Florent Bréhard
email: florent.brehard@univ-lille.fr

Adrien Poteaux
email: adrien.poteaux@univ-lille.fr

Léo Soudant
email: soudant.leo@gmail.com

Validated Root Enclosures for Interval Polynomials with Multiplicities

Keywords: • Mathematics of computing → Interval arithmetic, Nonlinear equations, Solvers multiple roots of univariate polynomials, fixed-point validation

 proposed floating-point algorithms to compute multiple roots of univariate polynomials with real or complex coefficients beyond the so-called "attainable accuracy barrier". Based on these foundations, we propose a validated numeric point of view on this problem. Our first contribution is an improvement of Zeng's multiplicity detection algorithm using a simple trick that allows us to recover much higher multiplicities. As our main contribution, we propose two floating-point validated algorithms to compute rigorous enclosures for multiple roots. They consist in carefully combining the ideas underlying Zeng's numerical algorithms with Newton-like fixed-point validation techniques. We also provide a prototype Julia implementation of these algorithms.

Problem 1. Given 𝑝 = 𝑝 𝑛 𝑥 𝑛 + 𝑝 𝑛-1 𝑥 𝑛-1 + • • • + 𝑝 0 ∈ C 𝑛 [𝑥] and some maximum tolerated error on the input coefficients, recover the highest possible multiplicity structure ℓ ∈ N 𝑘 >0 and compute root approximations z ∈ C 𝑘 such that 𝑝 ≈ 𝑝 𝑛 𝑘 𝑖=1 (𝑥 -z𝑖) ℓ 𝑖 .

Existing approaches for this problem include Schröder's modified Newton operator (see [START_REF] Giusti | On location and approximation of clusters of zeros of analytic functions[END_REF] and references therein) with quadratic convergence to a multiple root/a cluster of roots; or approximate GCDs (AGCD) of numerical polynomials [START_REF] Boito | Structured matrix based methods for approximate polynomial GCD[END_REF], a notion closely related to multiple root-finding [START_REF] Beckermann | When are Two Numerical Polynomials Relatively Prime[END_REF][START_REF] Bini | Structured Matrix-Based Methods for Polynomial 𝜀-Gcd: Analysis and Comparisons[END_REF][START_REF] Corless | The Singular Value Decomposition for Polynomial Systems[END_REF][START_REF] Ioannis | Certified approximate univariate GCDs[END_REF][START_REF] Sasaki | Approximate square-free decomposition and root-finding of ill-conditioned algebraic equations[END_REF][START_REF] Schönhage | Quasi-GCD computations[END_REF][START_REF] Hans | Numerical polynomial algebra[END_REF][START_REF] Zeng | The Approximate GCD of Inexact Polynomials[END_REF]]. Zeng's approach [START_REF] Zeng | A Method Computing Multiple Roots of Inexact Polynomials[END_REF][START_REF] Zeng | Computing multiple roots of inexact polynomials[END_REF] that inspires this article combines AGCD computations with Gauss-Newton iterations on overdetermined polynomial systems encoding the roots to overcome this attainable accuracy barrier.

Validated numerics. Starting with Moore's interval arithmetic [START_REF] Moore | Introduction to Interval Analysis[END_REF] in the 60s, the field of validated numerics [START_REF] Neumaier | Interval Methods for Systems of Equations[END_REF][START_REF] Rump | Verification methods: Rigorous results using floatingpoint arithmetic[END_REF][START_REF] Tucker | Validated Numerics: A Short Introduction to Rigorous Computations[END_REF] aims at replacing heuristic or asymptotic error bounds with rigorous, explicitly computed enclosures. It relies on set-valued representations of mathematical objects, together with correctness-preserving algorithmic operations. For example, a real number 𝑥 is represented by an interval [𝑥] = [𝑥, 𝑥] with floating-point endpoints, i.e., 𝑥 ∈ [𝑥]. Arithmetic operations are defined on intervals to preserve this relation: if 𝑥 ∈ [𝑥] and 𝑦 ∈ [𝑦], then [𝑥] ★ [𝑦] for ★ ∈ {+, -, ×, ÷} is built so that 𝑥 ★ 𝑦 ∈ [𝑥] ★ [𝑦] holds. In particular, rounding errors are taken into account. Similar representations exist for complex numbers (which we will still refer to as intervals throughout this article), e.g., a pair of real intervals for the real and imaginary parts.

Most validated numerics libraries (e.g., INTLAB [START_REF] Rump | INTLAB-INTerval LABoratory[END_REF] or Arb [START_REF] Johansson | Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic[END_REF]) can compute tight enclosures for simple roots of univariate polynomials. For multiple roots, a precise statement is needed to determine with respect to what the root enclosures are validated. The rigorous root enclosure methods of [START_REF] Rump | Ten methods to bound multiple roots of polynomials[END_REF] are subject to the attainable accuracy barrier, since they are correct w.r.t. all polynomials 𝑝 ∈ [𝑝], including those having clusters of roots.

Methods based on deflation [START_REF] Mantzaflaris | Deflation and Certified Isolation of Singular Zeros of Polynomial Systems[END_REF][START_REF] Rump | Verified error bounds for multiple roots of systems of nonlinear equations[END_REF] consist in making an overdetermined system invertible by adding extra variables for perturbations on the coefficients of 𝑝. For instance, for a root 𝑧 of multiplicity 𝑘, consider p (𝑥) = 𝑝 (𝑥) + 𝜀 𝑘-2 𝑥 𝑘-2 + • • • + 𝜀 0 and solve the system { p (𝑗) (𝑧) = 0, 0 ⩽ 𝑗 < 𝑘 } for the variables 𝑧, 𝜀 0 , . . . , 𝜀 𝑘-2 . The computed enclosure [𝑧] is guaranteed to contain a root of multiplicity 𝑘 of an 𝜀-perturbation of 𝑝. Such a property, however, is not per se a solution to Problem 2: the correcting perturbation p -𝑝 is not guaranteed to be the same for all distinct roots, the resulting p does not necessarily belong to [𝑝] and its coefficients could be close to those of 𝑝 ∈ [𝑝] while having completely different roots.

Our contributions. They are twofold. First, after recalling the main lines of Zeng's two numerical algorithms GcdRoot and Pe-jRoot in the beginning of Section 2, we improve the former (for multiplicity detection) using a simple trick. This gives Algorithm GcdRoot* in Section 2.3 which can correctly recover much higher multiplicities in our numerical experiments.

As our main contribution in Section 3, we propose an a posteriori validation method to simultaneously compute rigorous enclosures for the multiple roots, by carefully combining the ideas underlying Zeng's numerical algorithms with Newton-like fixed-point validation techniques. In particular, the combined nonlinear and overdetermined nature of Problem 2 is an obstacle for classical fixed-point validation. To overcome this, we design an original twophase strategy based on two complementary validated algorithms ValGcdRoot and ValPejRoot. Our focus is on validating multiple roots beyond the attainable accuracy barrier: all our examples were executed in machine double precision to highlight this point.

Our implementation ValidatedMultipleRoots.jl 1 is a prototype open-source package in Julia [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF]. It is based on Verzani's implementation of Zeng's algorithms in the Polynomials.jl package 2 . Although Zeng's original implementation in Matlab [START_REF] Zeng | Algorithm 835: MultRoot-a Matlab Package for Computing Polynomial Roots and Multiplicities[END_REF] is still available 3 , we found more convenient to rely on this recent Julia code, notably for multi-precision and interval computations.

A note about complexity. We do not focus on the complexity of our algorithm: a complete complexity analysis would require a priori bounds for the precision needed to solve our problem, which would go beyond the scope and length of this paper. Nevertheless, if we stick to finite precision computations and only use classical matrix multiplication, it is easy to check that our algorithms run in complexity O˜(𝑘 2 𝑛), where 𝑛 is the input degree and 𝑘 the number of distinct roots. For instance, computations of the example shown in Table 1 are almost linear in 𝑛 (𝑘 = 4 therein is constant).

ZENG'S ALGORITHM

Zeng's method to compute multiple roots of inexact polynomials [START_REF] Zeng | A Method Computing Multiple Roots of Inexact Polynomials[END_REF][START_REF] Zeng | Computing multiple roots of inexact polynomials[END_REF] mainly consists in numerically solving overdetermined systems of linear and nonlinear equations, in some least-squares sense. The necessary background is recalled in Section 2.1. Then we summarise the main ideas of the two algorithms GcdRoot and PejRoot composing Zeng's method in Section 2.2. After that, in Section 2.3, we present our first contribution, Algorithm GcdRoot*: a modification of GcdRoot that overcomes some of its limitations by reducing the impact of errors in the input.

Preliminaries.

The following paragraphs summarise notions such as pejorative manifolds, Sylvester matrices and approximate GCD. They make it possible to talk about multiple roots in a numerical context with precise mathematical definitions.

Pejorative manifolds. Given a multiplicity structure ℓ ∈ N 𝑘 >0 with ℓ 1 + • • • + ℓ 𝑘 = 𝑛, the function 𝐺 ℓ maps the roots 𝒛 ∈ C 𝑘 to the 1 https://gitlab.univ-lille.fr/florent.brehard/ValidatedMultipleRoots.jl/ -v. 0.0.1 2 https://juliamath.github.io/Polynomials.jl/ 3 see "Supplemental Material" at https://dl.acm.org/doi/10.1145/992200.992209 coefficients of the polynomial 𝑝 = 𝑘 𝑖=1 (𝑥 -𝑧 𝑖) ℓ 𝑖 , i.e.,

𝐺 ℓ : 𝒛 ∈ C 𝑘 ↦ → 𝑔 0 (𝒛) . . . 𝑔 𝑛-1 (𝒛) ∈ C 𝑛 , s.t. 𝑝 = 𝑥 𝑛 + 𝑔 𝑛-1 (𝒛)𝑥 𝑛-1 + • • • + 𝑔 0 (𝒛).
Definition 2.1. The pejorative manifold Π ℓ is the image of the map 𝐺 ℓ : C 𝑘 → C 𝑛 . It is a manifold (with singularities) of the coefficient space C 𝑛 parameterised by the roots (𝑧 1 , . . . , 𝑧 𝑘) ∈ C 𝑘 .

The tangent space of Π ℓ at 𝒛 ∈ C 𝑘 is given by the Jacobian:

𝐽 𝐺 ℓ (𝒛) = 𝒒 1 . . . 𝒒 𝒌 ∈ C 𝑛×𝑘 ,
where

𝑞 𝑖 := 𝑞 𝑖,𝑛-1 𝑥 𝑛-1 + • • • + 𝑞 𝑖,0 := - ℓ 𝑖 𝑥 -𝑧 𝑖 𝑝. (1)
The singularities of Π ℓ are the points where 𝐽 𝐺 ℓ (𝒛) is rank deficient. This happens when at least two roots 𝑧 𝑖 and 𝑧 𝑗 coincide: the corresponding point belongs to the pejorative submanifold Π ℓ ′ ⊆ Π ℓ associated to a higher multiplicity structure ℓ ′ ∈ N 𝑘 ′ >0 with 𝑘 ′ < 𝑘. As it will be seen in Section 2.2, Algorithm PejRoot of [START_REF] Zeng | A Method Computing Multiple Roots of Inexact Polynomials[END_REF] relies on Gauss-Newton iterations to converge to a solution of 𝐺 ℓ (𝒛) = 𝒑 on the pejorative manifold Π ℓ .

Convolution and Sylvester matrices. Notions like divisibility and GCD in C[𝑥] may seem ill-posed in a numerical context with errors or uncertain data. Yet, using convolution and Sylvester matrices, these questions are reduced to classical problems in linear algebra. They can be solved using efficient algorithms in numerical linear algebra, such as the singular value decomposition (SVD) [8, §2.5].

Let 𝑝 ∈ C 𝑛 [𝑥]. For a given 𝑘 ⩾ 0, the multiplication by 𝑝 induces a morphism C 𝑘 [𝑥] → C 𝑛+𝑘 [𝑥], the representation of which in the canonical bases is given by the 𝑘-th convolution matrix 𝐶 𝑘 (𝑝):

𝐶 𝑘 (𝑝) = 𝑝 0 𝑝 1 𝑝 0 𝑝 𝑛 𝑝 1 𝑝 𝑛 ∈ C (𝑛+𝑘+1)×(𝑘+1) .
For two polynomials 𝑝 ∈ C 𝑛 [𝑥] and 𝑞 ∈ C 𝑚 [𝑥] of respective coefficients 𝒑 ∈ C 𝑛+1 and 𝒒 ∈ C 𝑚+1 , the coefficients of 𝑝𝑞 are given by the vector 𝐶 𝑚 (𝑝) 𝒒 = 𝐶 𝑛 (𝑞) 𝒑.

Definition 2.2. If 𝑝 ∈ C 𝑛 [𝑥], 𝑞 ∈ C 𝑚 [𝑥]
, and 0 ⩽ 𝑑 ⩽ min(𝑛, 𝑚), then the 𝑑-th Sylvester matrix of (𝑝, 𝑞) is

𝑆 𝑑 (𝑝, 𝑞) = 𝐶 𝑚-𝑑 (𝑝) 𝐶 𝑛-𝑑 (𝑞) ∈ C (𝑛+𝑚-𝑑+1)×(𝑛+𝑚-2𝑑+2) . 𝑆 𝑑 (𝑝, 𝑞) represents the map (𝑤, 𝑣) ∈ C 𝑚-𝑑 [𝑥] × C 𝑛-𝑑 [𝑥] ↦ → 𝑤𝑝 + 𝑣𝑞 ∈ C 𝑛+𝑚-𝑑 [𝑥].
These matrices are connected with the GCD of 𝑝 and 𝑞.

Lemma 2.3 ([31, Prop. 4]). Let 𝑝 ∈ C 𝑛 [𝑥], 𝑞 ∈ C 𝑚 [𝑥],
and 𝑢 be their GCD. Denote by 𝑑 the degree of 𝑢. Then 𝑆 𝑖 (𝑝, 𝑞) has full (column) rank for 𝑑 < 𝑖 ⩽ min(𝑛, 𝑚), whereas 𝑆 𝑑 (𝑝, 𝑞) has a kernel of dimension 1 spanned by the vector (𝒘, -𝒗) corresponding to cofactors 𝑤 ∈ C 𝑚-𝑑 [𝑥] and 𝑣 ∈ C 𝑛-𝑑 [𝑥] such that 𝑝 = 𝑢𝑣 and 𝑞 = 𝑢𝑤.

The numerical treatment of Sylvester matrices underlies the key concept of approximate GCD.

Approximate GCD (AGCD).

Computing the exact GCD of two polynomials 𝑝 and 𝑞 is an ill-posed problem, since under generic perturbations of the input, the result is always 1. The notion of approximate GCD [START_REF] Corless | The Singular Value Decomposition for Polynomial Systems[END_REF] The method proposed in [START_REF] Corless | The Singular Value Decomposition for Polynomial Systems[END_REF] relies on the observation that the GCD of 𝑝 + 𝛿𝑝 and 𝑞 + 𝛿𝑞 has degree at least 𝑑 if and only if 𝑆 𝑑 (𝑝 +𝛿𝑝, 𝑞 +𝛿𝑞) is rank-deficient. Calling 𝜎 -1 the smallest singular value of 𝑆 𝑑 (𝑝, 𝑞) computed by SVD, they moreover prove that such an 𝜀-perturbation (𝛿𝑝, 𝛿𝑞) exists only if 𝜎 -1 ⩽ 𝜀 √︁ max(𝑛, 𝑚) -𝑑 + 1. Combining this necessary condition with a quadratic optimisation strategy to refine the AGCD 𝑢 together with the cofactors 𝑣 and 𝑤, the authors of [START_REF] Zeng | The Approximate GCD of Inexact Polynomials[END_REF] proposed a fully automated algorithm AGCD that computes the 𝜀-GCD of 𝑝 and 𝑞. This routine is a key ingredient of Algorithm GcdRoot of [START_REF] Zeng | A Method Computing Multiple Roots of Inexact Polynomials[END_REF] summarised in Section 2.2 below.

Zeng's algorithm

Zeng's method is based on two algorithms called GcdRoot and PejRoot. GcdRoot infers the multiplicity structure of the input polynomial up to some user-defined tolerance, and computes root approximations with moderate accuracy. These roots serve as an initialiser for PejRoot which refines them to high accuracy.

2.2.1 Algorithm GcdRoot. It infers the multiplicity structure of 𝑝 ∈ C 𝑛 [𝑥] (together with root approximations) by inspecting the AGCD, defined in the previous section, of 𝑝 and 𝑝 ′ .

We now specialise Lemma 2.3 to the case (𝑝, 𝑞) = (𝑝, 𝑝 ′). For 1 ⩽ 𝑘 ⩽ 𝑛 the 𝑘-th discriminant matrix Δ 𝑘 (𝑝) is:

Δ 𝑘 (𝑝) := 𝑆 𝑛-𝑘 (𝑝, 𝑝 ′) = 𝐶 𝑘-1 (𝑝) 𝐶 𝑘 (𝑝 ′) ∈ C (𝑛+𝑘)×(2𝑘+1) . Lemma 2.5. 𝑝 ∈ C 𝑛 [𝑥] has 𝑘 distinct roots in C if and
only if all Δ 𝑖 (𝑝) for 1 ⩽ 𝑖 < 𝑘 have full column rank and Δ 𝑘 (𝑝) has a kernel of dimension 1. This kernel is spanned by the vector (𝒘, -𝒗) corresponding to the coefficients of the cofactors

𝑣 = 𝑘 𝑖=1 (𝑥 -𝑧 𝑖) ∈ C 𝑘 [𝑥], 𝑤 = 𝑘 ∑︁ 𝑖=1 ℓ 𝑖 𝑗≠𝑖 (𝑥 -𝑧 𝑗) ∈ C 𝑘-1 [𝑥], (2)
where 𝑧 𝑖 are the roots of 𝑝 with multiplicity ℓ 𝑖 . The polynomial

𝑢 = 𝑘 𝑖=1 (𝑥 -𝑧 𝑖) ℓ 𝑖 -1 ∈ C 𝑛-𝑘 [𝑥],
is the GCD of 𝑝 and 𝑝 ′ , and we have 𝑢𝑣 = 𝑝, 𝑢𝑤 = 𝑝 ′ . This result is used repeatedly (following somehow the symbolic square-free decomposition algorithm) to define algorithm GcdRoot of [START_REF] Zeng | Computing multiple roots of inexact polynomials[END_REF], that we briefly recall:

Algorithm 1 GcdRoot(𝑝, 𝜀) Input: 𝑝 ∈ C 𝑛 [𝑥]
and tolerance 𝜀 on the input error Output: roots z ∈ C 𝑘 together with multiplicities ℓ ∈ N 𝑘 >0 1: Compute the AGCD 𝑢 of 𝑝 and 𝑝 ′ with cofactors 𝑣, 𝑤 2: Compute the (simple) roots z of 𝑣 3: Set 𝑢 (1) = 𝑢 and for 𝑡 = 2, . . . , compute 𝑢 (𝑡) as the AGCD of 𝑢 (𝑡 -1) and 𝑢 (𝑡 -1) ′ with cofactors 𝑣 (𝑡) , 𝑤 (𝑡) , until deg(𝑢 (𝑡)) = 0 4: Compute the (simple) roots of all the 𝑣 (𝑡) 's and match them to roots in z.

5: Set ℓ 𝑖 := min{𝑡 s.t. z𝑖 is not a root of 𝑣 (𝑡 +1) } 6: Return z, ℓ
In [START_REF] Zeng | Computing multiple roots of inexact polynomials[END_REF], more details are given on how to propagate the error tolerances in the successive AGCD computations (step 3).

Algorithm PejRoot.

The second algorithm proposed by Zeng in [START_REF] Zeng | A Method Computing Multiple Roots of Inexact Polynomials[END_REF][START_REF] Zeng | Computing multiple roots of inexact polynomials[END_REF], PejRoot, takes as input initial root approximations z0 and the corresponding multiplicity structure ℓ. Such data is computed by GcdRoot, as previously seen.

Assume 𝑝 ∈ C 𝑛 [𝑥] is monic (otherwise rescale it by the inverse of its leading coefficient):

𝑝 = 𝑥 𝑛 + 𝑝 𝑛-1 𝑥 𝑛-1 + • • • + 𝑝 0 with 𝒑 ∈ C 𝑛 .
𝒑 is supposed to lie on the pejorative manifold Π ℓ , or nearby due to errors in the input coefficients of 𝑝. Moreover, the initial roots z0 define an initial point 𝒑 0 = 𝐺 ℓ (z0) on Π ℓ .

Algorithm PejRoot consists in applying Gauss-Newton iterations to bring 𝒑 0 closer and closer to 𝒑 (or its projection onto Π ℓ). The underlying system of equations,

𝐺 ℓ (𝒛) = 𝒑 ⇔            𝑔 0 (𝑧 1 , . . . , 𝑧 𝑘) = 𝑝 0 , . . . 𝑔 𝑛-1 (𝑧 1 , . . . , 𝑧 𝑘) = 𝑝 𝑛-1 , (3)
consists of 𝑛 polynomial equations in 𝑘 variables 𝑧 𝑖 . Except in the case where all roots of 𝑝 are simple, we have 𝑘 < 𝑛 and (3) is overdetermined. Its Jacobian 𝐽 𝐺 ℓ (𝒛), Eq. (1), is rectangular with full column rank. Instead of classical Newton iterations, which require a square, invertible Jacobian, PejRoot uses Gauss-Newton iterations:

z𝒕+1 = z𝒕 -𝐽 𝐺 ℓ (z𝒕) + (𝐺 ℓ (z𝒕) -𝒑),
where 𝐽 𝐺 ℓ (z𝒕) + is the Moore-Penrose inverse (a.k.a. pseudoinverse) of 𝐽 𝐺 ℓ (z𝒕). In practice, one merely computes the least-squares solution 𝒉 𝒕 ∈ C 𝑘 of the overdetermined linear system:

𝐽 𝐺 ℓ (z𝒕) 𝒉 𝒕 = 𝐺 ℓ (z𝒕) -𝒑.
Proper convergence results may be found in [30, §3].

First contribution: improving GcdRoot

Larger errors in the coefficients of 𝑝 of multiplicity structure ℓ ∈ N 𝑘 >0 increase the risk of the 𝜀-GCD of 𝑝 and 𝑝 ′ having degree greater Algorithm 2 PejRoot(𝑝, ℓ, z0)

Input: 𝑝 ∈ C 𝑛 [𝑥], ℓ ∈ N 𝑘 >0 and initial root approx z0 ∈ C 𝑘 Output: refined root approximations z ∈ C 𝑘 For 𝑡 = 0, 1, . . . : 1: Compute the least-squares solution 𝒉 𝒕 ∈ C 𝑘 minimising the residue 𝑑 𝑡 = ∥ 𝐽 𝐺 ℓ (z𝒕) 𝒉 𝒕 -𝐺 ℓ (z𝒕) + 𝒑∥ 2 .
2: Update the approximation: z𝒕+1 = z𝒕 -𝒉 𝒕 .

3: If 𝑑 𝑡 is below some tolerance, return z𝒕+1 , otherwise continue.

than 𝑛 -𝑘. If so, GcdRoot infers a wrong multiplicity structure ℓ ′ , corresponding to a pejorative submanifold Π ℓ ′ ⊂ Π ℓ . However, the repeated use of AGCD extraction in step 3 of Gcd-Root is another significant source of errors that can be avoided if one can infer ℓ directly, once the 𝑧 𝑖 have been computed. This is our first contribution: the procedure GcdRoot* based on the following simple observation to deduce the ℓ 𝑖 from the cofactors 𝑣, 𝑤.

ℓ 𝑖 = 𝑤 (𝑧 𝑖) 𝑣 ′ (𝑧 𝑖)
, where 𝑣 and 𝑤 are the cofactors as in Lemma 2.5.

The first-order sensitivity of this formula w.r.t. perturbations 𝛿𝑣 and 𝛿𝑤 on the coefficients of 𝑣 and 𝑤 is given by:

𝛿ℓ 𝑖 = 𝑣 ′ (𝑧 𝑖)𝑤 ′ (𝑧 𝑖) -𝑣 ′′ (𝑧 𝑖)𝑤 (𝑧 𝑖) 𝑣 ′ (𝑧 𝑖) 3 (𝛿𝑣)(𝑧 𝑖) - 𝑤 (𝑧 𝑖) 𝑣 ′ (𝑧 𝑖) 2 (𝛿𝑣) ′ (𝑧 𝑖) + 1 𝑣 ′ (𝑧 𝑖) (𝛿𝑤)(𝑧 𝑖) + 𝑂 ∥𝛿𝑣 ∥ 2 + ∥𝛿𝑤 ∥ 2 .
Proof. The formula for ℓ 𝑖 directly follows from (2) in Lemma 2.5: we have 𝑤 (𝑧 𝑖) = ℓ 𝑖 𝑗≠𝑖 (𝑧 𝑖 -𝑧 𝑗) and 𝑣 ′ (𝑧 𝑖) = 𝑗≠𝑖 (𝑧 𝑖 -𝑧 𝑗).

Now suppose 𝑣 and 𝑤 are perturbed by 𝛿𝑣 and 𝛿𝑤. The resulting perturbations 𝛿𝑧 𝑖 of the roots 𝑧 𝑖 follow from (𝑣 + 𝛿𝑣)(𝑧 𝑖 + 𝛿𝑧 𝑖) = 0:

𝛿𝑧 𝑖 = (𝛿𝑣)(𝑧 𝑖) 𝑣 ′ (𝑧 𝑖) + 𝑂 ∥𝛿𝑣 ∥ 2 .
By differentiating the relation for ℓ 𝑖 w.r.t. 𝑣, 𝑤, 𝑧 𝑖 and replacing 𝛿𝑧 𝑖 , we obtain the desired estimate involving 𝛿𝑣 and 𝛿𝑤. □

In particular, the sensitivity analysis shows that the technique used by Algorithm GcdRoot* to recover the multiplicity ℓ 𝑖 of the root 𝑧 𝑖 (line 3) is robust w.r.t. the numerical errors of 𝑣 and 𝑤 computed in line 1, except, as expected, if this root is too close to other roots of 𝑝 (then 𝑣 ′ (𝑧 𝑖) tends to 0). Numerical example. We compare our modified routine GcdRoot* to Zeng's original GcdRoot and show how this improves the total numerical multiple-root finding process solving Problem 1.

Example 1. Consider, as in [30, §4.6], the polynomial

𝑝 𝑚 = (𝑥 -1) 4𝑚 (𝑥 -2) 3𝑚 (𝑥 -3) 2𝑚 (𝑥 -4) 𝑚 , (4)
for 𝑚 = 1, 2, . . . , with coefficients truncated to standard double precision (53 bits). from the actual values. On the other hand, using the same tolerance parameters, GcdRoot* succeeds up to 𝑚 = 48, and the first incorrectly recovered multiplicities (right part of the table) only differ from the actual ones by a few units.

Remark 2.7. In Zeng's original Matlab implementation [START_REF] Zeng | Algorithm 835: MultRoot-a Matlab Package for Computing Polynomial Roots and Multiplicities[END_REF], Gc-dRoot on the same example succeeds for 𝑚 up to 7 and root approximations are more accurate. This is probably due to the fact that the use of rescaling weights in the AGCD procedure was not re-implemented in the more recent Julia package Polynomials.jl we rely on. It would be interesting to see the effect of weights on both GcdRoot and GcdRoot*.

About conditioning and numerical stability. The conditioning of Problem 1 for a given ℓ, i.e., the perturbation on the roots 𝒛 induced by a multiplicity-preserving perturbation of the coefficients of 𝑝 in system (3), is given by the norm of 𝐽 𝐺 ℓ (𝒛) + , which is equal to the smallest singular value of 𝐽 𝐺 ℓ (𝒛) [30, §3.4]. In a floating-point arithmetic context, we may prefer the relative structure-preserving condition number (see, e.g., [26, §12] or [9, §1.6]):

𝜅 ℓ := ∥𝐽 𝐺 ℓ (𝒛) + ∥ ∥𝒛∥/∥𝒑∥ .
Hence, knowing ℓ, the problem of computing multiple roots is not subject to infinite sensitivity: only finitely many bits are lost. Moreover, experiments in [30, §3.4] show that 𝜅 ℓ is moderate, even with high multiplicities, if the distinct roots are well separated. However, rounding errors during execution also affect the computed roots. For PejRoot, each iteration solves a linear least-squares problem using the QR factorisation, which is backward stable [START_REF] Nicholas | Accuracy and Stability of Numerical Algorithms[END_REF]Thm. 20.3] but does not exploit the specific definition of 𝐽 𝐺 ℓ (𝒛). Therefore, rounding errors grow with the matrix condition number 𝜅 (𝐽 𝐺 ℓ (𝒛)) = ∥𝐽 𝐺 ℓ (𝒛)∥∥ 𝐽 𝐺 ℓ (𝒛) + ∥. Similarly, the SVD used by the AGCD routine in GcdRoot and GcdRoot* to compute the cofactors 𝑣 and 𝑤 is backward stable [START_REF] Lloyd N Trefethen | Numerical Linear Algebra[END_REF]Thm. 19.4]. Therefore, the rounding errors in 𝑣 (from which the (simple) roots are extracted afterwards) grow with 𝜅 (Δ 𝑘 (𝑝)) = ∥Δ 𝑘 (𝑝)∥∥Δ 𝑘 (𝑝) + ∥.

Although it is claimed in [START_REF] Zeng | Computing multiple roots of inexact polynomials[END_REF] that PejRoot is more accurate than GcdRoot, our experiments show it is not a general fact (see Table 3). A deeper numerical analysis of both methods would be necessary to understand in which cases one is better than the other.

VALIDATING MULTIPLE ROOTS

To solve Problem 2, we propose validation algorithms that compute rigorous error bounds on the numerical roots obtained previously. Algorithm ValPejRoot computes accurate bounds by translating Problem 2 into the straightforward, well-conditioned system (3) already used by PejRoot. Unfortunately, this system combines two difficulties: nonlinearity and overdetermination (see Section 3.3). The consequence is that ValPejRoot must rely on a priori root enclosures to compute tighter rigorous bounds. Such initial enclosures are computed by Algorithm ValGcdRoot, detailed in Section 3.2. It relies on a different system to encode the roots, inspired by Zeng's GcdRoot, whose structure makes it possible to depend on no a priori root enclosures. Before describing these two algorithms, which together solve Problem 2 (numerical examples are given in Section 3.4), we first provide preliminaries about interval arithmetic and a posteriori validation based on Newton-like fixed-point operators.

Preliminaries for the validation strategy.

Interval arithmetic. We call IR and IC the sets of real or complex intervals representable using floating-point arithmetic. Intervals are denoted using brackets: [𝑎], [𝑥], [𝑦], etc. Then 𝑎 ∈ [𝑎] simply means that 𝑎, as an exact real or complex number, is contained in the mathematical set represented by [𝑎]. These notations extend entrywise to vectors: 𝒂 ∈ [𝒂] with 𝒂 ∈ R 𝑛 (or C 𝑛) and [𝒂] ∈ IR 𝑛 (or IC 𝑛) if 𝑎 𝑖 ∈ [𝑎 𝑖] for all 𝑖. Analogous notations are used for polynomials (given by their coefficients) and matrices (given by their entries). Whenever 𝑎 is already defined but not [𝑎], the latter denotes the singleton {𝑎} by default. Moreover, given 𝑎 ∈ R or C and 𝑟 ∈ R ⩾0 , [𝑎 ± 𝑟] is the interval of radius 𝑟 centred at 𝑎.

[𝒂 ± 𝒓] ∈ IR 𝑛 or IC 𝑛 is defined analogously for 𝒂 ∈ R 𝑛 or C 𝑛 and 𝒓 ∈ R 𝑛 ⩾0 . The magnitude of [𝑎] is defined as mag [𝑎] := max{|𝑎|, 𝑎 ∈ [𝑎]} ∈ R ⩾0 ,
and it is extended entrywise to vectors and matrices:

mag [𝒂] ∈ R 𝑛 ⩾0 , mag [𝐴] ∈ R 𝑛×𝑘 ⩾0 . A function [𝑓] : IC 𝑘 → IC is said to be an interval extension of 𝑓 : C 𝑘 → C if for all 𝑎 1 ∈ [𝑎 1], . . . , 𝑎 𝑘 ∈ [𝑎 𝑘], 𝑓 (𝑎 1 , . . . , 𝑎 𝑘) ∈ [𝑓] ([𝑎 1], . . . , [𝑎 𝑘]
). Most interval arithmetic libraries provide interval extensions for basic functions such as arithmetic operations +, -, ×, ÷ and some elementary functions. They will be the building blocks of our validation algorithms.

Validation using Newton-like fixed-point operators. Let 𝐻 : C 𝑘 → C 𝑘 be a system of equations, and let 𝒙 * ∈ C 𝑘 denote an exact solution of 𝐻 (𝒙) = 0. In many situations, 𝒙 * is not expressed as a finite composition of arithmetic operations and elementary functions, so that basic interval arithmetic is not sufficient to get an interval enclosure of it. A posteriori validation consists in expressing 𝒙 * as a fixed point of a contracting operator, then deducing rigorous and tight error bounds for any input approximation x of 𝒙 * . A popular option for locally invertible 𝐻 is to use a Newton-like operator:

𝑁 𝐻 (𝒙) := 𝒙 -𝐴 𝐻 (𝒙), (5)
where 𝐴 ∈ C 𝑘×𝑘 is an approximate inverse of the Jacobian 𝐽 𝐻 (x) of 𝐻 at x. Then the zeros of 𝐻 are exactly the fixed point of 𝑁 𝐻 (provided 𝐴 is injective, which will be a byproduct of the validation).

We will rigorously check that 𝑁 𝐻 is a contraction around x.

Definition 3.1. 𝑁 𝐻 is said to be Λ(𝒓)-Lipschitz over

[x ± 𝒓] ∈ IC 𝑘 with 𝒓 ∈ R 𝑘 ⩾0 if Λ(𝒓) ∈ R 𝑘×𝑘 ⩾0 satisfies: |𝑁 𝐻 (𝒙) -𝑁 𝐻 (𝒙 ′)| ⩽ Λ(𝒓) |𝒙 -𝒙 ′ | for all 𝒙, 𝒙 ′ ∈ [x ± 𝒓].
Such a Lipschitz matrix Λ(𝒓) for 𝑁 𝐻 can be rigorously computed by bounding the Jacobian of 𝑁 𝐻 over 𝒙 ∈ [x ± 𝒓]:

𝐽 𝑁 𝐻 (𝒙) = 𝐼 𝑘 -𝐴 𝐽 𝐻 (𝒙).
We also need to compute a rigorous bound 𝜹 ∈ R 𝑘 ⩾0 on the defect:

𝜹 ⩾ |𝑁 𝐻 (x) -x | = |𝐴 𝐻 (x)|.
Then the following generalisation of Banach's fixed-point principle (see e.g., [START_REF] Rohn | Enclosing solutions of overdetermined systems of linear interval equations[END_REF]Thm. 1], or [START_REF] Rump | Verification methods: Rigorous results using floatingpoint arithmetic[END_REF]Thm. 10.6] for an analogous statement due to Krawczyk) asserts the existence and uniqueness of a fixed point 𝒙 * in [x ± 𝒓]. Theorem 3.2. If the following inequality holds entrywise:

Λ(𝒓) 𝒓 + 𝜹 < 𝒓, (6)
then 𝑁 𝐻 is a contraction over [x ± 𝒓]: the spectral radius (i.e., the modulus of the largest eigenvalue) 𝜆 := 𝜌 (Λ(𝒓)) satisfies 𝜆 < 1, and 𝑁 𝐻 admits a unique fixed point

𝒙 * inside [x ± 𝒓].
For the sake of completeness, we provide a routine Validat-edBounds which automates the process of finding a tight 𝒓 satisfying (6) above. It is similar to Rohn's routine [18, §3] or Rump's 𝜀-inflation method [21, Algo. 10.7], except that we here assume Λ(𝒓) to depend on 𝒓, since we are concerned with nonlinear systems. Moreover Λ is assumed to be nondecreasing: if 𝒓 ⩽ 𝒓 ′ (entrywise), then Λ(𝒓) ⩽ Λ(𝒓 ′) (entrywise). (see lines 1-2) admits a solution, then the algorithm computes a solution 𝒓 satisfying (6) in a finite number of iterations.

Algorithm 4 ValidatedBounds(Λ, 𝜹)

Input: procedure 𝒓 ∈ R 𝑘 ⩾0 ↦ → Λ(𝒓) ∈ R 𝑘×𝑘 ⩾0 ,
Proof. The proof is similar to the linear case in [START_REF] Rohn | Enclosing solutions of overdetermined systems of linear interval equations[END_REF]Thm. 2]. □

The overdetermined case. Particular care is needed when extending this strategy to the overdetermined case 𝐻 : C 𝑘 → C 𝑛 with 𝑘 < 𝑛. Linear overdetermined systems have been investigated in [START_REF] Rohn | Enclosing solutions of overdetermined systems of linear interval equations[END_REF]. Algorithms ValGcdRoot and ValPejRoot in the following rely on overdetermined nonlinear systems [START_REF] Giusti | On location and approximation of clusters of zeros of analytic functions[END_REF] and [START_REF] Bini | Structured Matrix-Based Methods for Polynomial 𝜀-Gcd: Analysis and Comparisons[END_REF].

First, the Jacobian 𝐽 𝐻 (x) ∈ C 𝑛×𝑘 is still assumed to have full column rank, but it is no longer square and hence not invertible. Therefore, to define 𝑁 𝐻 [START_REF] Corless | The Singular Value Decomposition for Polynomial Systems[END_REF], one takes for 𝐴 a numerical approximation of its pseudoinverse:

𝐴 = 𝐽 + = (𝐽 * 𝐽) -1 𝐽 * ∈ C 𝑘×𝑛 , where 𝐽 = 𝐽 𝐻 (x) and 𝐽 * = 𝐽 𝑇 .
Since 𝐽 + 𝐽 = 𝐼 𝑘 , 𝑁 𝐻 is still contracting locally around x, and Vali-datedBounds provides rigorous bounds 𝒓. However, 𝐴 is no longer injective, implying that the fixed point 𝒙 * of 𝑁 𝐻 in [x ± 𝒓] (by Theorem 3.2) may no longer be a solution of 𝐻 (𝒙) = 0. For instance, overdetermined systems have no solution in the generic case. This explains the careful phrasing of Propositions 3.5 and 3.6 below, and the need for a priori root enclosures for ValPejRoot. Let 𝒗 ∈ C 𝑘 and 𝒘 ∈ C 𝑘-1 denote the coefficients of 𝑣 and 𝑤 except the (fixed) leading ones: 𝑣 = 𝑥 𝑘 + 𝑣 𝑘-1 𝑥 𝑘-1 + • • • + 𝑣 0 , and 𝑤 = 𝑛𝑥 𝑘-1 +𝑤 𝑘-2 𝑥 𝑘-2 +• • •+𝑤 0 . Form the vector 𝒙 = (𝒘, -𝒗, 𝒛) ∈ C 3𝑘-1 , and let 𝒃 ∈ C 𝑛+𝑘-1 denote the coefficients of 𝑥 𝑘 𝑝 ′ -𝑛𝑥 𝑘-1 𝑝. Then, with 1 denoting (1, . . . , 1) ∈ N 𝑘 >0 , the system to solve is:

Validated initial enclosures

𝐹 𝑘 (𝒙) = 𝐹 𝑘 𝒘 -𝒗 𝒛 = 𝒃 0 ⇔        Δ 𝑘-1 (𝑝) 𝒘 -𝒗 = 𝒃, 𝐺 1 (𝒛) -𝒗 = 0. (7
)
This system has 𝑛 +2𝑘 -1 equations in 3𝑘 -1 variables. It is hence overdetermined too. However, the overdetermination entirely lies in the upper part of the system, which is linear. This is the key point making ValGcdRoot not relying on a priori root enclosures.

The Jacobian of 𝐹 𝑘 is the (𝑛 + 2𝑘 -1) × (3𝑘 -1) matrix:

𝐽 𝐹 𝑘 𝒘 -𝒗 𝒛 = Δ 𝑘-1 (𝑝) 𝑂 (𝑛+𝑘-1)×𝑘 𝑂 𝑘×(𝑘-1) 𝐼 𝑘 𝐽 𝐺 1 (𝒛) , (8)
which is necessarily non-surjective when 𝑘 < 𝑛. One builds the Newton-like validation operator:

𝑁 𝐹 𝑘 (𝒙) = 𝒙 -𝐴 𝐹 𝑘 (𝒙) -(𝒃, 0) , (9
)
where 𝐴 is computed numerically as the pseudoinverse of 𝐽 𝐹 𝑘 (𝒙) according to the following Lemma.

Lemma 3.4. The Jacobian 𝐽 𝐹 𝑘 (𝒙) is injective whenever 𝑝 ∈ C 𝑛 [𝑥] has 𝑘 distinct roots 𝑧 𝑖 . Therefore, the pseudoinverse 𝐽 𝐹 𝑘 (𝒙) + satisfies 𝐽 𝐹 𝑘 (𝒙) + 𝐽 𝐹 𝑘 (𝒙) = 𝐼 3𝑘-1 , and it is equal to:

𝐽 𝐹 𝑘 (𝒙) + = 𝐴 1 𝑂 (2𝑘-1)×𝑘 𝐴 3 𝐴 2 ,
where

𝐴 1 = Δ 𝑘-1 (𝑝) + , 𝐴 2 = 𝐽 𝐺 1 (𝒛) -1 , 𝐴 3 = -𝐴 2 𝑂 𝑘×(𝑘-1) 𝐼 𝑘 𝐴 1 = -𝐴 2 𝐴 1,𝑖 𝑗 𝑘 ⩽𝑖 ⩽2𝑘-1 1⩽ 𝑗 ⩽𝑛+𝑘-1 .
Proof. The injectivity of 𝐽 𝐹 𝑘 (𝒙) follows from the one of Δ 𝑘-1 (𝑝) by Lemma 2.5, together with the invertibility of 𝐽 𝐺 1 (𝒛). It automatically implies that 𝐽 𝐹 𝑘 (𝒙) + is a left inverse for 𝐽 𝐹 𝑘 (𝒙). Finally, for any 𝒄 ∈ C 𝑛+2𝑘-1 , 𝒚 = 𝐽 𝐹 𝑘 (𝒙) + 𝒄 is by definition the least-squares solution of 𝐽 𝐹 𝑘 (𝒙) 𝒚 = 𝒄. Since 𝐽 𝐹 𝑘 (𝒙) is lower triangular by block and 𝐽 𝐺 1 (𝒛) is invertible, 𝒚 is built by using 𝐴 1 := 𝑆 𝑘-1 (𝑝) + to define its (𝒘, -𝒗) component (thus minimising the errors on the first 𝑛 + 𝑘 -1 equations), and by adjusting the 𝒛 component of 𝒚 so as to cancel the remaining 𝑘 equations. This leads to the given block matrix expression for 𝐽 𝐹 𝑘 (𝒙) + . □

Once 𝑁 𝐹 𝑘 is built, Algorithm ValGcdRoot proceeds by rigorously satisfying the hypotheses of Theorem 3.2 using interval arithmetic to deduce bounds 𝒓 ∈ R 3𝑘-1 ⩾0 for an approximation x = (w,ṽ, 𝒛) of system [START_REF] Giusti | On location and approximation of clusters of zeros of analytic functions[END_REF].

Input: interval polynomial [𝑝] ∈ IC 𝑛 [𝑥], multiplicity structure ℓ ∈ N 𝑘 >0
, root approximations z ∈ C 𝑘 Output: root enclosures [𝒛] ∈ IC 𝑘 or failure message 1: compute ṽ, w as in (2) to form x = (w,ṽ, z) 2: compute 𝐴 ≈ 𝐽 𝐹 𝑘 (x) + numerically, as in Lemma 3.4

⊲ From now on, use interval arithmetic

3: 𝜹 ← mag [𝐴] [𝐹 𝑘] (x) -([𝒃], 0) 4: Λ : 𝒓 ∈ R 3𝑘-1 ⩾0 ↦ → mag 𝐼 3𝑘-1 -[𝐴] [𝐽 𝐹 𝑘] ([x ± 𝒓]) 5: 𝒓 ← ValidatedBounds(Λ, 𝜹) 6: [𝒙] = ([𝒘], -[𝒗], [𝒛]) ← [x ± 𝒓] 7: for 𝑖 = 1 . . . 𝑘 do 8: if [𝑤] ([𝑧 𝑖]) [𝑣] ′ ([𝑧 𝑖]) ∩ N ≠ {ℓ 𝑖 } then return FAIL end if 9: end for 10: return [𝒛]
Proof. Given the candidate solution x = (w,ṽ, z) computed in line 1 and the Newton-like operator 𝑁 𝐹 𝑘 (9) defined from the pseudoinverse 𝐴 computed in line 2, the use of interval arithmetic beginning on line 3 guarantees that for any 𝑝 ∈ [𝑝]:

(1) 𝜹 is a rigorous entrywise upper bound for the defect 𝑁 𝐹 𝑘 (x)x;

(2) Λ(𝒓) with arbitrary 𝒓 ∈ R ⩾0 is a rigorous entrywise bound for the Jacobian of 𝑁 𝐹 𝑘 taken at any point inside the interval vector [x ± 𝒓], hence a valid Lipschitz matrix for 𝑁 𝐹 𝑘 over this domain.

According to Theorem 3.2 and Proposition 3.3, the bounds 𝒓 computed in line 5 (if ValidatedBounds does not fail), ensure that the spectral radius of Λ(𝒓) is smaller than 1, that the Newton-like operator 𝑁 𝐹 𝑘 (for any 𝑝 ∈ [𝑝]) is a contraction over the 𝒓-inflated interval vector [𝒙] ∈ IC 3𝑘-1 , and therefore admits a unique fixed point 𝒙 * = (𝒘 * , -𝒗 * , 𝒛 *) in it. Moreover, since Λ(𝒓) has the form

Λ 1 𝑂 (2𝑘-1)×𝑘 Λ 3 Λ 2 (𝒓) (with Λ 1 , Λ 3 independent of 𝒓), 𝜌 (Λ(𝒓)) < 1
implies that 𝜌 (Λ 1) < 1 and 𝜌 (Λ 2 (𝒓)) < 1, so that 𝐴 1 Δ 𝑘-1 (𝑝) and 𝐴 2 𝐽 𝐺 1 (𝒛) are invertible (hence also 𝐴 2 since it is a square matrix).

Let us now assume that 𝑝 ∈ [𝑝] has the desired multiplicity structure ℓ. Then by Lemma 2.5, there are unique polynomials 𝑣 and 𝑤 of the form

𝑣 = 𝑥 𝑘 + 𝑣 𝑘-1 𝑥 𝑘-1 + • • • + 𝑣 0 and 𝑤 = 𝑛𝑥 𝑘-1 + 𝑤 𝑘-2 𝑥 𝑘-2 + • • • + 𝑤 0 satisfying 𝑤𝑝 -𝑣𝑝 ′ = 0.
𝐴 3 Δ 𝑘-1 (𝑝) 𝒘 * 𝒗 * -𝒃 =0 + 𝐴 2 𝐺 1 (𝒛 *) -𝒗 * = 0,
we deduce that 𝐺 1 (𝒛 *) = 𝒗 * , by invertibility of 𝐴 2 . Hence, 𝒛 * are the (simple) roots of 𝑣, which are also the (multiple) roots of 𝑝.

Finally, the tests in lines 7-9 carried out in interval arithmetic guarantee that the obtained roots are matched with the correct multiplicities, following Lemma 2.6. Now for the second claim, if 𝑝 ∈ [𝑝] has less than 𝑘 distinct roots, then Δ 𝑘-1 (𝑝) is rank deficient, and so is the Jacobian 𝐽 𝐹 𝑘 . Therefore 𝜌 (Λ(𝒓)) ⩾ 1 and line 5 will necessarily raise an error. □

Refined validated enclosures

Given a polynomial 𝑝 ∈ C 𝑛 [𝑥] of multiplicity structure ℓ ∈ N 𝑘 >0 , represented by [𝑝] ∈ IC 𝑛 [𝑥], Algorithm ValPejRoot aims at validating approximate roots z ∈ C 𝑘 , seen as an approximate solution of system [START_REF] Bini | Structured Matrix-Based Methods for Polynomial 𝜀-Gcd: Analysis and Comparisons[END_REF]. The Newton-like validation operator,

𝑁 𝐺 ℓ (𝒛) := 𝒛 -𝐴 (𝐺 ℓ (𝒛) -𝒑) , (10)
is built from a numerical approximation 𝐴 of the pseudoinverse

𝐽 𝐺 ℓ (z) + ∈ C 𝑘×𝑛 .
Using interval arithmetic and Theorem 3.2, ValPejRoot constructs enclosures [𝒛] ∈ IC 𝑘 around z containing a unique fixed point 𝒛 * of 𝑁 𝐺 ℓ . However, since 𝐴 is not injective, one cannot deduce that 𝒛 * is a solution of system [START_REF] Bini | Structured Matrix-Based Methods for Polynomial 𝜀-Gcd: Analysis and Comparisons[END_REF]. Moreover, the argument used in the proof of Proposition 3.5 for ValGcdRoot was specific to the structure of system [START_REF] Giusti | On location and approximation of clusters of zeros of analytic functions[END_REF], whose overdetermined part was linear. This is why ValPejRoot([𝑝], ℓ, z, [𝒛 0]) relies on an extra argument: an a priori, possibly not very tight, enclosure [𝒛 0] ∈ IC 𝑘 of the roots. This may be instantiated as the output of ValGcdRoot([𝑝], ℓ, z).

Algorithm 6 ValPejRoot([𝑝], ℓ, z, [𝒛 0]) Input: [𝑝] ∈ IC 𝑛 [𝑥], ℓ ∈ N 𝑘 >0 ,
] such that 𝑝 = 𝑝 𝑛 𝑘 𝑖=1 (𝑥 - 𝑧 𝑖) ℓ 𝑖 . Then if ValPejRoot([𝑝], ℓ, z, [𝒛 0]) does not fail, it computes refined root enclosures [𝒛] ⊆ [𝒛 0] such that 𝒛 ∈ [𝒛].
Proof. The use of interval arithmetic after line 2 ensures that 𝜹 is a rigorous upper bound for the defect 𝑁 𝐺 ℓ (z)z, and Λ 0 (resp. Λ(𝒓)) a rigorous Lipschitz matrix for 𝑁 𝐺 ℓ over [𝒛 0] (resp. [z ± 𝒓]).

The first call to ValidatedBounds with the constant Lipschitz matrix 𝒓 ↦ → Λ 0 (the second argument, 𝜹, is not relevant) ensures that 𝜌 (Λ 0) < 1 by Proposition 3.3 and Theorem 3.2 (otherwise this routine raises an error). As a result, the initial root enclosure [𝒛 0] contains at most one fixed point of 𝑁 𝐺 ℓ .

The

Validated Numerical Examples

Example 1 (validated version). We computed tight coefficientwise enclosures [𝑝 𝑚] (up to machine double precision) for polynomials 𝑝 𝑚 of Example 1, and applied the full validation chain: from the root approximations z computed by our routine GcdRoot* followed by Zeng's PejRoot, an initial enclosure [𝒛 0] is computed by ValGc-dRoot and refined by ValPejRoot. The maximum relative errors obtained on the four roots are summarised in Table 2. We observe that the relative radius of [𝒛 0] grows with 𝑚 roughly as fast as the relative error of the initial approximations computed by GcdRoot*. This follows from the growth with 𝑚 of the condition number of Sylvester matrices, and hence of system [START_REF] Giusti | On location and approximation of clusters of zeros of analytic functions[END_REF]. On the other hand, the growth with 𝑚 of the condition number associated to system (3) is moderate, which explains why only two to three digits are lost in the intervals computed by ValPejRoot. However, for 𝑚 ⩾ 14, ValPejRoot cannot fully certify its enclosures due to the failure of the contraction test in line 5: ValGcdRoot either fails to compute initial enclosures [𝒛 0], or they are too large. Nevertheless, these results are encouraging and show that the full validation chain solving Problem 2 on this example works for degrees up to 130 and multiplicities up to 52 using double precision only.

2: Accuracy of the computed root enclosures in function of accuracy of interval coefficients of [𝑝 𝑚] -Eq. (4).

Example 1 (continued : the effect of uncertainties). For 𝑚 up to 5, Figure 2 shows the relative accuracy of the root enclosures [𝒛] in function of the relative accuracy of the interval coefficients of [𝑝 𝑚]. First, we observe that the number of lost bits in the result is equal to the number of lost bits in the input plus a constant corresponding to the conditioning. This corroborates our claim that this validation method has finite conditioning: it is not subject to the "attainable accuracy barrier".

Unfortunately, the input accuracy threshold over which our method fails decreases with 𝑚, although the computed bounds themselves do not increase excessively. The first reason is the condition number of Sylvester matrices used by ValGcdRoot. Another source of failure we observed is the potentially very large overestimations in the interval evaluations of the maps 𝐺 ℓ and 𝐽 𝐺 ℓ over non-thin intervals [𝒛], something well-known as the wrapping effect in interval analysis [21, §9.2].

Example 2 (nearby multiple roots). Figure 3 compares obtained accuracies of the approximations and validated enclosures for (𝑥 -1 + 𝜀) 𝑚 1 (𝑥 -1) 𝑚 2 (𝑥 + 0.5) 𝑚 3 ,

already used as example in [28, §5.2]. The accuracy deteriorates when the gap 𝜀 between the two nearby multiple roots tends to 0. This is a consequence of the growth of the structure-preserving condition number when we get closer to the pejorative submanifold Π 𝑚 1 +𝑚 2 ,𝑚 3 . On the other hand, the multiplicities do not seem to impact the accuracy significantly. The overestimation factor of the validated enclosures compared to the approximations is rather mild. However, higher multiplicities lower the threshold on 𝜀 over which the combination of ValGcdRoot and ValPejRoot fails.

Example 3 (complex roots). The following polynomial: (𝑥 2 -𝑥 + 1) 𝑚 1 (𝑥 2 + 4𝑥 + 7) 𝑚 2 (𝑥 2 -𝑥 -1) 𝑚 3 (𝑥 2 + 2𝑥 + 2) 𝑚 4 (12) has 8 complex roots depicted in Figure 4. The relative accuracies of the computed root approximations and enclosures for different values of the 𝑚 𝑖 are summarised in Table 3. It turns out that, in this example, the condition number of 𝐽 𝐺 ℓ (𝒛) grows significantly faster than the condition number of the Sylvester matrices Δ 𝑘 (𝑝). As a result, the approximations produced by GcdRoot* are better than those of PejRoot (we thus kept the former for the validation), and ValGcdRoot performs better than ValPejRoot. Such cases are not discussed in [START_REF] Zeng | A Method Computing Multiple Roots of Inexact Polynomials[END_REF][START_REF] Zeng | Computing multiple roots of inexact polynomials[END_REF], and further research is needed to predict when they occur.

CONCLUDING REMARKS

In this article, we improved Zeng's numerical method [START_REF] Zeng | A Method Computing Multiple Roots of Inexact Polynomials[END_REF][START_REF] Zeng | Computing multiple roots of inexact polynomials[END_REF] to solve Problem 1 and proposed a validation method based on two algorithms ValGcdRoot and ValPejRoot to solve Problem 2.

A first future work is to refine our implementations of the validation routines so that their performances get closer to the purely numerical routines in terms of high multiplicities and obtained Table 3: Maximum relative errors on the root approximations and enclosures for the polynomials [START_REF] Mantzaflaris | Deflation and Certified Isolation of Singular Zeros of Polynomial Systems[END_REF].

accuracy without using multi-precision. This, in particular, concerns Algorithm ValPejRoot where refined evaluation methods could lower the overapproximations on the defect and Lipschitz matrices, e.g., Discrete Fourier Transform (DFT) based evaluation methods to reduce the wrapping effect. Also, in cases where the pejorative condition number is large, one can consider combining the "one-root-at-a-time" deflation method of [START_REF] Rump | Verified error bounds for multiple roots of systems of nonlinear equations[END_REF] with our two-stage validation approach to make it compliant with Problem 2. On the theoretical side, a thorough complexity analysis of algorithms to solve Problem 2 will require a deeper analysis of the growth of the various condition numbers involved.

Problem 2 .

 2 Given [𝑝] = [𝑝 𝑛]𝑥 𝑛 + • • • + [𝑝 0] with interval coefficients, 0 ∉ [𝑝 𝑛] and ℓ ∈ N 𝑘 >0 , compute intervals [𝒛] = ([𝑧 1], . . . , [𝑧 𝑘]) such that for any polynomial 𝑝 ∈ [𝑝] having multiplicity structure ℓ, there exist unique 𝑧 𝑖 ∈ [𝑧 𝑖] such that 𝑝 = 𝑝 𝑛 𝑘 𝑖=1 (𝑥 -𝑧 𝑖) ℓ 𝑖 .

Lemma 2 . 6 .

 26 If 𝒛 = (𝑧 1 , . . . , 𝑧 𝑘) are the distinct multiple roots of 𝑝 ∈ C 𝑛 [𝑥], then the corresponding multiplicities ℓ 𝑖 are

Figure 1 :

 1 Figure 1: Theorem 3.2 in dimension 𝑘 = 2, with the image (green solid shape) of the box [x ± 𝒓] contained in the dashed box [𝑁 𝐻 (x) ± Λ 𝒓], thus satisfying inequality (6).

 Here we assume that 𝑝 ∈ C 𝑛 [𝑥] of multiplicity structure ℓ ∈ N 𝑘 >0 is represented by an interval polynomial [𝑝] ∈ IC 𝑛 [𝑥], and that approximations z ∈ C 𝑘 of its roots have already been computed. Algorithm ValGcdRoot([𝑝], ℓ, z) constructs enclosures [𝒛] ∈ IC 𝑘 of its exact roots, based on an alternative system to Eq. (3). By Lemma 2.5, the roots of 𝑝 are the simple roots of the square-free cofactor 𝑣: 𝑤𝑝 -𝑣𝑝 ′ = 0, and 𝑘 𝑖=1 (𝑥 -𝑧 𝑖) = 𝑣.

Proposition 3 . 5 .

 35 Let [𝑝] ∈ IC 𝑛 [𝑥], ℓ ∈ N 𝑘 >0 and z ∈ C 𝑘 . If ValGcdRoot([𝑝], ℓ, z) does not fail, then it computes enclosures [𝒛] ∈ IC 𝑘 such that for all 𝑝 ∈ [𝑝] with multiplicity structure ℓ, there exists a unique vector of roots 𝒛 ∈ [𝒛] such that 𝑝 = 𝑝 𝑛 𝑘 𝑖=1 (𝑥 -𝑧 𝑖) ℓ 𝑖 . Moreover, no 𝑝 ∈ [𝑝] can have less than 𝑘 distinct roots, and those having exactly 𝑘 distinct ones have multiplicity structure ℓ. Algorithm 5 ValGcdRoot([𝑝], ℓ, z)

 The corresponding coefficients therefore satisfy Δ 𝑘-1 (𝑝) 𝒘 -𝒗 = 𝒃, and since 𝐴 1 Δ 𝑘-1 (𝑝) is invertible, they are equal to (𝒘 * , -𝒗 *). Now from the last 𝑘 equations of 𝐴 𝐹 𝑘 (𝒙 *) -(𝒃, 0) = 0,

Figure 3 :

 3 Figure 3: Relative accuracy of root approximations (dashed lines) and root enclosures (solid lines) for the polynomial (11) in function of 𝜀 and multiplicities (𝑚 1 , 𝑚 2 , 𝑚 3).

Figure 4 :

 4 Figure 4: Complex roots of polynomial (12).

 [4, §1] offers a robust definition by asking for the exact GCD of perturbed polynomials 𝑝 + 𝛿𝑝 and 𝑞 + 𝛿𝑞. Let 𝑝 ∈ C 𝑛 [𝑥], 𝑞 ∈ C 𝑚 [𝑥] and 𝜀 ⩾ 0. We say that the polynomial 𝑢 of degree 𝑑 ⩽ min(𝑛, 𝑚) is an 𝜀-GCD for (𝑝, 𝑞) if:(i) 𝑢 is the exact GCD of a pair (𝑝 +𝛿𝑝, 𝑞 +𝛿𝑞) with 𝛿𝑝 ∈ C 𝑛 [𝑥],

	Definition 2.4. 𝛿𝑞 ∈ C 𝑚 [𝑥], and ∥𝛿𝒑∥ 2 2 + ∥𝛿𝒒∥ 2 2 ⩽ 𝜀 2 ;
	(ii) No polynomial of degree larger than 𝑑 satisfies condition
	(i);
	(iii) 𝑢 minimises ∥𝛿𝒑∥ 2 2 + ∥𝛿𝒒∥ 2 2 among degree-𝑑 polynomials
	satisfying (ii).

Table 1

 1 𝑛 [𝑥] and tolerance 𝜀 on the input error Output: roots z ∈ C 𝑘 together with multiplicities ℓ ∈ N 𝑘 >0 1: Compute the AGCD 𝑢 of 𝑝 and 𝑝 ′ with cofactors 𝑣, 𝑤 15, 9, 4] [20, 15, 10, 5] 56 [224, 168, 112, 57] 6 [37, 11, 7, 5] [24, 18, 12, 6] 59 [236, 178, 119, 58] 7 [47, 8, 10, 5] [28, 21, 14, 7] 63 [252, 189, 127, 62] 8 [56, 8, 11, 5] [32, 24, 16, 8] 64 [256, 193, 130, 62] 9 [68, 7, 10, 5] [36, 27, 18, 9] 65 [260, 195, 129, 66]

	2: Compute the (simple) roots z of 𝑣	
	3: Compute multiplicities ℓ 𝑖 as in Lemma 2.6, and round them to
	the nearest integer		
	4: Return z, ℓ		
	𝑚 GcdRoot	GcdRoot*	𝑚 GcdRoot*
	4 [16, 12, 8, 4] [16, 12, 8, 4]	49 [196, 147, 98, 50]
	5 [22,		

summarises the multiplicity structures recovered by Zeng's GcdRoot and our GcdRoot*. GcdRoot fails as soon as 𝑚 = 5, and the obtained ℓ 𝑖 rapidly diverge too much Algorithm 3 GcdRoot*(𝑝, 𝜀) Input: 𝑝 ∈ C

Table 1 :

 1 Multiplicity structures of 𝑝 𝑚 (4) recovered by Gcd-Root and GcdRoot*. Boldface indicates incorrect results. The right part gives the first erroneous cases of GcdRoot*.

 and 𝜹 ∈ R 𝑘 ⩾0 Output: 𝒓 ∈ R 𝑘 ⩾0 satisfying Λ(𝒓)𝒓 + 𝜹 < 𝒓, or failure message Parameters: 𝜀 = 10 -10 , 𝑡 max = 20 (default values) 1:𝜂 𝑖 ← 𝜀𝛿 𝑖 if 𝛿 𝑖 > 0 𝜀𝛿 0 if 𝛿 𝑖 = 0 for 𝑖 = 1 . . . 𝑘, where 𝛿 0 ← min 𝜹 + ← 𝜹 + 𝜼 3: 𝒓 0 ← 0 ∈ R 𝑘 4: for 𝑡 = 0 . . . 𝑡 max -1 do 𝒓 𝒕+1 ← Λ(𝒓 𝒕) 𝒓 𝒕 + 𝜹 + 6: if 𝒓 𝒕+1 -𝒓 𝒕 < 𝜼then return 𝒓 𝒕 end if 7: end for 8: return FAIL Proposition 3.3. If Λ : R 𝑘 ⩾0 → R 𝑘×𝑘 ⩾0 is continuous nondecreasing and 𝜹 ≠ 0 ∈ R 𝑘 ⩾0 , then ValidatedBounds(Λ, 𝜹) satisfies: (i) If it succeeds in a finite number of iterations, then the computed vector 𝒓 satisfies inequality (6). (ii) If inequality (6) with 𝜹 replaced by the 𝜀-inflated vector 𝜹 +

	𝛿 𝑖
	𝛿 𝑖 >0
	2: 5:

 root approximations z ∈ C 𝑘 , and initial root enclosures[𝒛 0] ∈ IC 𝑘 Output: refined root enclosures [𝒛] ∈ IC 𝑘 , or failure message 1: compute 𝐴 ≈ 𝐽 𝐺 ℓ (z) + numerically ⊲ From now on, use interval arithmetic 2: [𝒑] ← 𝜹 ← mag [𝐴] ([𝐺 ℓ] (z) -[𝒑]) 4: Λ 0 ← mag 𝐼 𝑘 -[𝐴] [𝐽 𝐺 ℓ] [𝒛 0]) 5: ValidatedBounds(Λ 0 , 𝜹) ⊲ raises an error if 𝜌 (Λ 0) ⩾ 1 6: Λ : 𝒓 ∈ R 𝑘 ⩾0 ↦ → mag 𝐼 𝑘 -[𝐴] [𝐽 𝐺 ℓ] ([z ± 𝒓]) 7: 𝒓 ← ValidatedBounds(Λ, 𝜹) 8: [𝒛] ← [z ± 𝒓] 9: if [𝒛] ⊈ [𝒛 0] then return FAIL end if 10: return [𝒛] Proposition 3.6. Let [𝑝] ∈ IC 𝑛 [𝑥], ℓ ∈ N 𝑘 >0 , z ∈ C 𝑘 and [𝒛 0] ∈ IC 𝑘 .Assume that for all 𝑝 ∈ [𝑝] with multiplicity structure ℓ, there exists a unique vector of roots 𝒛 ∈ [𝒛 0

	𝑝 0 𝑝 𝑛 , . . . ,	𝑝 𝑛-1 𝑝 𝑛
	3:	

 second call to ValidatedBounds, if it does not fail, returns an error vector 𝒓 ∈ R 𝑘 ⩾0 such that 𝑁 𝐺 ℓ contains a unique fixed point 𝒛 * inside [𝒛] := [z ± 𝒓]. Also, if the inclusion [𝒛] ⊆ [𝒛 0] in line 9 is satisfied, then it proves that this fixed point is also the unique fixed point of 𝑁 𝐺 ℓ in [𝒛 0].

	𝑚 GcdRoot* PejRoot ValGcdRoot ValPejRoot
	4	1.25e-07	4.59e-15	5.62e-07	4.28e-13
	5	4.99e-07	1.33e-14	1.05e-06	4.44e-13
	6	4.01e-07	9.92e-15	2.08e-06	4.98e-13
	7	4.35e-07	7.55e-15	2.89e-06	4.78e-13
	8	6.47e-07	4.59e-15	4.80e-06	4.99e-13
	9	1.09e-06	3.11e-15	6.74e-06	4.99e-13
	10	1.13e-06	6.77e-15	8.92e-06	5.11e-13
	11	1.83e-06	8.88e-16	1.22e-05	4.93e-13
	12	9.01e-07	5.92e-16	1.61e-05	5.13e-13
	13	3.29e-06	7.40e-15	2.00e-05	5.18e-13
	14	2.52e-06	3.40e-15	2.62e-05	(5.29e-13)
	15	6.33e-06	5.03e-15	3.14e-05	(5.32e-13)
	16	1.24e-05	3.55e-15	-	(5.26e-13)
	17	1.58e-05	7.85e-15	-	(5.34e-13)
	18	1.36e-05	9.33e-15	-	(5.31e-13)
	19	2.99e-05	1.33e-15	-	(5.44e-13)
	20	4.91e-05	8.88e-16	-	(5.37e-13)

Table 2 :

 2 Maximum relative errors on the root approximations and enclosures for 𝑝 𝑚 -Eq. (4). Results in parentheses for ValPejRoot indicate not fully rigorous enclosures due to the failure of the contraction test in line 5. Now let 𝑝 ∈ [𝑝] have multiplicity structure ℓ. By the assumption on [𝒛 0], there exists a unique 𝒛 ∈ [𝒛 0] such that 𝑝 = 𝑝 𝑛 (𝑥 -𝑧 𝑖) ℓ 𝑖 . Clearly, 𝒛 is a fixed point of 𝑁 𝐺 ℓ . Hence, 𝒛 = 𝒛 Algorithms ValGcdRoot and ValPejRoot compute enclosures [𝒛] ∈ IC 𝑘 for the roots of any 𝑝 ∈ [𝑝] of multiplicity structure ℓ. They do however not prove that [𝑝] contains at least one such 𝑝. This can be done by checking that

	𝑝 𝑛	𝑘 𝑖=1 (𝑥 -z𝑖) ∈ [𝑝], with z the computed numerical roots.

* ∈ [𝒛]. □ Remark 3.7. Given [𝑝] ∈ IC 𝑛 [𝑥],

 𝑚 1 , 𝑚 2 , 𝑚 3 , 𝑚 4 GcdRoot* PejRoot ValGcdRoot ValPejRoot

	2, 2, 1, 1	2.47e-15	3.98e-15	3.17e-13	6.75e-13
	3, 1, 1, 3	4.87e-15	3.95e-14	6.01e-12	8.67e-11
	5, 3, 3, 1	4.39e-15	6.83e-14	4.56e-13	5.12e-10
	6, 3, 3, 1	2.02e-14	4.22e-14	7.97e-13	2.30e-09
	2, 5, 5, 4	5.02e-13	1.16e-12	5.52e-11	-
	8, 5, 2, 1	6.95e-15	1.59e-12	6.01e-13	-
	8, 10, 3, 7	2.91e-10	8.12e-10	6.77e-09	-
	20, 11, 7, 5	1.25e-13	1.26e-04	3.13e-12	-
	25, 30, 3, 5	6.42e-10	1.83e-02	3.04e-08	-
	25, 30, 3, 10	1.15e-07	8.04e-03	-	-

Acknowledgments. The authors are grateful to Bruno Salvy for useful discussions on detecting and converging to clusters of roots; to John Verzani for his kind help in using the Polynomials.jl package; and to the anonymous referees for relevant suggestions.