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ABSTRACT

Twenty years ago, Zeng [28, 30] proposed floating-point algorithms

to compute multiple roots of univariate polynomials with real or

complex coefficients beyond the so-called “attainable accuracy bar-

rier”. Based on these foundations, we propose a validated numeric

point of view on this problem. Our first contribution is an improve-

ment of Zeng’s multiplicity detection algorithm using a simple trick

that allows us to recover much higher multiplicities. As our main

contribution, we propose two floating-point validated algorithms

to compute rigorous enclosures for multiple roots. They consist in

carefully combining the ideas underlying Zeng’s numerical algo-

rithms with Newton-like fixed-point validation techniques. We also

provide a prototype Julia implementation of these algorithms.

CCS CONCEPTS

•Mathematics of computing→ Interval arithmetic; Nonlin-

ear equations; Solvers.
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multiple roots of univariate polynomials, fixed-point validation

1 MOTIVATION AND RELATEDWORKS

This article is concerned with the numerical computation and vali-

dation of multiple roots of univariate polynomials.

Numerical multiple root-finding. Polynomial root-finding over

real or complex numbers is one of the most common tasks in sci-

entific computing and a major topic in numerical analysis and

complexity theory, including nearly-optimal algorithms proposed

in the 90s [14, 17]. The complexity of this problem [16] is however

subject to the so-called “attainable accuracy barrier” in presence

of multiple roots: generic root-finding algorithms executed on an

input polynomial with coefficients truncated to 𝑂 (𝑛) digits cannot
retrieve more than𝑂 (𝑛/𝑑) digits of accuracy for a root of multiplic-

ity 𝑑 . This could require multi-precision floating-point arithmetic,

possibly far beyond the standard IEEE 53 bit double precision.

However, early remarks by Kahan [11] and Zeng’s algorithmic

contribution [28, 30] showed how to turn this ill-conditioned prob-

lem into a well-conditioned one, provided the polynomial’s multi-

plicity structure ℓ = (ℓ1, . . . , ℓ𝑘 ) ∈ N𝑘>0 is given or can be inferred.

Problem 1. Given 𝑝 = 𝑝𝑛𝑥
𝑛 + 𝑝𝑛−1𝑥𝑛−1 + · · · + 𝑝0 ∈ C𝑛 [𝑥] and

some maximum tolerated error on the input coefficients, recover the

highest possible multiplicity structure ℓ ∈ N𝑘
>0

and compute root

approximations 𝒛̃ ∈ C𝑘 such that 𝑝 ≈ 𝑝𝑛
∏𝑘

𝑖=1 (𝑥 − 𝑧𝑖 )ℓ𝑖 .

Existing approaches for this problem include Schröder’s modified

Newton operator (see [7] and references therein) with quadratic

convergence to a multiple root/a cluster of roots; or approximate

GCDs (AGCD) of numerical polynomials [4], a notion closely related

to multiple root-finding [1, 3, 5, 6, 23–25, 31]. Zeng’s approach

[28, 30] that inspires this article combines AGCD computations with

Gauss-Newton iterations on overdetermined polynomial systems

encoding the roots to overcome this attainable accuracy barrier.

Validated numerics. Starting with Moore’s interval arithmetic

[13] in the 60s, the field of validated numerics [15, 21, 27] aims at

replacing heuristic or asymptotic error bounds with rigorous, ex-

plicitly computed enclosures. It relies on set-valued representations

of mathematical objects, together with correctness-preserving algo-

rithmic operations. For example, a real number 𝑥 is represented by

an interval [𝑥] = [𝑥, 𝑥] with floating-point endpoints, i.e., 𝑥 ∈ [𝑥].
Arithmetic operations are defined on intervals to preserve this re-

lation: if 𝑥 ∈ [𝑥] and 𝑦 ∈ [𝑦], then [𝑥] ★ [𝑦] for ★ ∈ {+,−,×,÷} is
built so that 𝑥 ★𝑦 ∈ [𝑥] ★ [𝑦] holds. In particular, rounding errors

are taken into account. Similar representations exist for complex

numbers (which we will still refer to as intervals throughout this

article), e.g., a pair of real intervals for the real and imaginary parts.

Most validated numerics libraries (e.g., INTLAB [19] or Arb [10])

can compute tight enclosures for simple roots of univariate polyno-

mials. For multiple roots, a precise statement is needed to determine

with respect to what the root enclosures are validated.

Problem 2. Given [𝑝] = [𝑝𝑛]𝑥𝑛 + · · · + [𝑝0] with interval coeffi-

cients, 0 ∉ [𝑝𝑛] and ℓ ∈ N𝑘>0, compute intervals [𝒛] = ( [𝑧1], . . . , [𝑧𝑘 ])
such that for any polynomial 𝑝 ∈ [𝑝] having multiplicity structure ℓ ,
there exist unique 𝑧𝑖 ∈ [𝑧𝑖 ] such that 𝑝 = 𝑝𝑛

∏𝑘
𝑖=1 (𝑥 − 𝑧𝑖 )ℓ𝑖 .

The rigorous root enclosure methods of [20] are subject to the

attainable accuracy barrier, since they are correct w.r.t. all polyno-

mials 𝑝 ∈ [𝑝], including those having clusters of roots.

Methods based on deflation [12, 22] consist in making an overde-

termined system invertible by adding extra variables for perturba-

tions on the coefficients of 𝑝 . For instance, for a root 𝑧 of multiplicity

𝑘 , consider 𝑝 (𝑥) = 𝑝 (𝑥) + 𝜀𝑘−2𝑥𝑘−2 + · · · + 𝜀0 and solve the system

{𝑝 ( 𝑗) (𝑧) = 0, 0 ⩽ 𝑗 < 𝑘} for the variables 𝑧, 𝜀0, . . . , 𝜀𝑘−2. The com-

puted enclosure [𝑧] is guaranteed to contain a root of multiplicity

𝑘 of an 𝜀-perturbation of 𝑝 . Such a property, however, is not per se

a solution to Problem 2: the correcting perturbation 𝑝 − 𝑝 is not

guaranteed to be the same for all distinct roots, the resulting 𝑝 does

not necessarily belong to [𝑝] and its coefficients could be close to

those of 𝑝 ∈ [𝑝] while having completely different roots.
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Our contributions. They are twofold. First, after recalling the

main lines of Zeng’s two numerical algorithms GcdRoot and Pe-

jRoot in the beginning of Section 2, we improve the former (for

multiplicity detection) using a simple trick. This gives Algorithm

GcdRoot* in Section 2.3 which can correctly recover much higher

multiplicities in our numerical experiments.

As our main contribution in Section 3, we propose an a posteriori

validation method to simultaneously compute rigorous enclosures

for the multiple roots, by carefully combining the ideas under-

lying Zeng’s numerical algorithms with Newton-like fixed-point

validation techniques. In particular, the combined nonlinear and

overdetermined nature of Problem 2 is an obstacle for classical

fixed-point validation. To overcome this, we design an original two-

phase strategy based on two complementary validated algorithms

ValGcdRoot and ValPejRoot. Our focus is on validating multiple

roots beyond the attainable accuracy barrier: all our examples were

executed in machine double precision to highlight this point.

Our implementation ValidatedMultipleRoots.jl1 is a pro-

totype open-source package in Julia [2]. It is based on Verzani’s

implementation of Zeng’s algorithms in the Polynomials.jl pack-
age

2
. Although Zeng’s original implementation in Matlab [29] is

still available
3
, we found more convenient to rely on this recent

Julia code, notably for multi-precision and interval computations.

A note about complexity. We do not focus on the complexity

of our algorithm: a complete complexity analysis would require a

priori bounds for the precision needed to solve our problem, which

would go beyond the scope and length of this paper. Nevertheless,

if we stick to finite precision computations and only use classical

matrix multiplication, it is easy to check that our algorithms run in

complexity O˜ (𝑘2 𝑛), where 𝑛 is the input degree and 𝑘 the number

of distinct roots. For instance, computations of the example shown

in Table 1 are almost linear in 𝑛 (𝑘 = 4 therein is constant).

2 ZENG’S ALGORITHM

Zeng’s method to compute multiple roots of inexact polynomi-

als [28, 30] mainly consists in numerically solving overdetermined

systems of linear and nonlinear equations, in some least-squares

sense. The necessary background is recalled in Section 2.1. Then

we summarise the main ideas of the two algorithms GcdRoot and

PejRoot composing Zeng’s method in Section 2.2. After that, in

Section 2.3, we present our first contribution, Algorithm GcdRoot*:

a modification of GcdRoot that overcomes some of its limitations

by reducing the impact of errors in the input.

2.1 Preliminaries.

The following paragraphs summarise notions such as pejorative

manifolds, Sylvester matrices and approximate GCD. They make it

possible to talk about multiple roots in a numerical context with

precise mathematical definitions.

Pejorative manifolds. Given a multiplicity structure ℓ ∈ N𝑘
>0

with ℓ1 + · · · + ℓ𝑘 = 𝑛, the function𝐺ℓ maps the roots 𝒛 ∈ C𝑘 to the

1
https://gitlab.univ-lille.fr/florent.brehard/ValidatedMultipleRoots.jl/ – v. 0.0.1

2
https://juliamath.github.io/Polynomials.jl/

3
see “Supplemental Material” at https://dl.acm.org/doi/10.1145/992200.992209

coefficients of the polynomial 𝑝 =
∏𝑘

𝑖=1 (𝑥 − 𝑧𝑖 )ℓ𝑖 , i.e.,

𝐺ℓ : 𝒛 ∈ C𝑘 ↦→
©­­«
𝑔0 (𝒛)

.

.

.

𝑔𝑛−1 (𝒛)

ª®®¬ ∈ C𝑛,
s.t. 𝑝 = 𝑥𝑛 + 𝑔𝑛−1 (𝒛)𝑥𝑛−1 + · · · + 𝑔0 (𝒛).

Definition 2.1. The pejorative manifold Πℓ is the image of the

map 𝐺ℓ : C𝑘 → C𝑛 . It is a manifold (with singularities) of the

coefficient space C𝑛 parameterised by the roots (𝑧1, . . . , 𝑧𝑘 ) ∈ C𝑘 .
The tangent space of Πℓ at 𝒛 ∈ C𝑘 is given by the Jacobian:

𝐽𝐺ℓ (𝒛) =
(
𝒒1

���� . . . ���� 𝒒𝒌 )
∈ C𝑛×𝑘 ,

where 𝑞𝑖 := 𝑞𝑖,𝑛−1𝑥𝑛−1 + · · · + 𝑞𝑖,0 := −
ℓ𝑖

𝑥 − 𝑧𝑖
𝑝.

(1)

The singularities of Πℓ are the points where 𝐽𝐺ℓ (𝒛) is rank deficient.
This happens when at least two roots 𝑧𝑖 and 𝑧 𝑗 coincide: the cor-

responding point belongs to the pejorative submanifold Πℓ ′ ⊆ Πℓ

associated to a higher multiplicity structure ℓ ′ ∈ N𝑘′
>0

with 𝑘 ′ < 𝑘 .

As it will be seen in Section 2.2, Algorithm PejRoot of [28] relies

on Gauss-Newton iterations to converge to a solution of𝐺ℓ (𝒛) = 𝒑
on the pejorative manifold Πℓ .

Convolution and Sylvester matrices. Notions like divisibility and

GCD in C[𝑥] may seem ill-posed in a numerical context with errors

or uncertain data. Yet, using convolution and Sylvester matrices,

these questions are reduced to classical problems in linear algebra.

They can be solved using efficient algorithms in numerical linear

algebra, such as the singular value decomposition (SVD) [8, §2.5].

Let 𝑝 ∈ C𝑛 [𝑥]. For a given 𝑘 ⩾ 0, the multiplication by 𝑝 induces

a morphism C𝑘 [𝑥] → C𝑛+𝑘 [𝑥], the representation of which in the

canonical bases is given by the 𝑘-th convolution matrix 𝐶𝑘 (𝑝):

𝐶𝑘 (𝑝) =

©­­­­­­­­«

𝑝0

𝑝1
. . .

.

.

.
. . . 𝑝0

𝑝𝑛 𝑝1
. . .

.

.

.
𝑝𝑛

ª®®®®®®®®¬
∈ C(𝑛+𝑘+1)×(𝑘+1) .

For two polynomials 𝑝 ∈ C𝑛 [𝑥] and 𝑞 ∈ C𝑚 [𝑥] of respective
coefficients 𝒑 ∈ C𝑛+1 and 𝒒 ∈ C𝑚+1, the coefficients of 𝑝𝑞 are

given by the vector 𝐶𝑚 (𝑝) 𝒒 = 𝐶𝑛 (𝑞) 𝒑.
Definition 2.2. If 𝑝 ∈ C𝑛 [𝑥], 𝑞 ∈ C𝑚 [𝑥], and 0 ⩽ 𝑑 ⩽ min(𝑛,𝑚),

then the 𝑑-th Sylvester matrix of (𝑝, 𝑞) is

𝑆𝑑 (𝑝, 𝑞) =
(
𝐶𝑚−𝑑 (𝑝)

���� 𝐶𝑛−𝑑 (𝑞)) ∈ C(𝑛+𝑚−𝑑+1)×(𝑛+𝑚−2𝑑+2) .
𝑆𝑑 (𝑝, 𝑞) represents the map

(𝑤, 𝑣) ∈ C𝑚−𝑑 [𝑥] × C𝑛−𝑑 [𝑥] ↦→ 𝑤𝑝 + 𝑣𝑞 ∈ C𝑛+𝑚−𝑑 [𝑥] .
These matrices are connected with the GCD of 𝑝 and 𝑞.

Lemma 2.3 ([31, Prop. 4]). Let 𝑝 ∈ C𝑛 [𝑥], 𝑞 ∈ C𝑚 [𝑥], and
𝑢 be their GCD. Denote by 𝑑 the degree of 𝑢. Then 𝑆𝑖 (𝑝, 𝑞) has full
(column) rank for𝑑 < 𝑖 ⩽ min(𝑛,𝑚), whereas 𝑆𝑑 (𝑝, 𝑞) has a kernel of
dimension 1 spanned by the vector (𝒘,−𝒗) corresponding to cofactors
𝑤 ∈ C𝑚−𝑑 [𝑥] and 𝑣 ∈ C𝑛−𝑑 [𝑥] such that 𝑝 = 𝑢𝑣 and 𝑞 = 𝑢𝑤 .

https://gitlab.univ-lille.fr/florent.brehard/ValidatedMultipleRoots.jl/
https://juliamath.github.io/Polynomials.jl/
https://dl.acm.org/doi/10.1145/992200.992209
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The numerical treatment of Sylvester matrices underlies the key

concept of approximate GCD.

Approximate GCD (AGCD). Computing the exact GCD of two

polynomials 𝑝 and 𝑞 is an ill-posed problem, since under generic

perturbations of the input, the result is always 1. The notion of

approximate GCD [5] [4, §1] offers a robust definition by asking for

the exact GCD of perturbed polynomials 𝑝 + 𝛿𝑝 and 𝑞 + 𝛿𝑞.

Definition 2.4. Let 𝑝 ∈ C𝑛 [𝑥], 𝑞 ∈ C𝑚 [𝑥] and 𝜀 ⩾ 0. We say that

the polynomial 𝑢 of degree 𝑑 ⩽ min(𝑛,𝑚) is an 𝜀-GCD for (𝑝, 𝑞) if:
(i) 𝑢 is the exact GCD of a pair (𝑝+𝛿𝑝, 𝑞+𝛿𝑞) with 𝛿𝑝 ∈ C𝑛 [𝑥],

𝛿𝑞 ∈ C𝑚 [𝑥], and ∥𝛿𝒑∥2
2
+ ∥𝛿𝒒∥2

2
⩽ 𝜀2;

(ii) No polynomial of degree larger than 𝑑 satisfies condition

(i);

(iii) 𝑢 minimises ∥𝛿𝒑∥2
2
+ ∥𝛿𝒒∥2

2
among degree-𝑑 polynomials

satisfying (ii).

The method proposed in [5] relies on the observation that the

GCD of 𝑝 + 𝛿𝑝 and 𝑞 + 𝛿𝑞 has degree at least 𝑑 if and only if

𝑆𝑑 (𝑝 +𝛿𝑝, 𝑞+𝛿𝑞) is rank-deficient. Calling 𝜎−1 the smallest singular

value of 𝑆𝑑 (𝑝, 𝑞) computed by SVD, they moreover prove that such

an 𝜀-perturbation (𝛿𝑝, 𝛿𝑞) exists only if𝜎−1 ⩽ 𝜀
√︁
max(𝑛,𝑚) − 𝑑 + 1.

Combining this necessary condition with a quadratic optimisation

strategy to refine the AGCD 𝑢 together with the cofactors 𝑣 and𝑤 ,

the authors of [31] proposed a fully automated algorithm AGCD

that computes the 𝜀-GCD of 𝑝 and𝑞. This routine is a key ingredient

of Algorithm GcdRoot of [28] summarised in Section 2.2 below.

2.2 Zeng’s algorithm

Zeng’s method is based on two algorithms called GcdRoot and

PejRoot. GcdRoot infers the multiplicity structure of the input

polynomial up to some user-defined tolerance, and computes root

approximations with moderate accuracy. These roots serve as an

initialiser for PejRoot which refines them to high accuracy.

2.2.1 Algorithm GcdRoot. It infers the multiplicity structure of

𝑝 ∈ C𝑛 [𝑥] (together with root approximations) by inspecting the

AGCD, defined in the previous section, of 𝑝 and 𝑝 ′.
We now specialise Lemma 2.3 to the case (𝑝, 𝑞) = (𝑝, 𝑝 ′). For

1 ⩽ 𝑘 ⩽ 𝑛 the 𝑘-th discriminant matrix Δ𝑘 (𝑝) is:

Δ𝑘 (𝑝) := 𝑆𝑛−𝑘 (𝑝, 𝑝 ′) =
(
𝐶𝑘−1 (𝑝)

���� 𝐶𝑘 (𝑝 ′)) ∈ C(𝑛+𝑘)×(2𝑘+1) .
Lemma 2.5. 𝑝 ∈ C𝑛 [𝑥] has 𝑘 distinct roots in C if and only if

all Δ𝑖 (𝑝) for 1 ⩽ 𝑖 < 𝑘 have full column rank and Δ𝑘 (𝑝) has a
kernel of dimension 1. This kernel is spanned by the vector (𝒘,−𝒗)
corresponding to the coefficients of the cofactors

𝑣 =

𝑘∏
𝑖=1

(𝑥 − 𝑧𝑖 ) ∈ C𝑘 [𝑥], 𝑤 =

𝑘∑︁
𝑖=1

ℓ𝑖

∏
𝑗≠𝑖

(𝑥 − 𝑧 𝑗 ) ∈ C𝑘−1 [𝑥], (2)

where 𝑧𝑖 are the roots of 𝑝 with multiplicity ℓ𝑖 . The polynomial

𝑢 =

𝑘∏
𝑖=1

(𝑥 − 𝑧𝑖 )ℓ𝑖−1 ∈ C𝑛−𝑘 [𝑥],

is the GCD of 𝑝 and 𝑝 ′, and we have 𝑢𝑣 = 𝑝 , 𝑢𝑤 = 𝑝 ′.

This result is used repeatedly (following somehow the symbolic

square-free decomposition algorithm) to define algorithmGcdRoot

of [30], that we briefly recall:

Algorithm 1 GcdRoot(𝑝, 𝜀)
Input: 𝑝 ∈ C𝑛 [𝑥] and tolerance 𝜀 on the input error

Output: roots 𝒛̃ ∈ C𝑘 together with multiplicities ℓ ∈ N𝑘
>0

1: Compute the AGCD 𝑢 of 𝑝 and 𝑝 ′ with cofactors 𝑣,𝑤

2: Compute the (simple) roots 𝒛̃ of 𝑣

3: Set 𝑢 (1) = 𝑢 and for 𝑡 = 2, . . . , compute 𝑢 (𝑡 ) as the AGCD of

𝑢 (𝑡−1) and𝑢 (𝑡−1)
′
with cofactors 𝑣 (𝑡 ) ,𝑤 (𝑡 ) , until deg(𝑢 (𝑡 ) ) = 0

4: Compute the (simple) roots of all the 𝑣 (𝑡 ) ’s and match them to

roots in 𝒛̃.

5: Set ℓ𝑖 := min{𝑡 s.t. 𝑧𝑖 is not a root of 𝑣
(𝑡+1) }

6: Return 𝒛̃, ℓ

In [30], more details are given on how to propagate the error

tolerances in the successive AGCD computations (step 3).

2.2.2 Algorithm PejRoot. The second algorithm proposed by Zeng

in [28, 30], PejRoot, takes as input initial root approximations

𝒛̃0 and the corresponding multiplicity structure ℓ . Such data is

computed by GcdRoot, as previously seen.

Assume 𝑝 ∈ C𝑛 [𝑥] is monic (otherwise rescale it by the inverse

of its leading coefficient): 𝑝 = 𝑥𝑛 +𝑝𝑛−1𝑥𝑛−1 + · · · +𝑝0 with 𝒑 ∈ C𝑛 .
𝒑 is supposed to lie on the pejorative manifold Πℓ , or nearby due

to errors in the input coefficients of 𝑝 . Moreover, the initial roots

𝒛̃0 define an initial point 𝒑0 = 𝐺ℓ (𝒛̃0) on Πℓ .

Algorithm PejRoot consists in applying Gauss-Newton iterations

to bring 𝒑0 closer and closer to 𝒑 (or its projection onto Πℓ ). The

underlying system of equations,

𝐺ℓ (𝒛) = 𝒑 ⇔


𝑔0 (𝑧1, . . . , 𝑧𝑘 ) = 𝑝0,

.

.

.

𝑔𝑛−1 (𝑧1, . . . , 𝑧𝑘 ) = 𝑝𝑛−1,

(3)

consists of 𝑛 polynomial equations in 𝑘 variables 𝑧𝑖 . Except in the

case where all roots of 𝑝 are simple, we have 𝑘 < 𝑛 and (3) is

overdetermined. Its Jacobian 𝐽𝐺ℓ (𝒛), Eq. (1), is rectangular with full

column rank. Instead of classical Newton iterations, which require a

square, invertible Jacobian, PejRoot uses Gauss-Newton iterations:

𝒛̃𝒕+1 = 𝒛̃𝒕 − 𝐽𝐺ℓ (𝒛̃𝒕 )
+ (𝐺ℓ (𝒛̃𝒕 ) − 𝒑),

where 𝐽𝐺ℓ (𝒛̃𝒕 )+ is theMoore-Penrose inverse (a.k.a. pseudoinverse) of

𝐽𝐺ℓ (𝒛̃𝒕 ). In practice, one merely computes the least-squares solution

𝒉𝒕 ∈ C𝑘 of the overdetermined linear system:

𝐽𝐺ℓ (𝒛̃𝒕 ) 𝒉𝒕 = 𝐺ℓ (𝒛̃𝒕 ) − 𝒑.

Proper convergence results may be found in [30, §3].

2.3 First contribution: improving GcdRoot

Larger errors in the coefficients of 𝑝 of multiplicity structure ℓ ∈
N𝑘
>0

increase the risk of the 𝜀-GCD of 𝑝 and 𝑝 ′ having degree greater
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Algorithm 2 PejRoot(𝑝, ℓ, 𝒛̃0)

Input: 𝑝 ∈ C𝑛 [𝑥], ℓ ∈ N𝑘>0 and initial root approx 𝒛̃0 ∈ C𝑘

Output: refined root approximations 𝒛̃ ∈ C𝑘

For 𝑡 = 0, 1, . . . :

1: Compute the least-squares solution 𝒉𝒕 ∈ C𝑘 minimising the

residue 𝑑𝑡 = ∥ 𝐽𝐺ℓ (𝒛̃𝒕 ) 𝒉𝒕 −𝐺ℓ (𝒛̃𝒕 ) + 𝒑∥2.
2: Update the approximation: 𝒛̃𝒕+1 = 𝒛̃𝒕 − 𝒉𝒕 .
3: If 𝑑𝑡 is below some tolerance, return 𝒛̃𝒕+1, otherwise continue.

than 𝑛 − 𝑘 . If so, GcdRoot infers a wrong multiplicity structure ℓ ′,
corresponding to a pejorative submanifold Πℓ ′ ⊂ Πℓ .

However, the repeated use of AGCD extraction in step 3 of Gcd-

Root is another significant source of errors that can be avoided if

one can infer ℓ directly, once the 𝑧𝑖 have been computed. This is our

first contribution: the procedure GcdRoot* based on the following

simple observation to deduce the ℓ𝑖 from the cofactors 𝑣,𝑤 .

Lemma 2.6. If 𝒛 = (𝑧1, . . . , 𝑧𝑘 ) are the distinct multiple roots of

𝑝 ∈ C𝑛 [𝑥], then the corresponding multiplicities ℓ𝑖 are

ℓ𝑖 =
𝑤 (𝑧𝑖 )
𝑣 ′(𝑧𝑖 )

,

where 𝑣 and𝑤 are the cofactors as in Lemma 2.5.

The first-order sensitivity of this formula w.r.t. perturbations 𝛿𝑣

and 𝛿𝑤 on the coefficients of 𝑣 and𝑤 is given by:

𝛿ℓ𝑖 =
𝑣 ′(𝑧𝑖 )𝑤 ′(𝑧𝑖 ) − 𝑣 ′′(𝑧𝑖 )𝑤 (𝑧𝑖 )

𝑣 ′(𝑧𝑖 )3
(𝛿𝑣) (𝑧𝑖 ) −

𝑤 (𝑧𝑖 )
𝑣 ′(𝑧𝑖 )2

(𝛿𝑣)′(𝑧𝑖 )

+ 1

𝑣 ′(𝑧𝑖 )
(𝛿𝑤) (𝑧𝑖 ) +𝑂

(
∥𝛿𝑣 ∥2 + ∥𝛿𝑤 ∥2

)
.

Proof. The formula for ℓ𝑖 directly follows from (2) in Lemma 2.5:

we have𝑤 (𝑧𝑖 ) = ℓ𝑖
∏

𝑗≠𝑖 (𝑧𝑖 − 𝑧 𝑗 ) and 𝑣 ′(𝑧𝑖 ) =
∏

𝑗≠𝑖 (𝑧𝑖 − 𝑧 𝑗 ).
Now suppose 𝑣 and𝑤 are perturbed by 𝛿𝑣 and 𝛿𝑤 . The resulting

perturbations 𝛿𝑧𝑖 of the roots 𝑧𝑖 follow from (𝑣 + 𝛿𝑣) (𝑧𝑖 + 𝛿𝑧𝑖 ) = 0:

𝛿𝑧𝑖 =
(𝛿𝑣) (𝑧𝑖 )
𝑣 ′(𝑧𝑖 )

+𝑂
(
∥𝛿𝑣 ∥2

)
.

By differentiating the relation for ℓ𝑖 w.r.t. 𝑣,𝑤, 𝑧𝑖 and replacing 𝛿𝑧𝑖 ,

we obtain the desired estimate involving 𝛿𝑣 and 𝛿𝑤 . □

In particular, the sensitivity analysis shows that the technique

used by Algorithm GcdRoot* to recover the multiplicity ℓ𝑖 of the

root 𝑧𝑖 (line 3) is robust w.r.t. the numerical errors of 𝑣 and 𝑤

computed in line 1, except, as expected, if this root is too close to

other roots of 𝑝 (then 𝑣 ′(𝑧𝑖 ) tends to 0).

Numerical example. We compare ourmodified routineGcdRoot*

to Zeng’s original GcdRoot and show how this improves the total

numerical multiple-root finding process solving Problem 1.

Example 1. Consider, as in [30, §4.6], the polynomial

𝑝𝑚 = (𝑥 − 1)4𝑚 (𝑥 − 2)3𝑚 (𝑥 − 3)2𝑚 (𝑥 − 4)𝑚, (4)

for 𝑚 = 1, 2, . . . , with coefficients truncated to standard double

precision (53 bits). Table 1 summarises the multiplicity structures

recovered by Zeng’s GcdRoot and our GcdRoot*. GcdRoot fails

as soon as 𝑚 = 5, and the obtained ℓ𝑖 rapidly diverge too much

Algorithm 3 GcdRoot*(𝑝, 𝜀)
Input: 𝑝 ∈ C𝑛 [𝑥] and tolerance 𝜀 on the input error

Output: roots 𝒛̃ ∈ C𝑘 together with multiplicities ℓ ∈ N𝑘
>0

1: Compute the AGCD 𝑢 of 𝑝 and 𝑝 ′ with cofactors 𝑣,𝑤

2: Compute the (simple) roots 𝒛̃ of 𝑣

3: Compute multiplicities ℓ𝑖 as in Lemma 2.6, and round them to

the nearest integer

4: Return 𝒛̃, ℓ

𝑚 GcdRoot GcdRoot* 𝑚 GcdRoot*

4 [16, 12, 8, 4] [16, 12, 8, 4] 49 [196, 147, 98, 50]
5 [22, 15, 9, 4] [20, 15, 10, 5] 56 [224, 168, 112, 57]
6 [37, 11, 7, 5] [24, 18, 12, 6] 59 [236, 178, 119, 58]
7 [47, 8, 10, 5] [28, 21, 14, 7] 63 [252, 189, 127, 62]
8 [56, 8, 11, 5] [32, 24, 16, 8] 64 [256, 193, 130, 62]
9 [68, 7, 10, 5] [36, 27, 18, 9] 65 [260, 195, 129, 66]

Table 1: Multiplicity structures of 𝑝𝑚 (4) recovered by Gcd-

Root and GcdRoot*. Boldface indicates incorrect results.

The right part gives the first erroneous cases of GcdRoot*.

from the actual values. On the other hand, using the same toler-

ance parameters, GcdRoot* succeeds up to𝑚 = 48, and the first

incorrectly recovered multiplicities (right part of the table) only

differ from the actual ones by a few units.

Remark 2.7. In Zeng’s original Matlab implementation [29], Gc-

dRoot on the same example succeeds for𝑚 up to 7 and root ap-

proximations are more accurate. This is probably due to the fact

that the use of rescaling weights in the AGCD procedure was not

re-implemented in the more recent Julia package Polynomials.jl
we rely on. It would be interesting to see the effect of weights on

both GcdRoot and GcdRoot*.

About conditioning and numerical stability. The conditioning of

Problem 1 for a given ℓ , i.e., the perturbation on the roots 𝒛 induced
by a multiplicity-preserving perturbation of the coefficients of 𝑝

in system (3), is given by the norm of 𝐽𝐺ℓ (𝒛)+, which is equal to

the smallest singular value of 𝐽𝐺ℓ (𝒛) [30, §3.4]. In a floating-point

arithmetic context, we may prefer the relative structure-preserving

condition number (see, e.g., [26, §12] or [9, §1.6]):

𝜅ℓ :=
∥ 𝐽𝐺ℓ (𝒛)+∥
∥𝒛∥/∥𝒑∥ .

Hence, knowing ℓ , the problem of computing multiple roots is

not subject to infinite sensitivity: only finitely many bits are lost.

Moreover, experiments in [30, §3.4] show that 𝜅ℓ is moderate, even

with high multiplicities, if the distinct roots are well separated.

However, rounding errors during execution also affect the com-

puted roots. For PejRoot, each iteration solves a linear least-squares

problem using the QR factorisation, which is backward stable [9,

Thm. 20.3] but does not exploit the specific definition of 𝐽𝐺ℓ (𝒛).
Therefore, rounding errors grow with the matrix condition num-

ber 𝜅 (𝐽𝐺ℓ (𝒛)) = ∥ 𝐽𝐺ℓ (𝒛)∥∥ 𝐽𝐺ℓ (𝒛)+∥. Similarly, the SVD used by the
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AGCD routine in GcdRoot and GcdRoot* to compute the cofactors

𝑣 and𝑤 is backward stable [26, Thm. 19.4]. Therefore, the rounding

errors in 𝑣 (from which the (simple) roots are extracted afterwards)

grow with 𝜅 (Δ𝑘 (𝑝)) = ∥Δ𝑘 (𝑝)∥∥Δ𝑘 (𝑝)+∥.
Although it is claimed in [30] that PejRoot is more accurate

than GcdRoot, our experiments show it is not a general fact (see

Table 3). A deeper numerical analysis of both methods would be

necessary to understand in which cases one is better than the other.

3 VALIDATING MULTIPLE ROOTS

To solve Problem 2, we propose validation algorithms that compute

rigorous error bounds on the numerical roots obtained previously.

Algorithm ValPejRoot computes accurate bounds by translating

Problem 2 into the straightforward, well-conditioned system (3)

already used by PejRoot. Unfortunately, this system combines two

difficulties: nonlinearity and overdetermination (see Section 3.3).

The consequence is that ValPejRoot must rely on a priori root en-

closures to compute tighter rigorous bounds. Such initial enclosures

are computed by Algorithm ValGcdRoot, detailed in Section 3.2. It

relies on a different system to encode the roots, inspired by Zeng’s

GcdRoot, whose structure makes it possible to depend on no a pri-

ori root enclosures. Before describing these two algorithms, which

together solve Problem 2 (numerical examples are given in Section

3.4), we first provide preliminaries about interval arithmetic and a

posteriori validation based on Newton-like fixed-point operators.

3.1 Preliminaries for the validation strategy.

Interval arithmetic. We call IR and IC the sets of real or complex

intervals representable using floating-point arithmetic. Intervals

are denoted using brackets: [𝑎], [𝑥], [𝑦], etc. Then 𝑎 ∈ [𝑎] simply

means that 𝑎, as an exact real or complex number, is contained in

the mathematical set represented by [𝑎]. These notations extend
entrywise to vectors: 𝒂 ∈ [𝒂] with 𝒂 ∈ R𝑛 (or C𝑛) and [𝒂] ∈ IR𝑛
(or IC𝑛) if 𝑎𝑖 ∈ [𝑎𝑖 ] for all 𝑖 . Analogous notations are used for

polynomials (given by their coefficients) and matrices (given by

their entries). Whenever 𝑎 is already defined but not [𝑎], the latter
denotes the singleton {𝑎} by default. Moreover, given 𝑎 ∈ R or

C and 𝑟 ∈ R⩾0, [𝑎 ± 𝑟 ] is the interval of radius 𝑟 centred at 𝑎.

[𝒂 ± 𝒓] ∈ IR𝑛 or IC𝑛 is defined analogously for 𝒂 ∈ R𝑛 or C𝑛 and

𝒓 ∈ R𝑛⩾0. Themagnitude of [𝑎] is defined as mag [𝑎] := max{|𝑎 |, 𝑎 ∈
[𝑎]} ∈ R⩾0, and it is extended entrywise to vectors and matrices:

mag [𝒂] ∈ R𝑛⩾0,mag [𝐴] ∈ R𝑛×𝑘⩾0 .

A function [𝑓 ] : IC𝑘 → IC is said to be an interval extension

of 𝑓 : C𝑘 → C if for all 𝑎1 ∈ [𝑎1], . . . , 𝑎𝑘 ∈ [𝑎𝑘 ], 𝑓 (𝑎1, . . . , 𝑎𝑘 ) ∈
[𝑓 ] ( [𝑎1], . . . , [𝑎𝑘 ]). Most interval arithmetic libraries provide in-

terval extensions for basic functions such as arithmetic operations

+,−,×,÷ and some elementary functions. They will be the building

blocks of our validation algorithms.

Validation using Newton-like fixed-point operators. Let 𝐻 : C𝑘 →
C𝑘 be a system of equations, and let 𝒙∗ ∈ C𝑘 denote an exact

solution of 𝐻 (𝒙) = 0. In many situations, 𝒙∗ is not expressed

as a finite composition of arithmetic operations and elementary

functions, so that basic interval arithmetic is not sufficient to get

an interval enclosure of it.

Figure 1: Theorem 3.2 in dimension 𝑘 = 2, with the image

(green solid shape) of the box [𝒙̃ ± 𝒓] contained in the dashed

box [𝑁𝐻 (𝒙̃) ± Λ 𝒓], thus satisfying inequality (6).

A posteriori validation consists in expressing 𝒙∗ as a fixed point

of a contracting operator, then deducing rigorous and tight error

bounds for any input approximation 𝒙̃ of 𝒙∗. A popular option for

locally invertible 𝐻 is to use a Newton-like operator:

𝑁𝐻 (𝒙) := 𝒙 −𝐴𝐻 (𝒙), (5)

where 𝐴 ∈ C𝑘×𝑘 is an approximate inverse of the Jacobian 𝐽𝐻 (𝒙̃)
of 𝐻 at 𝒙̃ . Then the zeros of 𝐻 are exactly the fixed point of 𝑁𝐻

(provided𝐴 is injective, which will be a byproduct of the validation).

We will rigorously check that 𝑁𝐻 is a contraction around 𝒙̃ .

Definition 3.1. 𝑁𝐻 is said to be Λ(𝒓)-Lipschitz over [𝒙̃±𝒓] ∈ IC𝑘
with 𝒓 ∈ R𝑘⩾0 if Λ(𝒓) ∈ R

𝑘×𝑘
⩾0 satisfies:

|𝑁𝐻 (𝒙) − 𝑁𝐻 (𝒙 ′) | ⩽ Λ(𝒓) |𝒙 − 𝒙 ′ | for all 𝒙, 𝒙 ′ ∈ [𝒙̃ ± 𝒓] .

Such a Lipschitz matrix Λ(𝒓) for 𝑁𝐻 can be rigorously computed

by bounding the Jacobian of 𝑁𝐻 over 𝒙 ∈ [𝒙̃ ± 𝒓]:
𝐽𝑁𝐻
(𝒙) = 𝐼𝑘 −𝐴 𝐽𝐻 (𝒙).

We also need to compute a rigorous bound 𝜹 ∈ R𝑘⩾0 on the defect:

𝜹 ⩾ |𝑁𝐻 (𝒙̃) − 𝒙̃ | = |𝐴𝐻 (𝒙̃) |.
Then the following generalisation of Banach’s fixed-point principle

(see e.g., [18, Thm. 1], or [21, Thm. 10.6] for an analogous statement

due to Krawczyk) asserts the existence and uniqueness of a fixed

point 𝒙∗ in [𝒙̃ ± 𝒓].

Theorem 3.2. If the following inequality holds entrywise:

Λ(𝒓) 𝒓 + 𝜹 < 𝒓, (6)

then 𝑁𝐻 is a contraction over [𝒙̃ ± 𝒓]: the spectral radius (i.e., the
modulus of the largest eigenvalue) 𝜆 := 𝜌 (Λ(𝒓)) satisfies 𝜆 < 1, and

𝑁𝐻 admits a unique fixed point 𝒙∗ inside [𝒙̃ ± 𝒓].

For the sake of completeness, we provide a routine Validat-

edBounds which automates the process of finding a tight 𝒓 satis-
fying (6) above. It is similar to Rohn’s routine [18, §3] or Rump’s

𝜀-inflation method [21, Algo. 10.7], except that we here assumeΛ(𝒓)
to depend on 𝒓 , since we are concerned with nonlinear systems.

Moreover Λ is assumed to be nondecreasing: if 𝒓 ⩽ 𝒓 ′ (entrywise),
then Λ(𝒓) ⩽ Λ(𝒓 ′) (entrywise).
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Algorithm 4 ValidatedBounds(Λ, 𝜹)

Input: procedure 𝒓 ∈ R𝑘⩾0 ↦→ Λ(𝒓) ∈ R𝑘×𝑘⩾0 , and 𝜹 ∈ R𝑘⩾0
Output: 𝒓 ∈ R𝑘⩾0 satisfying Λ(𝒓)𝒓 + 𝜹 < 𝒓 , or failure message

Parameters: 𝜀 = 10
−10, 𝑡max = 20 (default values)

1: 𝜂𝑖 ←
{
𝜀𝛿𝑖 if 𝛿𝑖 > 0

𝜀𝛿0 if 𝛿𝑖 = 0

for 𝑖 = 1 . . . 𝑘 , where 𝛿0 ← min

𝛿𝑖>0
𝛿𝑖

2: 𝜹+ ← 𝜹 + 𝜼
3: 𝒓0 ← 0 ∈ R𝑘
4: for 𝑡 = 0 . . . 𝑡max − 1 do
5: 𝒓𝒕+1 ← Λ(𝒓𝒕 ) 𝒓𝒕 + 𝜹+
6: if 𝒓𝒕+1 − 𝒓𝒕 < 𝜼 then return 𝒓𝒕 end if

7: end for

8: return FAIL

Proposition 3.3. If Λ : R𝑘⩾0 → R
𝑘×𝑘
⩾0 is continuous nondecreas-

ing and 𝜹 ≠ 0 ∈ R𝑘⩾0, then ValidatedBounds(Λ, 𝜹) satisfies:
(i) If it succeeds in a finite number of iterations, then the com-

puted vector 𝒓 satisfies inequality (6).

(ii) If inequality (6) with 𝜹 replaced by the 𝜀-inflated vector 𝜹+

(see lines 1–2) admits a solution, then the algorithm computes

a solution 𝒓 satisfying (6) in a finite number of iterations.

Proof. The proof is similar to the linear case in [18, Thm. 2]. □

The overdetermined case. Particular care is needed when extend-

ing this strategy to the overdetermined case 𝐻 : C𝑘 → C𝑛 with

𝑘 < 𝑛. Linear overdetermined systems have been investigated in

[18]. Algorithms ValGcdRoot and ValPejRoot in the following

rely on overdetermined nonlinear systems (7) and (3).

First, the Jacobian 𝐽𝐻 (𝒙̃) ∈ C𝑛×𝑘 is still assumed to have full

column rank, but it is no longer square and hence not invertible.

Therefore, to define 𝑁𝐻 (5), one takes for 𝐴 a numerical approxi-

mation of its pseudoinverse:

𝐴 = 𝐽+ = (𝐽 ∗ 𝐽 )−1 𝐽 ∗ ∈ C𝑘×𝑛, where 𝐽 = 𝐽𝐻 (𝒙̃) and 𝐽 ∗ = 𝐽𝑇 .

Since 𝐽+ 𝐽 = 𝐼𝑘 , 𝑁𝐻 is still contracting locally around 𝒙̃ , and Vali-

datedBounds provides rigorous bounds 𝒓 . However,𝐴 is no longer

injective, implying that the fixed point 𝒙∗ of 𝑁𝐻 in [𝒙̃ ± 𝒓] (by
Theorem 3.2) may no longer be a solution of𝐻 (𝒙) = 0. For instance,

overdetermined systems have no solution in the generic case. This

explains the careful phrasing of Propositions 3.5 and 3.6 below, and

the need for a priori root enclosures for ValPejRoot.

3.2 Validated initial enclosures

Here we assume that 𝑝 ∈ C𝑛 [𝑥] of multiplicity structure ℓ ∈ N𝑘
>0

is represented by an interval polynomial [𝑝] ∈ IC𝑛 [𝑥], and that

approximations 𝒛̃ ∈ C𝑘 of its roots have already been computed.

Algorithm ValGcdRoot( [𝑝], ℓ, 𝒛̃) constructs enclosures [𝒛] ∈ IC𝑘
of its exact roots, based on an alternative system to Eq. (3). By

Lemma 2.5, the roots of 𝑝 are the simple roots of the square-free

cofactor 𝑣 :

𝑤𝑝 − 𝑣𝑝 ′ = 0, and

𝑘∏
𝑖=1

(𝑥 − 𝑧𝑖 ) = 𝑣 .

Let 𝒗 ∈ C𝑘 and𝒘 ∈ C𝑘−1 denote the coefficients of 𝑣 and𝑤 except

the (fixed) leading ones: 𝑣 = 𝑥𝑘 + 𝑣𝑘−1𝑥𝑘−1 + · · · + 𝑣0, and 𝑤 =

𝑛𝑥𝑘−1+𝑤𝑘−2𝑥
𝑘−2+· · ·+𝑤0. Form the vector 𝒙 = (𝒘,−𝒗, 𝒛) ∈ C3𝑘−1,

and let 𝒃 ∈ C𝑛+𝑘−1 denote the coefficients of 𝑥𝑘𝑝 ′ − 𝑛𝑥𝑘−1𝑝 . Then,
with 1 denoting (1, . . . , 1) ∈ N𝑘

>0
, the system to solve is:

𝐹𝑘 (𝒙) = 𝐹𝑘
©­«
𝒘
−𝒗
𝒛

ª®¬ =

(
𝒃
0

)
⇔


Δ𝑘−1 (𝑝)

(
𝒘
−𝒗

)
= 𝒃,

𝐺1 (𝒛) − 𝒗 = 0.

(7)

This system has 𝑛+2𝑘−1 equations in 3𝑘−1 variables. It is hence
overdetermined too. However, the overdetermination entirely lies

in the upper part of the system, which is linear. This is the key

point making ValGcdRoot not relying on a priori root enclosures.

The Jacobian of 𝐹𝑘 is the (𝑛 + 2𝑘 − 1) × (3𝑘 − 1) matrix:

𝐽𝐹𝑘
©­«
𝒘
−𝒗
𝒛

ª®¬ =

(
Δ𝑘−1 (𝑝) 𝑂 (𝑛+𝑘−1)×𝑘(

𝑂𝑘×(𝑘−1) 𝐼𝑘
)

𝐽𝐺1 (𝒛)

)
, (8)

which is necessarily non-surjective when 𝑘 < 𝑛. One builds the

Newton-like validation operator:

𝑁𝐹𝑘 (𝒙) = 𝒙 −𝐴
(
𝐹𝑘 (𝒙) − (𝒃, 0)

)
, (9)

where 𝐴 is computed numerically as the pseudoinverse of 𝐽𝐹𝑘 (𝒙)
according to the following Lemma.

Lemma 3.4. The Jacobian 𝐽𝐹𝑘 (𝒙) is injective whenever 𝑝 ∈ C𝑛 [𝑥]
has 𝑘 distinct roots 𝑧𝑖 . Therefore, the pseudoinverse 𝐽𝐹𝑘 (𝒙)+ satisfies
𝐽𝐹𝑘 (𝒙)+ 𝐽𝐹𝑘 (𝒙) = 𝐼

3𝑘−1, and it is equal to:

𝐽𝐹𝑘 (𝒙)
+ =

(
𝐴1 𝑂 (2𝑘−1)×𝑘

𝐴3 𝐴2

)
,

where 𝐴1 = Δ𝑘−1 (𝑝)+, 𝐴2 = 𝐽𝐺1 (𝒛)
−1,

𝐴3 = −𝐴2

(
𝑂𝑘×(𝑘−1) 𝐼𝑘

)
𝐴1 = −𝐴2

(
𝐴1,𝑖 𝑗

)
𝑘⩽𝑖⩽2𝑘−1
1⩽ 𝑗⩽𝑛+𝑘−1

.

Proof. The injectivity of 𝐽𝐹𝑘 (𝒙) follows from the one ofΔ𝑘−1 (𝑝)
by Lemma 2.5, together with the invertibility of 𝐽𝐺1 (𝒛). It automat-

ically implies that 𝐽𝐹𝑘 (𝒙)+ is a left inverse for 𝐽𝐹𝑘 (𝒙). Finally, for
any 𝒄 ∈ C𝑛+2𝑘−1, 𝒚 = 𝐽𝐹𝑘 (𝒙)+ 𝒄 is by definition the least-squares

solution of 𝐽𝐹𝑘 (𝒙)𝒚 = 𝒄 . Since 𝐽𝐹𝑘 (𝒙) is lower triangular by block

and 𝐽𝐺1 (𝒛) is invertible, 𝒚 is built by using 𝐴1 := 𝑆𝑘−1 (𝑝)+ to de-

fine its (𝒘,−𝒗) component (thus minimising the errors on the first

𝑛 + 𝑘 − 1 equations), and by adjusting the 𝒛 component of 𝒚 so as

to cancel the remaining 𝑘 equations. This leads to the given block

matrix expression for 𝐽𝐹𝑘 (𝒙)+. □

Once 𝑁𝐹𝑘 is built, Algorithm ValGcdRoot proceeds by rigor-

ously satisfying the hypotheses of Theorem 3.2 using interval

arithmetic to deduce bounds 𝒓 ∈ R3𝑘−1⩾0 for an approximation

𝒙̃ = (𝒘̃,−𝒗̃, 𝒛) of system (7).

Proposition 3.5. Let [𝑝] ∈ IC𝑛 [𝑥], ℓ ∈ N𝑘>0 and 𝒛̃ ∈ C𝑘 . If
ValGcdRoot( [𝑝], ℓ, 𝒛̃) does not fail, then it computes enclosures [𝒛] ∈
IC𝑘 such that for all 𝑝 ∈ [𝑝] with multiplicity structure ℓ , there exists
a unique vector of roots 𝒛 ∈ [𝒛] such that 𝑝 = 𝑝𝑛

∏𝑘
𝑖=1 (𝑥 − 𝑧𝑖 )ℓ𝑖 .

Moreover, no 𝑝 ∈ [𝑝] can have less than 𝑘 distinct roots, and those

having exactly 𝑘 distinct ones have multiplicity structure ℓ .
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Algorithm 5 ValGcdRoot( [𝑝], ℓ, 𝒛̃)
Input: interval polynomial [𝑝] ∈ IC𝑛 [𝑥], multiplicity structure

ℓ ∈ N𝑘
>0

, root approximations 𝒛̃ ∈ C𝑘

Output: root enclosures [𝒛] ∈ IC𝑘 or failure message

1: compute 𝑣, 𝑤̃ as in (2) to form 𝒙̃ = (𝒘̃,−𝒗̃, 𝒛̃)
2: compute 𝐴 ≈ 𝐽𝐹𝑘 (𝒙̃)+ numerically, as in Lemma 3.4

⊲ From now on, use interval arithmetic

3: 𝜹 ← mag

(
[𝐴]

(
[𝐹𝑘 ] (𝒙̃) − ([𝒃], 0)

) )
4: Λ : 𝒓 ∈ R3𝑘−1⩾0 ↦→ mag

(
𝐼
3𝑘−1 − [𝐴] [𝐽𝐹𝑘 ] ( [𝒙̃ ± 𝒓])

)
5: 𝒓 ← ValidatedBounds(Λ, 𝜹)
6: [𝒙] = ( [𝒘],−[𝒗], [𝒛]) ← [𝒙̃ ± 𝒓]
7: for 𝑖 = 1 . . . 𝑘 do

8: if
[𝑤 ] ( [𝑧𝑖 ])
[𝑣 ]′ ( [𝑧𝑖 ]) ∩ N ≠ {ℓ𝑖 } then return FAIL end if

9: end for

10: return [𝒛]

Proof. Given the candidate solution 𝒙̃ = (𝒘̃,−𝒗̃, 𝒛̃) computed

in line 1 and the Newton-like operator 𝑁𝐹𝑘 (9) defined from the

pseudoinverse 𝐴 computed in line 2, the use of interval arithmetic

beginning on line 3 guarantees that for any 𝑝 ∈ [𝑝]:
(1) 𝜹 is a rigorous entrywise upper bound for the defect 𝑁𝐹𝑘 (𝒙̃) − 𝒙̃ ;
(2) Λ(𝒓) with arbitrary 𝒓 ∈ R⩾0 is a rigorous entrywise bound for

the Jacobian of 𝑁𝐹𝑘 taken at any point inside the interval vector

[𝒙̃ ± 𝒓], hence a valid Lipschitz matrix for 𝑁𝐹𝑘 over this domain.

According to Theorem 3.2 and Proposition 3.3, the bounds 𝒓
computed in line 5 (if ValidatedBounds does not fail), ensure that

the spectral radius of Λ(𝒓) is smaller than 1, that the Newton-like

operator 𝑁𝐹𝑘 (for any 𝑝 ∈ [𝑝]) is a contraction over the 𝒓-inflated

interval vector [𝒙] ∈ IC3𝑘−1, and therefore admits a unique fixed

point 𝒙∗ = (𝒘∗,−𝒗∗, 𝒛∗) in it. Moreover, since Λ(𝒓) has the form(
Λ1 𝑂 (2𝑘−1)×𝑘
Λ3 Λ2 (𝒓)

)
(with Λ1,Λ3 independent of 𝒓 ), 𝜌 (Λ(𝒓)) < 1

implies that 𝜌 (Λ1) < 1 and 𝜌 (Λ2 (𝒓)) < 1, so that 𝐴1 Δ𝑘−1 (𝑝) and
𝐴2 𝐽𝐺1 (𝒛) are invertible (hence also 𝐴2 since it is a square matrix).

Let us now assume that 𝑝 ∈ [𝑝] has the desired multiplic-

ity structure ℓ . Then by Lemma 2.5, there are unique polynomi-

als 𝑣 and 𝑤 of the form 𝑣 = 𝑥𝑘 + 𝑣𝑘−1𝑥𝑘−1 + · · · + 𝑣0 and 𝑤 =

𝑛𝑥𝑘−1 + 𝑤𝑘−2𝑥
𝑘−2 + · · · + 𝑤0 satisfying 𝑤𝑝 − 𝑣𝑝 ′ = 0. The cor-

responding coefficients therefore satisfy Δ𝑘−1 (𝑝)
(
𝒘
−𝒗

)
= 𝒃 , and

since 𝐴1 Δ𝑘−1 (𝑝) is invertible, they are equal to (𝒘∗,−𝒗∗). Now
from the last 𝑘 equations of 𝐴

(
𝐹𝑘 (𝒙∗) − (𝒃, 0)

)
= 0,

𝐴3

(
Δ𝑘−1 (𝑝)

(
𝒘∗

𝒗∗

)
− 𝒃

)
︸                    ︷︷                    ︸

=0

+ 𝐴2

(
𝐺1 (𝒛∗) − 𝒗∗

)
= 0,

we deduce that 𝐺1 (𝒛∗) = 𝒗∗, by invertibility of 𝐴2. Hence, 𝒛∗ are
the (simple) roots of 𝑣 , which are also the (multiple) roots of 𝑝 .

Finally, the tests in lines 7–9 carried out in interval arithmetic

guarantee that the obtained roots are matched with the correct

multiplicities, following Lemma 2.6.

Now for the second claim, if 𝑝 ∈ [𝑝] has less than 𝑘 distinct

roots, then Δ𝑘−1 (𝑝) is rank deficient, and so is the Jacobian 𝐽𝐹𝑘 .

Therefore 𝜌 (Λ(𝒓)) ⩾ 1 and line 5 will necessarily raise an error. □

3.3 Refined validated enclosures

Given a polynomial 𝑝 ∈ C𝑛 [𝑥] of multiplicity structure ℓ ∈ N𝑘
>0
,

represented by [𝑝] ∈ IC𝑛 [𝑥], Algorithm ValPejRoot aims at vali-

dating approximate roots 𝒛̃ ∈ C𝑘 , seen as an approximate solution

of system (3). The Newton-like validation operator,

𝑁𝐺ℓ (𝒛) := 𝒛 −𝐴 (𝐺ℓ (𝒛) − 𝒑) , (10)

is built from a numerical approximation 𝐴 of the pseudoinverse

𝐽𝐺ℓ (𝒛̃)+ ∈ C𝑘×𝑛 .
Using interval arithmetic and Theorem 3.2, ValPejRoot con-

structs enclosures [𝒛] ∈ IC𝑘 around 𝒛̃ containing a unique fixed

point 𝒛∗ of 𝑁𝐺ℓ . However, since 𝐴 is not injective, one cannot de-

duce that 𝒛∗ is a solution of system (3). Moreover, the argument used

in the proof of Proposition 3.5 for ValGcdRoot was specific to the

structure of system (7), whose overdetermined part was linear. This

is why ValPejRoot( [𝑝], ℓ, 𝒛̃, [𝒛0]) relies on an extra argument: an

a priori, possibly not very tight, enclosure [𝒛0] ∈ IC𝑘 of the roots.

This may be instantiated as the output of ValGcdRoot( [𝑝], ℓ, 𝒛̃).

Algorithm 6 ValPejRoot( [𝑝], ℓ, 𝒛̃, [𝒛0])

Input: [𝑝] ∈ IC𝑛 [𝑥], ℓ ∈ N𝑘>0, root approximations 𝒛̃ ∈ C𝑘 , and
initial root enclosures [𝒛0] ∈ IC𝑘

Output: refined root enclosures [𝒛] ∈ IC𝑘 , or failure message

1: compute 𝐴 ≈ 𝐽𝐺ℓ (𝒛̃)+ numerically

⊲ From now on, use interval arithmetic

2: [𝒑] ←
(
𝑝0
𝑝𝑛

, . . . ,
𝑝𝑛−1
𝑝𝑛

)
3: 𝜹 ← mag

(
[𝐴] ( [𝐺ℓ ] (𝒛̃) − [𝒑])

)
4: Λ0 ← mag

(
𝐼𝑘 − [𝐴] [𝐽𝐺ℓ ] [𝒛0])

)
5: ValidatedBounds(Λ0, 𝜹) ⊲ raises an error if 𝜌 (Λ0) ⩾ 1

6: Λ : 𝒓 ∈ R𝑘⩾0 ↦→ mag

(
𝐼𝑘 − [𝐴] [𝐽𝐺ℓ ] ( [𝒛̃ ± 𝒓])

)
7: 𝒓 ← ValidatedBounds(Λ, 𝜹)
8: [𝒛] ← [𝒛̃ ± 𝒓]
9: if [𝒛] ⊈ [𝒛0] then return FAIL end if

10: return [𝒛]

Proposition 3.6. Let [𝑝] ∈ IC𝑛 [𝑥], ℓ ∈ N𝑘>0, 𝒛̃ ∈ C
𝑘
and [𝒛0] ∈

IC𝑘 . Assume that for all 𝑝 ∈ [𝑝] with multiplicity structure ℓ , there
exists a unique vector of roots 𝒛 ∈ [𝒛0] such that 𝑝 = 𝑝𝑛

∏𝑘
𝑖=1 (𝑥 −

𝑧𝑖 )ℓ𝑖 . Then if ValPejRoot( [𝑝], ℓ, 𝒛̃, [𝒛0]) does not fail, it computes

refined root enclosures [𝒛] ⊆ [𝒛0] such that 𝒛 ∈ [𝒛].

Proof. The use of interval arithmetic after line 2 ensures that

𝜹 is a rigorous upper bound for the defect 𝑁𝐺ℓ (𝒛̃) − 𝒛̃, and Λ0 (resp.

Λ(𝒓)) a rigorous Lipschitz matrix for 𝑁𝐺ℓ over [𝒛0] (resp. [𝒛̃ ± 𝒓]).
The first call to ValidatedBounds with the constant Lipschitz

matrix 𝒓 ↦→ Λ0 (the second argument, 𝜹 , is not relevant) ensures
that 𝜌 (Λ0) < 1 by Proposition 3.3 and Theorem 3.2 (otherwise this

routine raises an error). As a result, the initial root enclosure [𝒛0]
contains at most one fixed point of 𝑁𝐺ℓ .

The second call to ValidatedBounds, if it does not fail, returns

an error vector 𝒓 ∈ R𝑘⩾0 such that 𝑁𝐺ℓ contains a unique fixed point

𝒛∗ inside [𝒛] := [𝒛̃ ± 𝒓]. Also, if the inclusion [𝒛] ⊆ [𝒛0] in line 9 is

satisfied, then it proves that this fixed point is also the unique fixed

point of 𝑁𝐺ℓ in [𝒛0].



Florent Bréhard, Adrien Poteaux, and Léo Soudant

𝑚 GcdRoot* PejRoot ValGcdRoot ValPejRoot

4 1.25e-07 4.59e-15 5.62e-07 4.28e-13

5 4.99e-07 1.33e-14 1.05e-06 4.44e-13

6 4.01e-07 9.92e-15 2.08e-06 4.98e-13

7 4.35e-07 7.55e-15 2.89e-06 4.78e-13

8 6.47e-07 4.59e-15 4.80e-06 4.99e-13

9 1.09e-06 3.11e-15 6.74e-06 4.99e-13

10 1.13e-06 6.77e-15 8.92e-06 5.11e-13

11 1.83e-06 8.88e-16 1.22e-05 4.93e-13

12 9.01e-07 5.92e-16 1.61e-05 5.13e-13

13 3.29e-06 7.40e-15 2.00e-05 5.18e-13

14 2.52e-06 3.40e-15 2.62e-05 (5.29e-13)

15 6.33e-06 5.03e-15 3.14e-05 (5.32e-13)

16 1.24e-05 3.55e-15 — (5.26e-13)

17 1.58e-05 7.85e-15 — (5.34e-13)

18 1.36e-05 9.33e-15 — (5.31e-13)

19 2.99e-05 1.33e-15 — (5.44e-13)

20 4.91e-05 8.88e-16 — (5.37e-13)

Table 2: Maximum relative errors on the root approximations

and enclosures for 𝑝𝑚 - Eq. (4). Results in parentheses for

ValPejRoot indicate not fully rigorous enclosures due to

the failure of the contraction test in line 5.

Now let 𝑝 ∈ [𝑝] have multiplicity structure ℓ . By the assumption

on [𝒛0], there exists a unique 𝒛 ∈ [𝒛0] such that 𝑝 = 𝑝𝑛
∏(𝑥 −𝑧𝑖 )ℓ𝑖 .

Clearly, 𝒛 is a fixed point of 𝑁𝐺ℓ . Hence, 𝒛 = 𝒛∗ ∈ [𝒛]. □

Remark 3.7. Given [𝑝] ∈ IC𝑛 [𝑥], Algorithms ValGcdRoot and

ValPejRoot compute enclosures [𝒛] ∈ IC𝑘 for the roots of any

𝑝 ∈ [𝑝] of multiplicity structure ℓ . They do however not prove that

[𝑝] contains at least one such 𝑝 . This can be done by checking that

𝑝𝑛
∏𝑘

𝑖=1 (𝑥 − 𝑧𝑖 ) ∈ [𝑝], with 𝒛̃ the computed numerical roots.

3.4 Validated Numerical Examples

Example 1 (validated version). We computed tight coefficientwise

enclosures [𝑝𝑚] (up to machine double precision) for polynomials

𝑝𝑚 of Example 1, and applied the full validation chain: from the root

approximations 𝒛̃ computed by our routine GcdRoot* followed by

Zeng’s PejRoot, an initial enclosure [𝒛0] is computed by ValGc-

dRoot and refined by ValPejRoot. The maximum relative errors

obtained on the four roots are summarised in Table 2. We observe

that the relative radius of [𝒛0] grows with𝑚 roughly as fast as the

relative error of the initial approximations computed by GcdRoot*.

This follows from the growth with𝑚 of the condition number of

Sylvester matrices, and hence of system (7). On the other hand, the

growth with𝑚 of the condition number associated to system (3)

is moderate, which explains why only two to three digits are lost

in the intervals computed by ValPejRoot. However, for𝑚 ⩾ 14,

ValPejRoot cannot fully certify its enclosures due to the failure of

the contraction test in line 5: ValGcdRoot either fails to compute

initial enclosures [𝒛0], or they are too large. Nevertheless, these

results are encouraging and show that the full validation chain

solving Problem 2 on this example works for degrees up to 130 and

multiplicities up to 52 using double precision only.

Figure 2: Accuracy of the computed root enclosures in func-

tion of accuracy of interval coefficients of [𝑝𝑚] - Eq. (4).

Example 1 (continued : the effect of uncertainties). For𝑚 up to 5,

Figure 2 shows the relative accuracy of the root enclosures [𝒛] in
function of the relative accuracy of the interval coefficients of [𝑝𝑚].
First, we observe that the number of lost bits in the result is equal to

the number of lost bits in the input plus a constant corresponding

to the conditioning. This corroborates our claim that this validation

method has finite conditioning: it is not subject to the “attainable

accuracy barrier”.

Unfortunately, the input accuracy threshold over which our

method fails decreases with 𝑚, although the computed bounds

themselves do not increase excessively. The first reason is the con-

dition number of Sylvester matrices used by ValGcdRoot. Another

source of failure we observed is the potentially very large over-

estimations in the interval evaluations of the maps 𝐺ℓ and 𝐽𝐺ℓ

over non-thin intervals [𝒛], something well-known as the wrapping

effect in interval analysis [21, §9.2].

Example 2 (nearby multiple roots). Figure 3 compares obtained

accuracies of the approximations and validated enclosures for

(𝑥 − 1 + 𝜀)𝑚1 (𝑥 − 1)𝑚2 (𝑥 + 0.5)𝑚3 , (11)

already used as example in [28, §5.2]. The accuracy deteriorates

when the gap 𝜀 between the two nearby multiple roots tends to 0.

This is a consequence of the growth of the structure-preserving

condition number when we get closer to the pejorative submanifold

Π𝑚1+𝑚2,𝑚3
. On the other hand, the multiplicities do not seem to

impact the accuracy significantly. The overestimation factor of the

validated enclosures compared to the approximations is rather mild.

However, higher multiplicities lower the threshold on 𝜀 over which

the combination of ValGcdRoot and ValPejRoot fails.

Example 3 (complex roots). The following polynomial:

(𝑥2 − 𝑥 + 1)𝑚1 (𝑥2 + 4𝑥 + 7)𝑚2 (𝑥2 − 𝑥 − 1)𝑚3 (𝑥2 + 2𝑥 + 2)𝑚4
(12)

has 8 complex roots depicted in Figure 4. The relative accuracies

of the computed root approximations and enclosures for different

values of the 𝑚𝑖 are summarised in Table 3. It turns out that, in
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Figure 3: Relative accuracy of root approximations (dashed

lines) and root enclosures (solid lines) for the polynomial (11)

in function of 𝜀 and multiplicities (𝑚1,𝑚2,𝑚3).

Figure 4: Complex roots of polynomial (12).

this example, the condition number of 𝐽𝐺ℓ (𝒛) grows significantly
faster than the condition number of the Sylvester matrices Δ𝑘 (𝑝).
As a result, the approximations produced by GcdRoot* are better

than those of PejRoot (we thus kept the former for the validation),

and ValGcdRoot performs better than ValPejRoot. Such cases are

not discussed in [28, 30], and further research is needed to predict

when they occur.

4 CONCLUDING REMARKS

In this article, we improved Zeng’s numerical method [28, 30] to

solve Problem 1 and proposed a validation method based on two

algorithms ValGcdRoot and ValPejRoot to solve Problem 2.

A first future work is to refine our implementations of the vali-

dation routines so that their performances get closer to the purely

numerical routines in terms of high multiplicities and obtained

𝑚1,𝑚2,𝑚3,𝑚4 GcdRoot* PejRoot ValGcdRoot ValPejRoot

2, 2, 1, 1 2.47e-15 3.98e-15 3.17e-13 6.75e-13

3, 1, 1, 3 4.87e-15 3.95e-14 6.01e-12 8.67e-11

5, 3, 3, 1 4.39e-15 6.83e-14 4.56e-13 5.12e-10

6, 3, 3, 1 2.02e-14 4.22e-14 7.97e-13 2.30e-09

2, 5, 5, 4 5.02e-13 1.16e-12 5.52e-11 —

8, 5, 2, 1 6.95e-15 1.59e-12 6.01e-13 —

8, 10, 3, 7 2.91e-10 8.12e-10 6.77e-09 —

20, 11, 7, 5 1.25e-13 1.26e-04 3.13e-12 —

25, 30, 3, 5 6.42e-10 1.83e-02 3.04e-08 —

25, 30, 3, 10 1.15e-07 8.04e-03 — —

Table 3: Maximum relative errors on the root approximations

and enclosures for the polynomials (12).

accuracy without using multi-precision. This, in particular, con-

cerns Algorithm ValPejRoot where refined evaluation methods

could lower the overapproximations on the defect and Lipschitz

matrices, e.g., Discrete Fourier Transform (DFT) based evaluation

methods to reduce the wrapping effect. Also, in cases where the pe-

jorative condition number is large, one can consider combining the

“one-root-at-a-time” deflation method of [22] with our two-stage

validation approach to make it compliant with Problem 2.

On the theoretical side, a thorough complexity analysis of al-

gorithms to solve Problem 2 will require a deeper analysis of the

growth of the various condition numbers involved.
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