(x, t) > ρth divided by the
averaging volume V) and then one has Σm = 〈ρφ〉/Σ.

We can go beyond and compute the statistics of the spatial
increment for φ, which is written δφ and is defined as the differ-
ence of φ between two points x + r and x, arbitrarily separated
in space by a distance r:

δφ(r, t) = φ(x + r, t) − φ(x, t). (4)

We consider in particular the second-order moment of δφ, also
called the second-order structure function, defined by:

〈(δφ)2〉 =
1
V

∫
(δφ)2dV. (5)

The phase indicator function can also be studied through its
two-point correlation function defined as:

〈φ+
mφm〉 =

1
V

∫
φm(x + r)φm(x)dV. (6)
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The + superscript in Eq. (6) is used to denote that the quantity is
taken at point x + r while φm denotes the phase indicator for the
minority phase at point x. The minority phase is defined by

φm(x, t) =

{
φ(x, t) if 〈φ〉 ≤ 0.5
1 − φ(x, t) if 〈φ〉 > 0.5.

(7)

We thus have 〈φm〉 = min(〈φ〉, 1 − 〈φ〉). The majority phase is
defined as the complementary set of the minority phase and is
equal to φ′ = 1 − φm. Contrary to the autocorrelation function,
the second-order structure function is the same when computed
from the majority or minority phase.

Thiesset et al. (2020) derived the relation between the corre-
lation function and the second-order structure function:

〈φ+
mφm〉

〈φm〉
= 1 −

〈(δφ)2〉

2〈φm〉
. (8)

Although Eq. (8) reveals that the correlation and structure func-
tion are intimately linked, we subsequently show later in this
paper that they provide different information about the system.

In general (inhomogeneous and anisotropic) situations, both
the second-order structure function 〈(δφ)2〉 and the correlation
function 〈φ+

mφm〉 depend on the 3-dimensional separation vector
r and the 3-dimensional position vector x. Homogeneity can be
invoked such that two-point statistics are invariant by transla-
tion, thereby dropping the dependence to the vector x. In case of
isotropic media, two-point statistics depend only on the modulus
of the separation vector r ≡ |r|. The numerical data detailed in
Sect. 3 and discussed in Sect. 4 correspond to homogeneous and
isotropic turbulence, which means that the two-point statistics
discussed hereafter are function of r, only.

The framework presented here was used in its fully inhomo-
geneous and anisotropic version in Thiesset et al. (2021). These
authors showed that the relations to be discussed below apply
to the ‘homogeneised’ (after application of a spatial average)
and ‘isotropised’ (after application of an angular average over
all orientations of the separation vector) version of the original
inhomogeneous and anisotropic media.

2.2. Asymptotic behaviour of two-point statistics

The asymptotic behaviour of 〈(δφ)2〉 and 〈φ+
mφm〉 for different

range of scales are known and are detailed below.

2.2.1. At small scales

Since φ can take only 1 or 0 values, we have φ2 ≡ φ, and hence
the correlation function 〈φ+

mφm〉 at r = 0 is given by

〈φ+
mφm〉(r = 0) = 〈φm〉. (9)

Therefore, the correlation function at r = 0 gives informa-
tion about the volume fraction of the minority phase 〈φm〉. The
second-order structure function 〈(δφ)2〉 is 0 at r = 0.

The asymptotic regime when the separation r tends to
zero was derived by Porod (1951), Guinier et al. (1955), and
Debye et al. (1957), who proved that for homogeneous isotropic
media:

lim
r→0
〈φ+

mφm〉 = 〈φm〉 −
Σr
4
. (10)

This implies for 〈(δφ)2〉 the following limit:

lim
r→0
〈(δφ)2〉 =

Σr
2
. (11)

Equations (10) and (11) can be seen as the 3D extension of the
classical Buffon needle problem. It shows that if the interface
between φ = 1 and φ = 0 becomes planar when observed at suffi-
ciently small scales, the probability that the two points x and x+r
lie on each side of the interface is then simply proportional to
the surface density Σ and the distance |r| between the two points.
Equations (10) and (11) remain valid in anisotropic media when
two-point statistics are angularly averaged over all orientations
of the vector r (Berryman 1987). This linear regime is observed
only if the interface is planar at some resolution scales. In case
of purely fractal sets, revealing rough interfaces at all scales, this
regime is not likely to be observed.

2.2.2. At larger, yet small scales

For slightly larger values of the separation r, the curvature of
the interface becomes perceptible, and one needs to account
for the next terms in the small-scale expansion of 〈φ+

mφm〉 and
〈(δφ)2〉. These were first derived by Kirste & Porod (1962) and
Frisch & Stillinger (1963), and later by Teubner (1990) and
Ciccariello (1995), and read:

lim
r→0
〈φ+

mφm〉 = 〈φm〉 −
Σr
4

(
1 − 〈C〉s

r2

8

)
. (12)

By virtue of Eq. (8), we then have for 〈(δφ)2〉:

lim
r→0
〈(δφ)2〉 =

Σr
2

(
1 − 〈C〉s

r2

8

)
. (13)

The quantity 〈C〉s in Eqs. (12) and (13) is related to the mean
and Gaussian curvature, denoted H and G:

〈C〉s =

[
〈H2〉s −

〈G〉s
3

]
, (14)

where 〈•〉s denotes a surface-area-weighted average: 〈•〉sΣ =

〈•|∇φ|〉. Eqs. (12) and (13) reveal that the quantity 1/〈C〉1/2s can
be associated with the transition scale where the interface starts
being curved. In anisotropic media, Eq. (13) was shown to hold
true when an angular average is applied on two-point statistics
(Thiesset et al. 2021).

2.2.3. In the intermediate range of scales

The correlation and structure functions are known to provide
information about the fractal features of the object, if any. As
stated for example by Sreenivasan et al. (1989), an object is
likely to exhibit a fractal scaling in a range of scales lying
between an inner cutoff ηi (here a scale somehow related to
〈C〉−1/2

s ) and an outer cutoff ηo (a kind of integral length-scale).
If the separation between ηi and ηo is sufficiently large, then one
should expect 〈φ+

mφm〉 and/or 〈(δφ)2〉 to follow a power law with
an exponent that can be related to the fractal dimension.

However, in this context, it is important to make the dis-
tinction between what is referred to as a mass-fractal and a
surface-fractal. Schematically, a mass-fractal is an object whose
bulk reveals some fractal features while its surface remains
smooth. Soot aggregates issued from combustion of hydrocarbon
fuels typically fall in this category (Sorensen 2001; Morán et al.
2019). Such an object is presented in Fig. 1a. It is composed
of a set of small spherical particles with constant density whose
surface is smooth, and assembles to form an object with fractal
features. Another example is the Menger sponge as illustrated in
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(a) (b)

(c) (d)

Fig. 1. Illustrations of different categories of fractals. Examples of mass-
fractals: (a) a soot particle and (c) the Menger sponge. Examples of
surface-fractals : (b) a coastline and (d) the Julia set.

Fig. 1c. The latter is composed of perforated cubes with scale-
similarity. Except at the corners, its surface is always planar.

A surface-fractal is the opposite: an object whose body
remains compact while its surface is fractal. Some examples are
given in the right column of Fig. 1. Figure 1b shows a coastline,
and the Julia set is illustrated in Fig. 1d, which are examples of
typical surface-fractals.

This distinction is of major importance here since the cor-
relation and structure function for mass- and surface-fractals
exhibit different behaviour in the intermediate range of scales.
Indeed, for instance Sorensen (2001) and Wong & Cao (1992)
(and references therein) mentioned that for mass-fractals:

〈φ+
mφm〉 ∼ rξm , (15)

where ξm = Dm − 3 with Dm the mass-fractal dimension.
By contrast, for surface-fractals (Wong & Cao 1992) with

dimension Ds:

〈φ+
mφm〉 = 〈φm〉 − Krξs , (16)

where ξs = 3 − Ds, and K is a constant. Equation (16) together
with Eq. (8) indicates that:

〈(δφ)2〉 ∼ rξs . (17)

Therefore, probing the scale dependence of 〈φ+
mφm〉 and 〈(δφ)2〉

separately enables (i) to assess whether the object under consid-
eration is rather a mass- or surface-fractal, and (ii) to estimate
the corresponding dimension Dm or Ds.

An example is given in Fig. 2 where we have computed
〈φ+

mφm〉 and 〈(δφ)2〉 for the Menger sponge (a mass-fractal) and
the Julia set (a surface-fractal). For the Julia set, 〈(δφ)2〉 reveals
an appreciable power-law range, while no such behaviour is
observed for 〈φ+

mφm〉. The opposite is observed for the Menger
sponge. In each situation the computed power-law exponent
complies well with the theoretical values of Dm = log3(20) ≈
2.73 and Ds ≈ 2.27 for the Menger sponge and the Julia set,
respectively. It is worth noting that in Fig. 2, 〈(δφ)2〉 does not

100 101 102

r [-]

10−1

100

〈(δφ)2〉 Julia

〈φ+
mφm〉 Julia

〈(δφ)2〉 Menger

〈φ+
mφm〉 Menger

Fig. 2. Correlation and structure function for the Menger sponge and
the axisymmetric Julia set (z
 z2 − 1). The grey dotted line represents
the theoretical power laws with Dm = log3(20) for the Menger sponge
and Ds ≈ 2.27 for the Julia set.

reveal any range of scales complying with a linear regime with
respect to the separation r (Eq. (11)). This means that the Julia
and Menger sets are rough at all scales.

The distinction between mass- and surface-fractal yields
important consequences. In particular, the mass–size distribution
for mass-fractals is

M(r) ∼ rDm , (18)

while for surface fractals,

M(r) ∼ r3. (19)

For a surface-fractal, the surface area measured at scale r (known
as the surface-scale distribution) is given by (Sreenivasan et al.
1989; Wong & Cao 1992)

S (r) ∼ rDs−2. (20)

One can further imagine a situation where a mass-fractal is
bounded by a surface-fractal. In this case, Wong & Cao (1992)
obtained that:

M(r) ∼ rDm

(
1 − A

( r
R

)3−Ds
)

(21)

for any r < R where R3 is the volume enclosed by the surface
given by 〈φm〉 = R3/V , and A is a constant of order unity. It is
noted that the correction A(r/R)3−Ds is perceptible only at scales
close to R.

2.2.4. At large scales

The asymptotic limit of the correlation function at large scales is

lim
r→∞
〈φ+

mφm〉 = 〈φm〉
2. (22)

This result implies that for the second-order structure function
(Thiesset et al. 2020, 2021; Gauding et al. 2022):

lim
r→∞
〈(δφ)2〉 = 2〈φ〉(1 − 〈φ〉) (23)

Hence, in the limit of large scales, both 〈φ+
mφm〉 and 〈(δφ)2〉 give

information about the volume fraction.
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2.2.5. Summary of the schematic representation of φ

These different asymptotic regimes are schematically sum-
marised in Fig. 3. This figure shows that when probed at asymp-
totically small scales, the interface seems planar. In this regime,
〈(δφ)2〉 and 〈φ+

mφm〉 are intimately linked to the surface density
Σ. At slightly larger scales, that is for scales r ∼ 〈C〉−1/2, the
interface curvature starts to become visible. Both 〈(δφ)2〉 and
〈φ+

mφm〉 are then given by Eqs. (13) and (12), respectively. If r
lies well between ηi and ηo, then a fractal scaling can possibly
be observed. In this situation 〈(δφ)2〉 follows a power law with
an exponent ξs = 3 − Ds if the object is surface-fractal. Con-
versely, if the object is mass-fractal, then the correlation func-
tion exhibits a power law with exponent ξm = Dm − 3. Finally,
at large scales, 〈(δφ)2〉 starts being a volumetric descriptor and
reaches the asymptotic value of 2〈φ〉(1−〈φ〉), while 〈φ+

mφm〉 tends
towards 〈φm〉

2.
As an overall conclusion, the quantities 〈(δφ)2〉 and 〈φ+

mφm〉

contain information about the surface density, the interface
curvature, the fractal characteristics and the volume fraction.
All these quantities are important geometric measures that are
contained in and characterised by the rather simple structural
descriptor φ defined in Eq. (1).

2.3. Scale-by-scale budget

The analysis based on the correlation and structure functions of
the phase indicator φ can be supplemented by a transport equa-
tion, which is known as a scale-by-scale budget. When applied to
the density field (a conserved quantity), the time and space evo-
lution of φ is given by (Thiesset et al. 2020, 2021; Gauding et al.
2022),

∂tφ + u · ∇φ = 0, (24)

where u is the fluid velocity at the interface. Using the
machinery described by Thiesset et al. (2020) and Gauding et al.
(2022), one can derive the transport equation for 〈(δφ)2〉

(and 〈φ+
mφm〉). The general scale-by-scale budget for reacting

and diffusive quantities evolving in non-stationary, inhomoge-
neous, anisotropic, possibly compressible flows is provided by
Gauding et al. (2022). Here we provide the formulation for a sta-
tistically homogeneous and stationary flow, as in our numerical
simulations. In this case, the equation for 〈(δφ)2〉 simplifies to

∇r · 〈(δu)(δφ)2〉 = 2〈(∇ · u)⊕(δφ)2〉. (25)

The quantity •⊕ = (•+ + •)/2 is the arithmetic mean of the quan-
tity • between the points x and x + r. The transport equation for
the correlation function was obtained by Gauding et al. (2022).
Equation (25) was derived by assuming that the velocity u is dif-
ferentiable when crossing the interface. Hence, this formulation
of scale-by-scale is restricted to cases where the velocity can be
assumed to be smoothly varying on each side of the iso-density
surface. In case of strong shocks, associated with discontinu-
ous velocity jumps, the weak formulations of the scale-by-scale
budgets, such as those discussed by Duchon & Robert (2000),
Saw et al. (2016), Galtier (2018), Dubrulle (2019) for the turbu-
lent kinetic energy, should be derived and used instead.

By further taking advantage of isotropy, the transfer term on
the left-hand side of Eq. (25), which writes as the divergence in
scale-space of the flux 〈(δu)(δφ)2〉, can be expressed in spherical
coordinates, which leads to:

〈(δu‖)(δφ)2〉 =
2
r2

∫ r

0
r2〈(∇ · u)⊕(δφ)2〉dr. (26)

The quantity u‖ = u · r/r is the longitudinal velocity: the velocity
component in the direction of r.

Equation (26) is exact and is derived without any other
hypothesis than the one invoked above (homogeneous, isotropic,
stationary fields). It reveals the effect of velocity and velocity
divergence on the evolution of the microstructure of the den-
sity field as measured through 〈(δφ)2〉 or 〈φ+

mφm〉 at a given
threshold ρth. The term on the left-hand side of Eq. (26) is
the scale-by-scale transport of the quantity φ by the velocity
field. In the classical Kolmogorov (1941) or Yaglom (1949) the-
ory, for incompressible turbulence and turbulent mixing, respec-
tively (see also Danaila et al. 2004), this term is generally asso-
ciated with the cascade process (see also Galtier & Banerjee
2011; Ferrand et al. 2020, for more recent derivations of a
Kolmogorov-type theory of compressible isothermal turbu-
lence). When negative, the flux of (δφ)2 is directed towards small
scales (a direct cascade), while positive 〈(δu‖)(δφ)2〉 > 0 is
referred to as an inverse cascade from small to large scales.

The process on the right-hand side of Eq. (26) arises in
flows with non-zero velocity divergence. When positive (nega-
tive), this process acts in expanding (contracting) the microstruc-
ture in the space of separation r. The velocity divergence is
thus a sink/source term in the scale-by-scale budget of the iso-
density field, which counteracts the transfer process. Very sim-
ilar conclusions were drawn by Galtier & Banerjee (2011) and
Ferrand et al. (2020), who showed that the divergence of the
velocity acts similarly in the scale-by-scale budget for the veloc-
ity structure functions.

The asymptotic behaviour of the different terms in Eq. (26)
at small scales was determined by Gauding et al. (2022). For the
flux term, the limit is

lim
r→0
−〈(δu‖)(δφ)2〉 = KΣ

r2

8
, (27)

where K = 〈−n · ∇u · n〉s is here the tangential compo-
nent of the strain rate acting on the iso-surface ρ(x, t) = ρth
(Candel & Poinsot 1990). The vector n = −∇φ/|∇φ| is the unit
normal vector to the interface. The other component of the strain
rate writes 〈∇ · u〉s and is due to the velocity divergence. This
term arises from the limit of the term on the right-hand side of
Eq. (26), in the limit of small separations:

2
r2

∫ r

0
r2〈(∇ · u)⊕(δφ)2〉dr = 〈∇ · u〉sΣ

r2

8
. (28)

The turbulent flow that we subsequently investigate in the fol-
lowing, is at steady state. In this situation, the sum of the two
components of the strain rate is zero.

3. Numerical setup and post-processing

Here we analyse data from a highly resolved numerical sim-
ulation of supersonic isothermal turbulence. The database and
numerical methods used in this simulation are described in
detail in Federrath et al. (2021; see also Ferrand et al. 2020). We
briefly summarised the main methods below.

The compressible Euler equation in three dimensions:

∂tρu + ∇ · ρu ⊗ u = −∇p + ρF, (29)

is solved, together with the continuity equation

∂tρ + ∇ · ρu = 0, (30)

using the code FLASH (Fryxell et al. 2000; Dubey et al. 2008).
These equations are solved on a triply periodic Cartesian
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〈(δφ)2〉 ∼ Σr

〈φ+
mφm〉 = 〈φm〉 − Σr/4

〈(δφ)2〉 ∼ Σr(1− 〈C〉s r
2

8 )

〈φ+
mφm〉 = 〈φm〉 − Σr

4 (1− 〈C〉s r
2

8 )

〈(δφ)2〉 ∼ rξs

〈φ+
mφm〉 ∼ rξm

〈(δφ)2〉 ∼ 〈φ〉(1− 〈φ〉)
〈φ+

mφm〉 ∼ 〈φm〉2
Planar

Curved

Fractal

Space-filling

r ∼ ηo

ηi � r � ηo

r ∼ 〈C〉−1/2
s

r � 〈C〉−1/2
s

Fig. 3. Schematic representation of the different asymptotic regimes of 〈(δφ)2〉 and 〈φ+
mφm〉 for different scale ranges from small to large scales.

(a) log10(ρ) (b) ρth = 0.10 (c) ρth = 0.20 (d) ρth = 0.50

(e) ρth = 1.00 (f) ρth = 2.00 (g) ρth = 5.00 (h) ρth = 10.00

−1

0

1

2

Fig. 4. Two-dimensional slices of the density field and their associated phase indicator field. (a) slice of log(ρ/ρ0) with light (dark) colours
corresponding to low (high) values. (b–h) Corresponding iso-density set with ρth = 0.1 to 10.0, as indicated in the legend of each panel. The
yellow and blue regions correspond to φ = 0 and φ = 1, respectively.

mesh using a positivity-preserving MUSCL-Hancock HLL5R
Riemann scheme (Waagan et al. 2011). An isothermal equation
of state for a perfect gas, p = ρc2

s , is used to relate the pressure p
and the density ρ through the sound speed cs, which is constant.
Turbulence statistics are maintained at steady state using a forc-
ing ρF. The latter acts at large scales and is composed of a half
solenoidal and half compressive mode, termed natural mixture in
Federrath et al. (2010). The turbulence driving code is available
on GitHub (Federrath et al. 2022). As in Federrath et al. (2021),
the turbulent Mach number is defined asM =

√
〈u2〉/c2

s . Here,
the Mach number is M = 4.1. The grid consists of 10 0483

data points stored into 65 536 blocks of 157 × 314 × 314 points
each. 5 snapshots separated by one eddy turnover time in the
fully developed turbulent state were used to average the statisti-
cal measurements below.

The surface-scale relation to be described later is obtained
from a standard method (de Silva et al. 2013; Hawkes et al.
2012; Thiesset et al. 2016; Krug et al. 2017). It consists first in

coarse-graining the field variable of interest (here the density)
at different filter size ∆. For each filter size, the phase indicator
field can then be extracted by thresholding the filtered density
field. By doing so, the surface area of the ‘filtered’ interface can
be computed and studied as a function of ∆ to determine the
surface-scale relation.

Here, the filtered density denoted ρ is obtained by using a
box average over a cubic sub-set of size ∆. We note that the trans-
port equation for the filtered density is the same as the unfiltered
one:

∂tρ + ∇ · ρũ = 0, (31)

where the Favre-filtered velocity is given by:

ũ =
ρu
ρ
. (32)

Therefore, the scale-by-scale budget (Eq. (26)) remains formally
the same when the Favre-average velocity ũ is used in place
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Fig. 5. Volume fraction 〈φ〉 for the different values of ρth (symbols).
The black solid line corresponds to the prediction of Eq. (33) with a
dispersion parameter σs = 1.21.

of u. We have investigated different ratios of filter size to the
original grid spacing ∆x, from ∆ = ∆x (the unfiltered case)
to 32∆x, resulting in 6 down-sampled datasets composed of
3143, 6283, 12563, 25123, 50243 and 10 0483 grid points for
∆/∆x = 32, 16, 8, 4, 2, 1.

The correlation and structure functions are computed using
the library pyarcher (Thiesset & Poux 2020). Only spatial sep-
arations r aligned with the three Cartesian directions (ex, ey, ez)
were considered and subsequently averaged, taking advantage
of isotropy. The separation vector was varying between 1 grid
spacing up to half the simulation box size, which is identi-
cal to the turbulence driving scale, denoted L. The number of
sampling pairs is given by 5 (snapshots) × 3 (directions) ×
10 0483(∆x/∆)3 (points), and was thus varying between about
108 and 1013 for ∆ between 32∆x and ∆x, respectively. This was
found sufficient to reach statistical convergence of the structure
and correlation functions (cf., respective sampling tests for the
structure functions in Federrath et al. 2021).

Seven different values for the density threshold ρth were cho-
sen: ρth/ρ0 = {0.1, 0.2, 0.5, 1, 2, 5, 10}. In the present simulation,
the volume average density ρ0 ≡ 〈ρ〉 = 1, and hence ρth will
hereafter be given in units of ρ0. The density and the corre-
sponding phase indicator fields for varying ρth are portrayed in
Fig. 4. We note that the density field is highly convoluted with
some fluctuations ranging very different scales. When observed
at large scales (at the size of the simulation box), dilute regions
(ρth < 1) take the form of bulky and agglomerated structures,
while dense regions (ρth > 1) are more sparse and filamen-
tary. Neutral density (ρth ∼ 1) regions reveal some branched
structures.

4. Results

4.1. Volume fraction

Federrath et al. (2021) showed that the probability density func-
tion of ρ obtained from the present simulation data is well rep-
resented by the intermittency model distribution by Hopkins
(2013). However, the value of the intermittency correction was
found to be rather small. This suggests that the log-normal
distribution provides a good approximation. Assuming that
the volume-weighted probability density function of ρ is log-
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Fig. 6. Scaling of 〈(δφ)2〉 for ∆ = 1∆x, that is N = 10 0483 and ρth from
0.1 to 10.0. The inset shows the local scaling exponent ∂log(r) log〈(δφ)2〉.
The grey dashed line represents the fit using Eq. (34). The sonic scale
rs is shown by the vertical black dotted line.

normal, one can easily derive the following expression for the
volume fraction 〈φ〉:

〈φ〉 =
1
2

1 − erf

 log ρth + 1
2σ

2
s√

2σ2
s

 . (33)

In Eq. (33), ‘erf’ is used to denote the error function and σs
is the volume-weighted dispersion (standard deviation) of s =
log ρ/ρ0. Federrath et al. (2021) measured σs = 1.21 for this
simulation.

Figure 5 gathers the numerical values for 〈φ〉 when the iso-
density is varied from 0.1 to 10. The colour code for each iso-
density value (light for low, dark for high ρth) will be followed in
the sequel. The volume fraction is about 90% for ρth = 0.1 and
decreases down to 5%� for ρth = 10. The median 〈φ〉 = 0.5 is
obtained for ρth = exp(−σ2

s/2) ≈ 0.48. The prediction assuming
a log-normal distribution, Eq. (33), compares favourably well to
the numerical data, except maybe at low values of ρth where the
intermittency correction starts to become significant. Figure 5
together with Eq. (33) shows that evaluating 〈φ〉 for different ρth
is equivalent to evaluating the (cumulative) probability density
function of ρ.

4.2. Structure and correlation functions

We now analyse the structure function 〈(δφ)2〉 for the unfiltered
dataset. Results for iso-density values 0.1 ≤ ρth ≤ 10 are pre-
sented in Fig. 6. The inset represents the local scaling exponent
∂log(r) log〈(δφ)2〉. The sonic scale rs = 0.025L which is the scale
at which the local Mach number is equal to one (Federrath et al.
2021) is also represented. The structure function is normalised
by 2〈φ〉(1 − 〈φ〉), whereas the separation r is normalised by L
(the turbulence driving scale). We note that all curves converge
to the same plateau when r → ∞ as expected from Eq. (23). The
local scaling exponent is thus zero in this range of scales.

Travelling through smaller scales, we note the onset of a
power-law behaviour for 〈(δφ)2〉. The latter is particularly visible
for low ρth. For instance, the local scaling exponent is constant
over more than a decade for ρth = 0.1. The power-law range is
centred around the sonic scale. We further note that contrary to the
velocity structure functions reported by Federrath et al. (2021),
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which reveal different scaling exponents below and above the
sonic scale, the φ-field structure function exponent is roughly
the same in the sub- and supersonic range. The observed power-
law behaviour in the intermediate range of scales means that
iso-density fields are surface-fractals (cf., Figs. 1 and 2). The
value for the scaling exponent differs depending on the chosen
iso-density threshold, which means that the density field can-
not be described by a unique surface fractal dimension. Instead,
the dimension Ds of iso-density sets increases with ρth. In other
words, the fractal content of iso-density surfaces is larger for
dense clumps than dilute regions.

When the separation r tends to smaller values, the structure
function 〈(δφ)2〉 ceases to follow a power law and the local scal-
ing exponent progressively evolves to reach a value of 1 at very
small scales. The scale at which this transition appears is roughly
the same irrespective of ρth. This suggests that the inner cut-
off, which is the scale below which the iso-surface stops being
fractal, is independent of ρth. More details on this aspect will
be given later when analysing the surface–size distribution. The
fact that 〈(δφ)2〉 follows a linear regime when r → 0 means that
the iso-density surface is planar when observed at sufficiently
small scales. This result is not so intuitive since in supersonic
turbulence, the presence of shocks may yield a loss of smooth-
ness of the density field at all scales. It is however unclear if this
observed planarity of iso-density surfaces is ’physical’ or is due
to numerical dissipation.

Gauding et al. (2022) found that 〈(δφ)2〉 can be represented
by the following parametric expression:

〈(δφ)2〉(r) =
Σr
2

[
1 +

(
r
ηi

)α](ξs−1)/α

[
1 +

(
r
ηo

)α]ξs/α
. (34)

This expression accounts for the different regimes described
above and makes explicit the dependence of 〈(δφ)2〉 to Σ, ηi,
ηo and ξs. The additional parameter α describes the sharp-
ness of the transition between small, intermediate and large
scales. The merit of Eq. (34) is that all relevant features of the
phase-indicator function can be inferred unambiguously (with-
out arbitrary adjustments about say the best scaling range) using
a least-square fitting. The distributions given by Eq. (34), where
the parameters Σ, ηi, ηo and ξs are obtained by least-square fit-
ting, are represented by the grey dashed lines in Fig. 6. The lat-
ter superimpose nearly perfectly on the numerical data, which
proves the appropriateness of Eq. (34) and the least-square
method for inferring Σ, ηi, ηo and ξs without any ambiguity.

In order to assess whether the iso-density field can also be
a mass-fractal, we now proceed with the analysis of the correla-
tion function 〈φ+

mφm〉 for varying ρth. We have chosen to compute
and show the results for the correlation function of the minority
phase φm simply because it is the one that has the best prospect
of showing a power-law behaviour. Indeed, since the correlation
varies between 〈φ〉 and 〈φ〉2 at asymptotically small and large
scales, respectively, it is expected that the scaling range is max-
imised when 〈φ〉 is the smallest, hence for the minority phase.
Despite this caution, the computed correlation functions pre-
sented in Fig. 7 do not reveal any range of scales complying with
a power-law relation. This is also confirmed by the local scal-
ing exponent ∂log(r) log〈φ+

mφm〉, which is displayed in the inset.
There is only a hint of a plateau at scales much smaller than rs
for dense regions (for ρth = 10) but the value obtained for Dm
is about 2.8, which is quite close to 3 (the value obtained for
a pure surface-fractal). The conclusion here is that iso-density
fields of supersonic isothermal turbulence are not mass-fractals,
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Fig. 7. Scaling of 〈φ+
mφm〉 for ∆ = 1∆x (N = 10 0483) and ρth from 0.1 to

10.0. The inset shows the local scaling exponent ∂log(r) log〈φ+
mφm〉. The

sonic scale rs is shown by the vertical black dotted line. The grey dashed
line represents the fit using Eqs. (34) and (8).

except maybe for very dense clumps. This confirms the direct
visualisation provided in Fig. 3, which reveals that at interme-
diate scales, the iso-density field is clearly more surface-fractal
than mass-fractal.

Given that the set under consideration here is a surface-
fractal, it is expected that the mass–size relation is M(r) ∼
r3. This appears in disagreement with the consensus based
on robust numerical (Federrath et al. 2009; Kritsuk et al. 2007;
Audit & Hennebelle 2010) and observational evidence in molec-
ular clouds (see for instance the review by Roman-Duval et al.
2010; Hennebelle & Falgarone 2012, and references therein) for
a mass fractal dimension Dm < 3. The origins for this disagree-
ment are not yet clear. One first explanation is that the present
method based on the correlation of the phase indicator field does
not measure the same dimension as the one inferred by the meth-
ods of Kritsuk et al. (2007) and Federrath et al. (2009), which
consists of measuring the mass contained in boxes of size r cen-
tred around the density peaks. Second, Kritsuk et al. (2007) and
Federrath et al. (2009) use the original density field, while here
we consider a thresholded version thereof. In other words, in
the present framework, the mass can be viewed as being com-
posed of a sum of weights, which are equal to either 0 or 1,
while in Kritsuk et al. (2007) and Federrath et al. (2009), the
mass is obtained after spatial integration of ρ over a box of size
r. In Audit & Hennebelle (2010) the mass–size relationship is
also inferred from a thresholded density field, but the mass is
computed for each individual connected object and the scale is
defined from the largest eigenvalue of the inertia tensor defined
for each structure. These differences in the definition of both the
mass and the scale are likely to explain the difference between
our conclusion and the one reported by Audit & Hennebelle
(2010).

4.3. Scale-space flux

The scale distribution of the flux 〈(δu‖)(δφ)2〉 for different val-
ues of the density threshold is shown in Fig. 8. We have cho-
sen to normalise 〈(δu‖)(δφ)2〉 by KΣ. Using this normalisation,
all curves collapse at small scales, which is in agreement with
Eq. (27).
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Fig. 8. Scaling of 〈(δu‖)(δφ)2〉 for ρth from 0.1 to 10.0. The inset shows
the local scaling exponent. The horizontal dotted lines are the predicted
scaling exponents ξu + ξs.

As a first remark, we note on Fig. 8 that 〈(δu‖)(δφ)2〉 is nega-
tive irrespective of the probed scale r. This means that the quantity
〈(δφ)2〉 is transported towards smaller scales, following a direct
cascade process. Hence, our results are consistent with the clas-
sical view that turbulence acts in stirring, stretching and folding
the density field, thereby increasing its structural content. Broadly
speaking, the turbulent velocity field acts in concentrating more
interface into smaller volumes. The budget given by Eq. (26) then
suggests that the velocity divergence counteracts this effect and is
responsible for the expansion of density structures.

Second, we observe that although scaled in terms of strain
rate, which for iso-density fields plays the same role as the scalar
or the kinetic energy dissipation rate for the scalar variance or
kinetic energy (Thiesset et al. 2020; Gauding et al. 2022), the
flux depends quite significantly on the density threshold. This
suggests that the dense, neutral and dilute regions do not equally
interact with the turbulent velocity field. By contrast, the flux
decreases with increasing ρth.

Thirdly, at intermediate scales, we observe the onset of a
power-law behaviour for the flux term. This is better illustrated
by the evolution of the local scaling exponent, shown in the
inset of Fig. 8. A careful examination reveals that the scaling
range is narrower than the one observed for 〈(δφ)2〉 and appears
at scales smaller than the sonic scale, which corresponds to the
subsonic part of the turbulent spectrum. In this region of scales,
Federrath et al. (2021) found that 〈(δu‖)2〉1/2 ∼ rξu where ξu =

0.391. As per Gauding et al. (2022), assuming that the flux scales
as:

〈(δu‖)(δφ)2〉 ∼ 〈(δu‖)2〉1/2〈(δφ)2〉, (35)

we find that 〈(δu‖)(δφ)2〉 should scale as rξu+ξs . This prediction
is plotted as the horizontal dotted lines in the inset of Fig. 8.
Although not perfect, the agreement between this rather crude
reasoning and numerical data is satisfactory. In particular, it
reproduces rather well the decreasing evolution of the exponent
for increasing ρth.

Finally, we note that similarly to the observations of
Gauding et al. (2022) for iso-scalar surfaces in incompressible

1 To be precise, the value of 0.39 for the exponent reported by
Federrath et al. (2021) was obtained by summing longitudinal and trans-
verse velocity fluctuations. We have checked that it was the same for the
longitudinal component only.

turbulence, there is not or only a very limited range of scales
where the transfer rate is constant, that is where 〈(δu‖)(δφ)2〉 ∼ r.
The same observation was carried out by Ferrand et al. (2020)
for the scale-by-scale transfer rate of kinetic energy. Accord-
ing to Ferrand et al. (2020), the non-constant energy transfer
can be attributed to either shocks/discontinuities, yielding a loss
of smoothness of the velocity field (Duchon & Robert 2000;
Saw et al. 2016; Galtier 2018; Dubrulle 2019) or to non-local
effects of the large-scale numerical forcing. We may also con-
jecture that the present numerical resolution, although unprece-
dented, is still not sufficient to observe a constant transfer of
transported quantities (density, iso-density, or velocity) in the
inertial range. This question is left unanswered.

4.4. Filtered quantities

We now proceed with the two-point statistical analysis of the
phase indicator φ defined from filtered density ρ at varying filter
size ∆ and thresholded at a given ρth. For the sake of conciseness,
we do not consider all above values for ρth, but focus on ρth = 1
only. Qualitatively similar observations were carried out for the
other iso-density values.

The second-order structure function 〈(δφ)2〉 for ∆/∆x varying
from 1 to 32 is plotted in Fig. 9. As expected, increasing the filter
size results in an earlier cutoff of 〈(δφ)2〉 at small scales. The
direct consequence is that the surface density Σ decreases with
increasing ∆. More insights into this behaviour will be given in
the next section, which focuses on the surface–size relation.

We note that the differences between the distributions for dif-
ferent ∆ are rather small for ∆ < 4∆x, but becomes significant
for ∆ ≥ 8∆x. However, the behaviour of 〈(δφ)2〉 at large scales
remains unaffected by the filter size, which indicates that (i) the
measured volume fraction 〈φ〉, and (ii) the outer cutoff ηo do not
depend on ∆. This may remain valid as long as ∆ � ηo. In Fig. 9,
the fitted parametric expression given by Eq. (34) is plotted as
the grey dashed lines. Here again, it shows that the proposed
expression for 〈(δφ)2〉 agrees very well with the numerical data.
It can thus be used with confidence to unambiguously infer the
geometric quantities Σ, ηo, ηi and ξs, even when the filter size is
large, resulting in a restricted scaling range.

More insights can be provided by looking at the local scal-
ing exponent of 〈(δφ)2〉, which is shown in the inset of Fig. 9. It
reveals that the extent of the power-law range becomes narrower
with increasing ∆. The local scaling exponent appears to stabilise
around a plateau at intermediate scales whose value depends on
∆. For the present ρth, the local scaling exponent obtained by fit-
ting the numerical data using the parametric expression, Eq. (34),
increases from about 0.46 for ∆ = ∆x to 0.52 for ∆ = 32∆x. There-
fore, these variations although measurable, are much smaller than
the variations associated with different values of ρth (cf. Fig. 6).
As a first approximation, one can thus assume that ξs depends
only on the chosen iso-density, but remains constant, indepen-
dently of the resolution ∆. Speculatively, the variation of ξs with ∆,
though small, is evidence for a multi-fractal density field charac-
terised by a fractal dimension that depends on the probed scale
(Chappell & Scalo 2001). Here, it appears that when observed
with a finer resolution, the fractal dimension is increasing, mean-
ing that the interface is more tortuous, more space-filling. This
statement about the multi-fractal character of iso-density sets, is
rather hasty at this stage and a deeper analysis is required for being
confirmed. This is left for future investigations.

The flux 〈(δu‖)(δφ)2〉 for varying filter size is presented in
Fig. 10. Here again, we plot the results only for ρth = 1.0,
but qualitatively similar conclusions were drawn for the other
iso-density values. We again normalise the flux byKΣ, this quan-
tity being estimated for ∆ = 1∆x. Increasing the filter size ∆
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Fig. 9. Same as Fig. 6, but for ρth = 1.0 and ∆ varying from 1 to 32∆x.
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Fig. 10. Same as Fig. 8, but for ρth = 1.0 and ∆ varying from 1 to 32∆x.

results again in a faster drop of the flux in the small-scale limit.
This means that the measured strain rate KΣ decreases with
increasing filter size. Comparing Figs. 10 and 9, we also note that
the effect of ∆ is somewhat more visible than it was for 〈(δφ)2〉

and becomes substantial for ∆ ≥ 2∆x. However, the distributions
at large scales remain unchanged. The local scaling exponent for
the flux 〈(δu‖)(δφ)2〉 (see the inset in Fig. 10) stabilises around a
plateau whose value is only weakly affected by the filter size. As
a result of a larger inner cut-off ηi, the extent of the scaling range
diminishes measurably when ∆ is increased.

In short, as long as ηi < ∆ � ηo, the large-scale distributions
will not be affected by the filtering operation. In the opposite
limit, that is for ∆ � ηi, both 〈(δφ)2〉 and 〈(δu‖)(δφ)2〉 are inde-
pendent of ∆ over the entire range of scales. For ηi < ∆ < ηo,
the measured inner cutoff increases with ∆ (more insights into
this evolution is given in the next section), while the measured
fractal dimension is only weakly affected by the filter size.

4.5. Surface-scale relation

For surface-fractals, the surface density Σ is expected to follow
the relation (Sreenivasan et al. 1989):

Σ = κf

(
ηo

ηi

)Ds−2

, (36)

1 2 4 8 16 32
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10−3
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/L
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2.6
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D
s

Fig. 11. Inner cutoff ηi (circles) and outer cutoff ηo (triangles), together
with the fractal dimension Ds (diamonds) as a function of ∆/∆x for
different ρth ranging from 0.1 to 10.

where κf is the fractal pre-factor, which has here the dimension
of Σ (units of inverse length). It depends only on ρth but not on
∆. The quantities involved in Eq. (36) have been quantified by
fitting the numerical estimations of 〈(δφ)2〉 with the parametric
expression of Eq. (34).

Let us first focus on the dependence of ηo with respect to ∆
for different ρth. The latter is illustrated by triangles in Fig. 11.
The limit of Eq. (34) when r → ∞, together with Eq. (23),
reveals that

2〈φ〉(1 − 〈φ〉) =
Σ

2

(
ηo

ηi

)2−Ds

ηo. (37)

By virtue of Eq. (36), we then have

ηo = 4κ−1
f 〈φ〉(1 − 〈φ〉). (38)

Thus, there exists a close link between the outer cutoff, the vol-
ume fraction and the fractal pre-factor. Since the measured vol-
ume fraction 〈φ〉 does not depend on ∆ (see also Fig. 9), and that
by definition, κ f is function of ρth only, we thus predict that the
outer cutoff ηo should be constant with respect to ∆. This predic-
tion is confirmed by Fig. 11.

The fractal dimension Ds = 3 − ξs is displayed in the inset
of Fig. 11 for the different filter sizes and different density iso-
values investigated here. We note that, as observed previously for
ρth = 1.0, the fractal dimension depends much more on ρth than
on the filter size. Although small in amplitude, there seems to
be increasing evolution of Ds when ∆ decreases, before reaching
an approximately constant value for ∆ . 4∆x. Overall, assum-
ing that Ds is a function of ρth only, seems to be a reasonable
assumption.

The evolution of the inner cutoff ηi for increasing filter size
is also shown in Fig. 11. The first immediate conclusion is that
ηi depends on ∆, but remains the same in dilute, dense, or neu-
tral regions. Interestingly, Gauding et al. (2022) also found that
ηi of passive scalar iso-surfaces in incompressible turbulence
are independent of the iso-scalar value. These authors found
that ηi can be predicted as the scale at which there is equilib-
rium between production (associated with the turbulent strain
rate) and destruction of surface curvature (in their case related to
scalar diffusion). The same reasoning applied to the present flow
configuration suggests that the equilibrium between produc-
tion and destruction of interface, associated here with turbulent
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Fig. 12. Specific surface Σ/〈φm〉 as a function of ∆/∆x for ρth rang-
ing from 0.1 to 10. The dashed lines show the prediction with Σ =
κ f (ηo/ηi)Ds−2. The coloured filled regions correspond to a relative error
of ±10%.

straining and velocity divergence, respectively, is reached at the
same scale irrespective of the probed iso-density value.

The second observation is that for small values of ∆, ηi is
constant and starts increasing when ∆ & 4∆x. For large values of
∆, it is reasonable to assume that ηi ∼ ∆, while for any resolu-
tion ∆ � ηi, the interface tortuousness is fully resolved and the
measured ηi is constant and is equal to ηu

i : the unfiltered inner
cutoff. These two distinct behaviours:

ηi(∆)
{

= ηu
i if ∆ � ηu

i
∼ ∆ if ∆ � ηu

i ,
(39)

can be combined into a single expression of the form

ηi(∆) = ηu
i

1 +

(
a∆

ηu
i

)b1/b

, (40)

where a and b are two constants of order unity. In Fig. 11,
Eq. (40) is compared to the numerical data. We find that a =
1.25 and b = 2 provide satisfactory results, although we did
not seek for the most suitable values (we did not perform any
least-square fit). The unfiltered inner cutoff ηu

i is found to be
ηu

i = (1.26 ± 0.04) × 10−3L ≈ 6∆x. It is worth stressing that
here, the inner cutoff is set artificially by numerical dissipation.
In reality, the inner cutoff scale may be of the same order as the
viscous scales (Gauding et al. 2022).

In Fig. 12, we plot the specific surface density Σs, defined as
the ratio between the surface area of the interface and the vol-
ume of the minority phase. The specific surface density is thus
related to the above defined surface density Σ by Σs = Σ/〈φm〉 =
Σ/min(〈φ〉, 1 − 〈φ〉). The values for Σs are computed from the
fitted parametric expression, Eq. (34), and are represented with
the circle symbols in Fig. 12. A first observation is that the spe-
cific surface for the dense regions is much higher than that of
the neutral or dilute regions. In other words, dense regions are
the ones for which the ratio between the surface area and the
volume is the highest. This is consistent with our previous con-
clusions that the surface fractal dimension Ds is larger for high
density regions, meaning that the interface is more corrugated.

The evolution of Σs with respect to the filter size is qualita-
tively similar irrespective of the iso-density. For small values of
the filter size, for ∆ < ηu

i , it reaches a constant value and decreases

for any filter size ∆ > ηu
i . For large values of ∆, we observe the

onset of a power law for the specific surface density with respect
to ∆. The evolution of the filtered specific surface density can be
well predicted by the surface-fractal model. Indeed, using Eq. (38)
to express the fractal pre-factor κ f in terms of 〈φ〉 and ηo, we end
up with the following expression for Σs:

Σs = 4
〈φ〉(1 − 〈φ〉)
ηo〈φm〉

(
ηo

ηi

)Ds−2

. (41)

This expression is tested in Fig. 12. Predictions are illustrated
using the dashed lines, where ηo, ηi and Ds were also extracted
from the fitting procedure. We note a close agreement irrespective
of the iso-density value. Some discrepancies between the model
and the numerical data are in the range±10%, which is illustrated
by the coloured filled regions. The adequacy of Eq. (41) is further
evidence that the iso-density sets are surface-fractals.

The power-law behaviour for Σs at large ∆ can be derived.
For this purpose, one needs (i) to recall that ηo and 〈φ〉 depend
only on ρth, while (ii) ηi is proportional to ∆ in the limit of large
∆, and finally (iii) assume that Ds is constant with respect to
∆. With this, we obtain that Σs ∼ ∆2−Ds , which is the known
surface–size relation for surface fractals. This simple expression
(and the more detailed one given by Eq. (41)) can be readily used
to compare the iso-density surface area estimated using different
numerical and/or observational resolutions at the condition that
Ds is known. Equation (41) also requires the parameter ηu

i to be
known. Conversely, this relation can also be used to estimate the
surface fractal dimension and the inner cutoff, using numerical
and/or observational data filtered at different resolutions.

In case of observational data, since we dispose only of
integrated visualisations, a hypothesis is required for the third
dimension. One could for example assume fractal isotropy and
then look at the perimeter of the iso-line formed by a given
iso-value (as was done for instance by Federrath et al. 2009),
replacing the exponent by 1 − Ds in Eq. (41) (see also work
by Sánchez et al. 2005; Beattie et al. 2019a,b). Therefore, this
fractal surface-size relation could help in providing insights into
the structural content of the density field inferred from either
numerical simulations or observations. This question could be
addressed in a follow-up study.

4.6. Relation to the virial theorem

Following Ballesteros-Paredes et al. (1999) and Dib et al.
(2007), let the virial theorem be applied to a volume Vρ enclosed
by the iso-surface ρ(x, t) = ρth. The volume boundary is denoted
∂Vρ. The Lagrangian formulation for the virial theorem can
be written in symbolic form (Chandrasekhar & Fermi 1953;
McKee & Zweibel 1992; Ballesteros-Paredes 2006) as

1
2

ÏL = 2(Ekin + Eint) + Emag − 2Tint − Tmag −W, (42)

where IL is the moment of inertia of the volume under consider-
ation. The terms denoted with the letter E in Eq. (42) are the vol-
ume integrals of the kinetic, internal and magnetic energy den-
sity, respectively, given by

Ekin =
1
2

∫
Vρ
ρu2dV, (43a)

Eint =
3
2

∫
Vρ

pdV, (43b)

Emag =
1

8π

∫
Vρ

B2dV. (43c)
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The terms denoted with the letter T are surface integrals:

Tint =
1
2

∫
∂Vρ

px · n dS , (44a)

Tmag =
1

4π

∫
∂Vρ
B dS , (44b)

and represents the surface integrated pressure and magnetic
stresses, respectively. The quantity B is given by:

B = x ·
(
BB −

1
2

B2I
)
· n. (45)

The last term in Eq. (42) represents the effect of gravity and
reads:

Wint =

∫
Vρ

x · ∇ΨdV, (46)

where Ψ is the gravitational potential. In previous equations,
positions and velocity are defined relative to the positions and
velocity of the centre of mass. Dividing all terms in Eq. (42) by
Vρ = 〈φ〉V , the three volume integrals in Eq. (42) can be rewrit-
ten as:

1
〈φ〉V

(2Ekin + 2Eint + Emag −W) =

〈ρu2〉ρ + 3〈p〉ρ +
1

8π
〈B2〉ρ + 〈x · ∇Ψ〉ρ, (47)

where the brackets 〈•〉ρ stand for a volume average over Vρ:

〈•〉ρ =
1

Vρ

∫
Vρ
•dV =

1
〈φ〉V

∫
Vρ
•dV. (48)

Similarly, it is convenient to use the surface area weighted aver-
age:

〈•〉s =
1
S

∫
∂Vρ
• dS =

1
ΣV

∫
∂Vρ
• dS , (49)

which allows the surface integrals to be rewritten as

1
〈φ〉V

(2Tint + Tmag) =
1
〈φ〉

[
〈px · n〉s +

1
4π
〈B〉s

]
Σ. (50)

Finally, the virial theorem can be recast in the form

1
2V

ÏL =

[
〈ρu2〉ρ + 3〈p〉ρ +

1
8π
〈B2〉ρ + 〈x · ∇Ψ〉ρ

]
〈φ〉

−

[
〈px · n〉s +

1
4π
〈B〉s

]
Σ. (51)

As before, Vρ/V = 〈φ〉 is the volume occupied by the volume
enclosed by the surface ρ(x, t) = ρth divided by V (the observed
volume), and Σ = S/V is the surface density of this surface. A
similar expression for the virial theorem in the Eulerian form
(McKee & Zweibel 1992) can de derived.

The merit of formulating the virial theorem in the form pro-
posed here is that it draws connections between the geometry of
the density field (〈φ〉 and Σ) and its dynamics (the terms within
the brackets). It further allows the gravitational equilibrium to
be probed for each iso-density value separately. The different
terms in Eq. (51) cannot be inferred from observations without
invoking some simplifying assumptions. They can, however, be
estimated from numerical simulations (Ballesteros-Paredes et al.
1999; Dib et al. 2007), thereby opening interesting perspectives
to explore the relation between the geometry and the dynamics
of the ISM.

5. Conclusion

The present work aims at exploring the role of supersonic turbu-
lence in shaping the microstructure of the density field. For this
purpose, we propose using a two-point statistical analysis of the
phase indicator field φ defined by iso-density sets, Eq. (1). The
asymptotic behaviour for the correlation and structure functions
of iso-sets, at small, intermediate and large-scales, are derived
theoretically and discussed. These relations revealed that the
two-point statistics of φ depend on some geometric features such
as the volume-fraction, the surface density, the curvature, and the
fractal characteristics of the gas density field. It is also shown
that comparing the correlation and structure function at inter-
mediate scales, allows one to assess whether the medium under
consideration is a mass-fractal or a surface-fractal, with impor-
tant consequences for the mass–size relation. We also derive the
transport equation for the correlation and structure functions,
emphasising the role of velocity and velocity dilatation in the
structural evolution of the density field.

This framework is here appraised using data from highly
resolved numerical simulations of supersonic isothermal turbu-
lence. We consider both the original dataset together with the
associated filtered quantities in order to establish the surface–
size relation of the iso-density fields.

Our results indicate that iso-density sets of supersonic
isothermal turbulence are surface-fractals rather than mass-
fractals, except maybe for the very dense regions. The surface-
fractal dimension Ds depends significantly on the iso-density
value, and increases with increasing density threshold ρth. The
consequence is that the specific surface density is higher in
the dense regions compared to the dilute or neutral regions.
The surface-fractal dimension varies only slightly with the fil-
ter size. As a first approximation, it is thus reasonable to
assume that Ds depends only on ρth. A direct consequence of
the surface fractality of iso-density fields is a model to predict
the surface density as a function of the resolution scale. This
model could be used to assess the surface-fractal dimension Ds
from observations and numerical simulations of the interstellar
medium.

The transport equation for the correlation and structure func-
tions reveals that the turbulent cascade and dilatation are two
competing effects. The numerical simulation data indicate that
the flux in the cascade is negative, meaning that the transfer is
occurring from large to small scales (direct cascade). In other
words, irrespectively of the probed scale, turbulence acts in con-
centrating more interface into smaller volumes. Here, dilata-
tion compensates turbulent straining, such that a steady state
can be reached. A local scaling range is observed for the flux
of iso-density in scale-space, with an exponent that appears to
depend on both the velocity and the iso-density power-law scal-
ing. In agreement with Ferrand et al. (2020) for the cascade of
kinetic energy, we do not find a clear range of scales comply-
ing with a constant scale-transfer (linear flux). As anticipated
by Ferrand et al. (2020), the loss of smoothness of the velocity
field and non-local effects of the velocity forcing could explain
this observation. We may also conjecture that, though already
fine, the resolution is still not fine enough to observe a clear
separation of scales between the forcing at large scales and
numerical dissipation at small scales, for the phase indicator
field φ.

Finally, a formulation for the virial theorem in terms of φ is
developed, which makes explicit the relation between the geom-
etry of the density field (the volume and surface density) and
its dynamics. This new formulation together with the proposed
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framework based on the two-point statistics of the phase indi-
cator may offer interesting perspectives to better understand the
dynamics of the ISM.
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Appendix A: Simulations at different resolutions

In addition to analysing data at different filter size ∆x, we com-
puted the same quantities as in Figs. 11 and 12 using different
simulations at different resolutions ∆x. These simulations were
performed using different grid size of 100483, 50243, 25123,
12563 and 6283 grid points, respectively.

The evolution of the inner and outer cutoff together with the
fractal dimension for different resolution ∆x are presented in Fig.
A.1. We observe again that the fractal dimension Ds depends
mainly on the iso-density threshold, while the influence of ∆x
is weaker, though measurable. The inner cutoff ηi appears linear
throughout the range of ∆x. This means that the cutoff is set by
numerical dissipation which increases with ∆x. Finally, and the
most surprising is that the outer cutoff ηo which was found to be
constant with respect to the filter size now slightly increases with
the grid size. We do not have yet an explanation for this, but we
note however that the increase is quite weak.

With these values for ηo, ηi and Ds, the surface density Σs can
be predicted and compared to the one actually computed. Results
are shown in Fig. A.2. It reveals that the surface-fractal model
applies nicely with departures that are within 10%. The overall
conlusion is that, with all other parameters kept unchanged, car-
rying out a simulation at a given resolution ∆x is not equivalent
to coarse-graining the finer simulation using a filter size ∆x.
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Fig. A.1. Same as Fig. 11, but using data from different simulations at
different resolutions ∆x
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Fig. A.2. Same as Fig. 12, but using data from different simulations at
different resolutions ∆x
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