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Abstract 6

Many questions remain with regards to how context affects perceptual and automatic 7

speaker identification performance. To examine the effects of task design on perceptual 8

speaker identification performance, three tasks were developed, including lineup and binary 9

tasks, as well as a novel clustering task. Speech recordings of native French speakers were 10

compared similarly across tasks evaluated by unfamiliar Francophone listeners. True posi- 11

tive (sensitivity) and true negative (specificity) response rates across tasks were measured. 12

Our results showed participants had similar sensitivity and specificity for binary (88%) and 13

clustering (84%) tasks, but random selection rates for the lineup task. Pearson correlation 14

procedures were used to evaluate the efficiency of scores produced by a state-of-the-art 15

automatic speaker verification to model perceptual responses (equal error rate = 89%). 16

Automatic scores modelled lineup (r2 = 0.6) and clustering (r2 = 0.5) task accuracy quite 17

well, however, they were less robust when modelling binary task responses (r2 = -0.2). The 18

results underscore the role task design plays in shaping perceptual responses, which, in turn, 19

affects the modelling effectiveness of automatic scores. As evidence points to humans and

Q1

20

algorithms modelling speakers differently, our findings suggest automatic speaker identifi- 21

cation performance might be improved with a greater understanding on how context shapes 22

perceptual responses. 23
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1 Introduction26

When hearing a voice, listeners are oftentimes capable of obtaining information associated27

with the speaker, such as their sex, age, emotional state, and whether they are familiar28

[59]. Recent literature reviews on voice perception [25, 34, 35, 59, 64] have distinguished29

listeners who are familiar or unfamiliar with speaker voices, where the former relies more on30

identity processing [25] and the latter perceives and compares voice qualities [70]. However,31

the methods used by unfamiliar listeners remain unclear.32

While evidence suggests unfamiliar listeners use various acoustic features, such as F033

and formant frequencies [4, 26, 29] and phonetic content [6, 51, 57], when identifying34

speakers, the situation in which they are tasked is equally influential on performance (see35

Levi [30] and Perrachione [49] for methodological overviews of speaker processing tasks).36

For example, contextual parameters, such as the number of speakers and environmental fac-37

tors, have been shown to affect perceptual speaker identification (SID) performance [25].38

Several perceptual SID tasks have been designed, and a key distinction between them is39

whether listeners are tasked with identifying a certain speaker from a set or discriminat-40

ing between voices. The artificial constraints of the task can influence how listeners engage41

with speech materials, which, in turn, can affect their voice perception performance.42

The potential influence of task on performance can be contextualized in the domain of43

automatic speaker verification (ASV) systems. Like unfamiliar listeners, ASV systems rely44

on various acoustic features to develop speaker models that are used to produce scores45

describing the likelihood that a pair of speech recordings were produced by the same or46

different speakers (see Singh et al. [60], Poddar et al. [50], and Naika [41] for recent devel-47

opmental trends in ASV systems). As a way of modelling the perceptual experiences of lis-48

teners with voices, ASV systems typically train models on large datasets with many different49

speakers. Only a handful of studies have compared human and machine performances,50

which have focused on the effects of speech types, such as the length of utterances [17, 22,51

48]. However, to the authors’ knowledge no findings have been reported with regards to the52

effectiveness of automatic scores to model listener responses across perceptual tasks.53

Many questions remain regarding the effect of context on perceptual and automatic54

speaker identification performance. The primary goal of the current study was to examine55

the effects of task design on perceptual performance by unfamiliar listeners. Since listen-56

ers vary in their detection of inter- and intra-speaker variability, e.g., Lavan, Burston, and57

Garrido [27] and Clopper [10], a major challenge was to develop a method of standardizing58

speech recordings across tasks, i.e., avoid acoustic feature bias emerging from the different59

artificial task constraints. In addition, a common metric was required to evaluate perfor-60

mance per speaker across tasks. After collecting listener responses, our second goal was61

to evaluate how effective automatic scores were at modelling perceptual responses across62

tasks. Any observations could offer insight into ways ASV systems could be designed dif-63

ferently to improve speaker identification estimation performance, as growing research has64

shown there are distinctions between how humans and algorithms model speakers.65

2 Related work66

2.1 Perceptual speaker identification tasks67

Listeners evaluating perceptual speaker identification (SID) tasks are typically asked to68

either identify a target speaker in or make discriminations from a set of speech recordings.69
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A target refers to a specific speaker in a set. Speech recordings from speakers outside of the 70

set are considered non-target speakers. Due to study objectives, task designs may vary with 71

regards to the number of (non-)target speaker speech stimuli, which, in turn, can affect per- 72

ceptual performance. The following outlines three perceptual SID tasks developed for the 73

current study. 74

The lineup [20] task asks listeners to identify a target from a set of speech recordings. 75

Typically, the utterance (speech recording) of the target differs from lineup utterances, 76

which are oftentimes the same to avoid phonetic bias. The lineup method has been employed 77

in a number of voice perception studies, including the effects of telephone recordings on 78

identification performance [24, 36, 43, 74]. Although the general facial-recognition task is 79

transformed from the visual to the auditory domain, it is not obvious that visual and audi- 80

tory displays are comparable from the point of view of memory or perception. While vision 81

provides a global, static scene of individuals to be processed, audition requires sequential 82

processing, as each voice in a set needs to be compared directly to a target voice. This 83

sequential process suggests listeners require a more complex memory process in compar- 84

ison to viewers. Moreover, evaluations may be compromised, as listeners characterise and 85

compare target and lineup voice qualities while considering the possibility that the target is 86

absent from the lineup [47]. This observation raises further questions regarding the effects 87

of a lineup task on working memory, as the artificial framework introduces the possibil- 88

ity of true negative response (“correct reject”) into an already complex auditory-memory 89

processing chain (see Smith et al. [61, 62] for evidence that the task is error-prone). 90

The much simpler same-to-different (SD) task presents listeners with a pair of speech 91

recordings separated by a short pause and asks them to judge whether they belong to the 92

same or different speakers. SD tasks have been used to test the impartiality of non-target 93

speakers used in lineups [32, 56], as well as to examine the effects of such things as speaker 94

familiarity [4], language familiarity [13, 31], noise [61], and stimuli selection methods 95

[32, 39]. The selection of stimuli used in SD trials requires careful control, as design 96

biases have been shown to drive listener responses. For example, Sussman showed that 97

performance by unfamiliar child and adult listeners was influenced by manipulating same- 98

to-different ratios [66]. Although effective, the low-level SD task is not optimized for 99

identifying which voice qualities listeners associate with target speakers. To do so would 100

require numerous speech recording repetitions for each target speaker, which would be time- 101

consuming and possibly introduce fatigue (see Mühl [39] for a protocol with an approximate 102

10 minute duration). This observation raises concerns for memory bias or speech prim- 103

ing, as a “fresh voice” is not equivalent to a voice that was presented in a previous 104

SD trial. 105

The voice sorting task requires listeners to organise speech recordings into groups or 106

clusters that represent perceived speaker identities. An alternative to the restrictive types 107

of responses derived from lineup and same-different tasks, voice sorting provides listeners 108

with the opportunity to (re-)listen and (re-)group speech recordings until they are satisfied 109

with their judgements. A major boon of the task is that it neutralises the concept of a “tar- 110

get” speaker, as listeners merely organize voices in terms of their perceived likeness. One 111

potential drawback is that it requires numerous speech recordings per trial. Thus, in order 112

to increase the speaker group homogeneity, listeners are required to make numerous com- 113

parisons between speech recordings, which, in turn, can be time-consuming. Nevertheless 114

the method has been used in a number of studies examining the sorting behaviors of famil- 115

iar and unfamiliar listeners [27, 28, 65]. By instructing participants to sort 32 stimuli into 1 116
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to 32 different speaker groups, Johnson et al. suppressed the possibility of introducing arti-117

ficial bias [21]. Recently O’Brien et al. [44–46] developed a perceptual clustering method118

and reported unfamiliar listeners were effective at navigating the intuitive interface.119

2.2 Automatic speaker verification120

Very few studies have compared human and machine speaker identification (SID) perfor-121

mance [3, 16, 55, 58]. One area where perceptual and automatic speaker verification (ASV)122

system performance have been compared has focused on grouping speech recordings into123

similar and dissimilar speaker groups. Kelly et al. [23] developed an i-vector-based ASV124

system to make similar and dissimilar speaker groups and reported that unfamiliar listeners125

were able to judge male speakers and their similar comparison speakers, but not their dis-126

similar comparison speakers. In addition, they reported no significant findings for female127

speakers and their similar and dissimilar comparison speakers, which suggests humans dis-128

tinguish similar and different voices differently. To maximise and minimise the similarities129

between speaker groups, O’Brien et al. [46] used a similar process by compressing acous-130

tic features into i-vectors and producing similarity scores via cosine distance with Within131

Class Covariance Matrix procedures. Park et al. [48] reported that humans outperformed132

an i-vector-based ASV system when completing a text-independent speaker discrimination133

task. Revealing a weak correlation between human and machine performance, the authors134

suggest the two represent speakers differently.135

3 Methods136

3.1 Stimuli137

Speech recordings from 10 female and 10 male native-French speakers were selected from138

the PTSVox database [7]. Speaker descriptions are detailed in Table 1. The age range of the139

speakers was 18 to 24 years (mean age 19.7 ± 1.6 years). All speakers read three traditional140

French-texts, entitled “Ma soeur est venue chez moi hier”, “Au nord du pays, on trouve une141

espèce du chat”, and “La bise et le soleil se disputaient”. The texts were selected due to their142

familiarity with native French speakers and rich phonetic content. Speech was recorded in143

a double-walled, sound attenuated room with a Zoom H4N stereo microphone (sampling144

rate: 44.1 kHz; bit-depth: 16-bit).145

Female and male speakers were separated. The decision to separate speakers by sex was146

based on findings that have shown listeners are quite capable of discriminating male from147

female speakers and vice-versa (see Titze [67], Mendoza et al. [37], Whiteside [72], and148

Wu and Childers [73]). As the goal of our study was to examine the effects of task design149

on perceptual performance, it was decided to eliminate the potential confounding factor of150

speaker sex.151

Each speaker was assigned to either a Target (in-set) or Non-Target (out-of-set) group.152

As it was important to create balance in terms of the acoustic difference between each Tar-153

get speaker and all Non-Target speakers, the fundamental frequency (F0) and speech tempo154

of each speaker was extracted (Table 1) and used to calculate the standardized euclidean155

distances (SED) between speakers. A YIN algorithm [8] written in MATLAB 2016b (Math-156

Works Inc, USA) was used to calculate F0, while speech tempo (phones per second) was157

obtained in Praat [5]. A custom script was written to select Non-Target speakers with the158
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Table 1 Description of PTSVox speakers

Speaker Group Sex Age Region (FR) F0 (Hz) Tempo (pho/s)

LG001 Target Female 19 Alsace 222 12.8

LG002 Target Male 24 Lorraine 114 13.7

LG003 Target Female 19 Rhône 200 11.2

LG004 Target Male 19 Donzère 111 15.3

LG005 Target Male 18 Saint-Etienne 147 13.4

LG006 Target Male 22 Loire 125 14.2

LG007 Target Female 19 Grenoble 190 13.7

LG008 Target Male 20 Isère 138 14.8

LG009 Target Female 19 Picardie 202 12.0

LG010 Target Female 19 Haut-Rhin 227 12.0

LG011 Foil Female 21 Chaumont 220 13.9

LG012 Foil Female 20 Bourgogne 220 14.5

LG013 Foil Male 22 Loire 117 13.5

LG014 Foil Male 18 Rhône 101 13.8

LG015 Foil Female 18 Rhône 190 14.0

LG016 Foil Female 18 La Tour du Pin 180 14.0

LG017 Foil Male 19 Aisne 115 14.0

LG018 Foil Male 20 Loire 111 14.4

LG019 Foil Female 19 Grenoble 206 12.4

LG020 Foil Male 20 Auvergne 117 14.1

smallest SED. Figure 1 illustrates SED across female and male Target and Non-Target 159

speakers. 160

For each speaker 24 utterances were extracted with Praat [5] and evenly distributed across 161

Target and Non-Target speaker groups (see Appendix A for French text and English trans- 162

lations). The duration of the utterances ranged from 1.1 to 3.5 s (mean duration 1.9 ± 0.4 163

s). Limiting the duration of the utterances reduced the possibility of introducing fatigue to 164

participants. In order to compare the effects across tasks, it was important to avoid a thresh- 165

old effect. All 480 speech recordings were normalised in MATLAB, such that the maximal 166

amplitude of each recording was adjusted to a target of 100% of the signal dynamic. 167

3.2 Perceptual task designs 168

Figure 2 provides an illustrated overview of the three perceptual tasks developed for the 169

study. Table 2 describes the number of trials, stimuli per trial, design, and mean duration 170

across tasks. For each task, the sex of the speakers remained the same. 171

Participants evaluated 30 Lineup task trials (random order, non-repeating) programmed 172

in Lancelot [2]. Each Target was presented six times (1:1 ratio present-to-absent in Lineup). 173

Participants were instructed to first listen to the Target utterance located at the top of the 174

interface (see Appendix B) and then each Lineup utterance (unlimited listens). Their task 175

was to decide whether the Target speaker was present in the Lineup by selecting a cir- 176

cle below the Lineup voice. If they believed the Target was absent from the Lineup, they 177

selected a circle below a red ‘X’. 178
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Fig. 1 Heat maps of standardized euclidean distances between each female (Left) and male (Right) Target
and Non-Target speakers

Participants evaluated 100 Same-Different (SD) task trials (random order, non-repeating)179

programmed in Perceval [2]. Each SD trial began with a short “beep” generated by a sinu-180

soidal oscillator (frequency: 500 Hz; duration: 0.8 s). Following 2 s of silence, a speech181

recording was automated with Voix A (“Voice A”) text displayed in a yellow rectangle. Fol-182

lowing 0.5 s of silence without an image, a different speech recording with Voix B (“Voice183

B”) in a blue rectangle. Participants had 5 s to decide whether the two voices belonged to184

the same speaker or different speakers by pressing a button on the left or right, respectively185

(see Appendix B). Each Target was presented 1:1 ratio same-to-different. For each different186

trial, Target (A) and Non-Target (B) speakers were presented AB and BA.187

Participants evaluated 10 Cluster task trials programmed in a state-of-the-art interface188

developed at Laboratoire Informatique d’Avignon, Université du Vaucluse-Avignon (open189

source and available upon request). Each trial was composed of 12 speech recordings190

derived from the Lineup task trials: the six utterances of each Target speaker were randomly191

distributed across two trials (balanced) with the remaining nine speech recordings composed192

of two to five Non-Target utterances. For each Cluster trial participants were tasked with193

listening to each recording (unlimited) and classifying it into a cluster representing a unique194

speaker identity. To classify a speech recording, participants were instructed to right-click195

on the circle, which revealed a drop-down menu with classification colors (Appendix D).196

3.3 Participants197

All participants were native-French speakers and reported good hearing. They consented to198

voluntary participation in the study and were compensated for their time. The study was199

approved by the Ethics Committee of Aix-Marseille University.200
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Fig. 2 Illustration of the perceptual task designs

Table 2 Overview of perceptual tasks

Task Trials (#) Stimuli (#) Design Duration (s)

Lineup 30 6 Different utterance for Target & Lineup speakers 27.7 ± 8.6

Same utterance for Lineup speakers

Target speaker in Lineup 1
2 -trials

Target speaker out of Lineup 1
2 -trials

Same-Different 100 2 Different utterance per trial 1.3 ± 0.3

Same speaker for 1
2 -trials

Different speaker for 1
2 -trials

Cluster 10 12 Different utterance per trial 69.3 ± 12

4 different speakers per trial

2–5 different utterances per speaker
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35 people (27 F and 8 M; mean age 26.2 ± 8.0 years) evaluated Lineup and Same-201

Different task trials on desktop computers at CEP-LPL. Throughout the study participants202

wore Superlux HD 681B headphones. Prior to testing, participants listened to a speech203

recording and adjusted the volume to their comfort.204

19 people (17 F and 2 M; mean age 24.8 ± 2.7 years) evaluated Cluster task trials online.205

This change in testing location was due to the 2020 pandemic. Participants were encouraged206

to use personal headphones and were provided detailed instructions on how to complete the207

task and use the interface.208

3.4 Automatic speaker verification system209

The state-of-the-art automatic speaker verification (ASV) model developed for the current210

study was trained on the VoxCeleb-1,2 [9, 40] corpus, which contains around 2800 hours of211

multilingual speech from 7363 (2912 F and 4451 M) speakers. This corpus was extracted212

from videos uploaded to YouTube and designed for speaker verification research. Similar to213

recent work by Tomashenko et al. [68, 69], the Kaldi toolkit [52] was used to train the ASV214

model. As shown in Fig. 3, the ASV model relies on x-vector [63] speaker embeddings and215

probabilistic linear discriminant analysis (PLDA) [53]. The ASV model has a time delay216

neural network (TDNN) architecture with the following configuration. 30-dimensional Mel217

Frequency Cepstral Coefficients (MFCC) were used as input features. The model contains218

7 hidden layers including a single (6th) statistics pooling layer. The statistics pooling layer219

aggregates all frame-level outputs from the previous (5th) layer and computes its mean and220

standard deviation. The dimension of the output layer is 7232 that corresponds to speaker221

ids. The neural network was trained to classify the speakers in the training data using cross222

entropy criteria. The 512-dimensional x-vectors were extracted after the statistics pooling223

layer. Additional details about model training can be found in Tomashenko et al. [69] and224

Snyder et al. [63].225

The ASV model was used to obtain PLDA scores [18] for evaluated pairs of speech226

recordings, where sa, sb denote a pair of utterances. PLDA scores were computed as log-227

likelihood ratios (LLR) between corresponding x-vectors xa, xb as (1):228

PLDA(sa, sb) = log
P(xa, xb|Hsame)

P (xa, xb|Hdifferent)
, (1)

where Hsame and Hdiff erent are the hypotheses same speaker and different speakers, respec-229

tively. Following the training with the VoxCeleb dataset, we reported an equal error rate of230

11.55% and corresponding true positive (sensitivity) and true negative (specificity) response231

rates are provided in Table 3.232

Accept (same speaker)

Enrollment 
u erance

Trial u erance

MFCC feature 
extr

MFCC feature 
extr

x-vector

x-vector

LLR score
PLDA Threshold

Reject (different speaker) 

Fig. 3 Illustration of the ASV system
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Table 3 Sensitivity, specificity,
and temporal responses across
tasks

Task Metric Result

Lineup sensitivity 49.1%

trial duration 25.9 ± 14.4 s

specificity 34.9%

trial duration 31.5 ± 16.4 s

Same-Different sensitivity 88.4%

reaction time 1.26 ± 0.5 s

specificity 88.0%

reaction time 1.51 ± 0.7 s

Cluster sensitivity 83.0%

listen count 3.8 ± 2.2

specificity 84.1%

listen count 5.1 ± 2.53

ASV (log-likelihood ratio) sensitivity 88.5%

specificity 88.5%

3.5 Data processing 233

To measure the effect of task on response performance, sensitivity, commonly known as 234

“hit” rate, and specificity, or “correct reject” rate, were obtained from each participant per 235

task. Equations (2) and (3) describe sensitivity and specificity metrics, where T P , T N , 236

FP , and FN represent the number of true positive, true negative, false positive, and false 237

negative responses, respectively. 238

sensitivity = T P

T P + FP
(2)

239

specif icity = T N

T N + FN
(3)

For each Lineup task trial participants received a TP or TN for correctly identifying or 240

rejecting the Target from the Lineup. Otherwise, they received a FP or FN for falsely iden- 241

tifying a Non-Target or incorrectly rejecting the Target from the Lineup, respectively. For 242

each SD task trial participants received a TP or TN for correctly identifying the pair of 243

voices as belonging to the same or different speakers, respectively. Otherwise, they received 244

a FN or FP for the trial. For each Cluster task trial, mean specificity, i.e., the number of Tar- 245

get utterances in a cluster divided by the cluster size, and mean sensitivity, i.e., the number of 246

the same Non-Target speaker utterances in a cluster divided by cluster size, were calculated. 247

To accurately reflect task design discrepancies, i.e., the different number of stimuli 248

and outcomes per task, scores were adjusted by a task baseline coefficient. For each task 249

accuracy ((4)) was simulated in MATLAB by randomly making responses after 10,000 250

trials. 251

accuracy = T P + T N

T P + T N + T P + FN
(4)

After 40 simulations, the mean accuracy for Lineup, Same-Different, and Cluster tasks 252

were 16.5%, 49.8%, 45.6%, respectively. Equation (5) describes original St and adjusted At 253
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sensitivity and specificity and task baseline coefficient et :254

At = St − et

100 − et

(5)

Linear mixed models (lmer from the lme4 R-package) were used to evaluate the effects255

of task design on perceptual performance. Task (Lineup, Same-Different, Cluster), Target256

speaker (10 total), and response type (sensitivity, specificity) were set to fixed factors with257

random participant factor. Chi-squared (χ2
d,N ) tests were used to report p-values (Anova258

from the car R-Package) with d degrees of freedom and N samples. Main effects were259

reported for task, response, and their interactions with speaker. Estimated marginal means260

(emmeans) were used to conduct pairwise comparisons, where X ± Y represent mean and261

standard error, respectively.262

Pearson correlation procedures were used to evaluate the effects of task design on effi-263

ciency of automatic scores to model perceptual responses. In addition to mean accuracy per264

trial, different task-dependent temporal metrics were measured: Lineup task trial duration265

(s); Same-Different task trial reaction time (s); and mean number of listens (“listen count”)266

in a cluster for the Cluster task. For automatic scores, log-likelihood ratios (LLR) were267

used differently across tasks. For each Lineup task trial, the LLR between the Target and268

the selected Lineup utterance was used, except when the Lineup was rejected, whereupon269

a mean value was calculated from Target and Lineup utterances. For each SD task trial the270

LLR for each pair were used. A mean LLR value was calculated from all cluster utterances271

in a Cluster task trial.272

3.6 Preliminary analysis273

To evaluate participant normalcy, normal distribution functions were fitted to the mean trial274

duration across tasks. All participant data were included, except responses collected from275

two SD task participants, i.e., their means were greater than three standard deviations from276

the group mean. Table 2 illustrates mean duration per task. Table 3 illustrates sensitivity,277

specificity, and temporal responses across tasks.278

4 Results279

Main effects of adjusted score were observed for task χ2
2,3718 = 301.22 and response type280

χ2
1,3718 = 21.06, p < 0.001, as well as interactions task x response x target speaker281

χ2
18,3718 = 35.94, p < 0.01. Participants were more accurate when evaluating SD (79.2 ±282

2.3%) and Cluster (83.2 ± 3.6%) tasks in comparison to the Lineup task (43.4 ± 2.1%),283

p < 0.001. They were also more sensitive (71.0 ± 2.2%) rather than selective (65.3 ±284

2.0%), p < 0.01.285

Pairwise comparisons on task and response type interactions revealed participants per-286

formed better when evaluating SD (sensitivity: 82.6 ± 3.5%; specificity: 75.8 ± 2.0%) and287

Cluster (sensitivity: 82.2 ± 4.6%; specificity: 84.1 ± 4.6%) task trials in comparison to288

Lineup task trials (sensitivity: 50.9 ± 2.5%; specificity: 35.9 ± 2.8%), p < 0.001. The fol-289

lowing describes pairwise comparisons for interactions between task x response x speaker:290

Table 4 compares task sensitivity and specificity across speakers; Table 5 compares task291

sensitivity across speakers; and Table 6 compares task specificity across speakers. Figure 4292

illustrates response type (sensitivity, specificity) and task (Cluster, Lineup, Same-Different)293

interactions across speakers.294
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Table 4 Within-task performance across speakers. mean ± se, t , and {*, **, ***} represent mean difference
(true positive - true negative) and standard error, t-ratio, and p < {0.05, 0.01, 0.001} significance, respectively

Speaker Cluster Lineup Same-Different

Mean ± se (%) t p Mean ± se (%) t p Mean ± se (%) t p

LG001 −19.1 ± 19.5 −1.0 30.0 ± 9.6 3.1 ** 12.9 ± 10.7 1.2

LG002 −3.3 ± 17.2 −0.2 25.5 ± 9.4 2.7 ** 38.8 ± 11.1 3.5 ***

LG003 1.0 ± 20.8 0.0 2.9 ± 10.1 0.3 12.9 ± 10.8 1.2

LG004 1.9 ± 17.7 0.1 13.5 ± 9.6 1.4 3.7 ± 11.1 0.3

LG005 10.5 ± 16.8 0.6 0.2 ± 10.4 0.0 41.3 ± 11.1 3.7 ***

LG006 3.3 ± 6.8 0.2 4.4 ± 10.3 0.4 10.0 ± 11.1 0.9

LG007 −21.6 ± 20.1 −1.1 24.7 ± 9.8 2.5 * 54.4 ± 10.8 −5.1 ***

LG008 6.1 ± 20.1 0.3 11.9 ± 10.1 1.2 −22.5 ± 11.1 −2.0 *

LG009 43.6 ± 20.3 0.3 22.8 ± 10.2 2.3 * 28.2 ± 10.7 2.6 ***

LG010 −3.5 ± 20.1 −0.2 19.0 ± 10.4 1.8 3.5 ± 10.8 0.3

Table 7 shows the results of Pearson correlation procedures applied to log-likelihood 295

ratios and perceptual responses (trial accuracy, temporal metrics) across tasks. 296

5 Discussion 297

The primary goal of the current study was to examine whether perceptual SID task design 298

affected performance by unfamiliar listeners. Our findings revealed participants performed 299

both Same-Different (SD) and Cluster tasks relatively similarly with sensitivity and speci- 300

ficity greater than 80%, however, performance dropped below 50% when evaluating Lineup 301

task trials. In general, the task comparison results confirmed our hypothesis that the degree 302

Table 5 Task sensitivity across Target speakers. mean ± se, t , and {*, **, ***} represent mean difference
(between tasks) and standard error, t-ratio, and p < {0.05, 0.01, 0.001} significance, respectively

Speaker Cluster - Lineup Same-Different - Lineup Same-Different - Cluster

Mean ± se (%) t p Mean ± se (%) t p Mean ± se (%) t p

LG001 24.1 ± 15.5 1.6 52.8 ± 11.8 4.5 *** 28.7 ± 17.3 1.7

LG002 39.5 ± 13.9 2.8 * 50.0 ± 12.0 4.2 *** −10.5 ± 16.1 −0.7

LG003 45.8 ± 16.6 2.8 * 24.8 ± 12.2 2.0 −21.0 ± 18.0 −1.2

LG004 38.6 ± 14.3 2.7 * 39.3 ± 12.2 3.22 ** 0.7 ± 16.3 0.1

LG005 30.9 ± 14.1 2.2 −10.7 ± 12.6 −0.9 −41.6 ± 15.9 −2.6 *

LG006 25.4 ± 14.1 1.8 28.0 ± 12.5 2.3 2.7 ± 15.9 0.2

LG007 18.9 ± 16.0 1.2 51.9 ± 11.9 4.3 *** 33.0 ± 17.6 1.9 ***

LG008 30.5 ± 14.4 2.1 5.3 ± 12.4 0.4 −25.2 ± 16.3 −1.5

LG009 39.0 ± 16.0 2.4 * 44.6 ± 12.0 3.7 *** 5.7 ± 17.6 0.3

LG010 21.1 ± 16.1 1.3 31.3 ± 12.1 2.6 * 10.2 ± 17.6 0.6
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Table 6 Task specificity across Target speakers. mean ± se, t , and {*, **, ***} represent mean difference
(between tasks) and standard error, t-ratio, and p < {0.05, 0.01, 0.001} significance, respectively

Speaker Cluster - Lineup Same-Different - Lineup Same-Different - Cluster

Mean ± se (%) t p Mean ± se (%) t p Mean ± se (%) t p

LG001 73.1 ± 16.5 4.5 *** 69.8 ± 9.1 7.6 *** −3.3 ± 14.1 −0.2

LG002 68.4 ± 14.5 4.7 *** 36.8 ± 9.0 4.1 *** −31.5 ± 13.3 −2.4 *

LG003 42.0 ± 16.8 2.5 * 34.8 ± 9.0 3.9 *** −7.1 ± 15.8 −0.5

LG004 50.1 ± 14.7 3.5 * 56.5 ± 9.0 6.3 *** 6.4 ± 13.6 0.5

LG005 20.7 ± 14.5 1.4 30.8 ± 9.3 3.3 ** 10.2 ± 13.1 0.7

LG006 26.5 ± 14.5 1.8 22.5 ± 9.4 2.4 * −4.0 ± 13.1 −0.3

LG007 65.2 ± 16.5 4.0 *** 22.1 ± 9.1 2.4 * −43.1 ± 15.3 −2.8 *

LG008 36.5 ± 14.9 2.4 * 39.7 ± 9.3 4.3 *** 3.2 ± 13.6 0.2

LG009 55.6 ± 16.6 3.3 ** 39.2 ± 9.4 4.2 *** 16.4 ± 15.3 −1.1

LG010 43.6 ± 16.7 2.6 * 46.8 ± 9.5 4.9 *** 3.2 ± 15.3 0.2

of constraints designed into a perceptual SID task can influence performance. The target-303

absent feature distinguished the Lineup task from the other tasks, which had an adverse304

effect on performance. Participants appeared to be more inclined to find a target despite305

its absence from the lineup, which, in turn, decreased specificity in comparison to sensitiv-306

ity (Table 3). Our findings were consistent with those reported in Smith et al. [61], which307

found participants were 39% accurate when identifying targets present in lineups, while308

Fig. 4 Interactions between performance (sensitivity, specificity) and tasks (Cluster, Lineup, Same-Different)
across speakers. {*, **, ***} represent p < {0.05, 0.01, 0.001}. Black represents within-task performance,
while red and blue represent sensitivity and specificity, respectively, across tasks
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Table 7 Pearson correlation
procedures between
log-likelihood ratio scores and
mean accuracy and
temporal-metrics across tasks. {*,
***} represent p < {0.05, 0.001}

Task Metric Log-likelihood ratio

ρ p

Lineup accuracy 0.49 ***

trial duration −0.6 ***

Same-Different accuracy −0.21 *

response time 0.08

Cluster accuracy 0.58 ***

listen count −0.26 ***

only 6% accurate when judging their absence. These findings underscore the importance of 309

minimizing artificial biases designed into perceptual SID tasks. 310

Although SD and Cluster task performance differed significantly from the Lineup task, 311

no significant main effects were observed between them. Our observations are consistent 312

with those reported in Johnson et al. [21], which found no significant correlations between 313

voice discrimination and sorting tasks. These collective findings suggest each task requires 314

unique processing of sensory information. On one hand, Jenson and Saltuklaroglu [19] 315

showed same-different tasks affect working memory processing, where more recent items 316

are processed more rapidly and efficiently. The authors found left hemisphere brain activa- 317

tions were stronger during different speaker trials and weaker activations were observed in 318

the right hemisphere during same speaker trials. Their findings suggest that the mismatch 319

between different speech materials leads to a shift in speech and language processing (left 320

hemisphere), whereas the repetition of the same speaker leads predictive coding to repe- 321

tition suppression. This distinction between auditory and decision-making processing was 322

investigated by Venezia et al. [71], who used different signal-to-noise ratios to neutralise 323

perceptual speech processing variability. The authors identified brain regions that were acti- 324

vated during the decision making process, i.e., the temporal lobe was involved in speech 325

analysis processing, whereas motor-related regions were involved in task responses. These 326

findings highlight that although same-different tasks are simple and efficient, they appear 327

to divide processing and are sensitive to bias via stimuli sequencing. On the other hand, 328

the more natural and open-ended Cluster task provided listeners with a platform to dynam- 329

ically engage with the speech materials in highly personal ways. Interestingly, this increase 330

in sensory information did not encumber performance. Lavan et al. [28] suggested that the 331

voice sorting task provided familiar listeners with an advantage over unfamiliar listeners. 332

Although the listeners in the current study were unfamiliar with speakers, the Cluster task 333

results suggest they were able to take advantage of any accessible information, i.e., Tar- 334

get or Non-Target utterances alike, when grouping voices into perceived identities. This 335

observation is consistent with O’Brien et al. [46], where 20 speech stimuli were provided. 336

While all auditory perceptual tasks are constrained to sequentially processing, the Cluster 337

task affords listeners with time to perceive and compare vocal qualities extracted from all 338

available stimuli. 339

The stimuli used in the current study were consistent across tasks, which made it pos- 340

sible to observe any interactions with specific Target speakers on performance. In general 341

some Target speakers were more difficult to discriminate from Non-Target speakers. For 342

example, the lowest mean specificity across tasks was from speakers LG002 (46.5%) and 343

LG007 (46.6%), who appeared to be quite similar to Non-Target speakers (see Table 1 and 344

Fig. 1). It was possible that features, such as pitch [4], vowel quality [38, 42], and speech 345
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tempo [11, 54] were difficult for unfamiliar listeners to process from non-regional speakers,346

as suggested by findings in Dufour, Nguyen, and Frauenfelder [12]. The authors reported347

that standard-French was perceived differently depending on a listener’s regional accent.348

As a majority of the participants were associated with Aix-Marseille University and orig-349

inated from the region, its plausible that they perceived the speakers from various French350

regions differently. The effects of accent on listener perception were also studied in Floccia351

et al. [14], which reported that, in order to overcome regional accents, unfamiliar listeners352

required short-term speech processing adjustments. This finding suggests that, when con-353

sidering the different perceptual SID tasks, a voice sorting or clustering task is optimal, as354

it provides unfamiliar listeners with time to familiarise themselves with the vocal charac-355

teristics of unfamiliar speakers, i.e., they can capitalise their judgements with a larger set of356

speech stimuli. Alternatively, these findings suggest reaction times during perceptual binary357

tasks trials are affected by the presence of unfamiliar accents.358

The secondary goal of the study was to evaluate whether task influenced the effectiveness359

of using automatic judgements to model perceptual performance. First, the log-likelihood360

ratios (LLR) had comparable sensitivity and specificity (88.5%) to the SD task. This is a361

promising observation, but not entirely surprising, as ASV systems similarly evaluate and362

judge speech recording pairs. It is likely that performance could be improved by training363

with a different (French) dataset.364

Pearson correlation procedures revealed significant correlations between automatic and365

perceptual accuracy across tasks. In general these findings suggest LLR provide a good366

measurement for estimating the unfamiliar listener performance, however, their precision367

depends on the design of the perceptual SID task. The findings support those reported by368

Gerlach et al. [15], who observed positive relationships between listener judgements and369

automatic speaker recognition scores for both English and German language speakers. Inter-370

estingly the positive relationships between trial accuracy and LLR were only observed for371

the Lineup and Cluster tasks. However, this trend was not observed for the SD task. This372

is an important observation, when considering the use of ASV systems to select non-target373

speakers used in perceptual SID task. This difference in trends between tasks can be consid-374

ered alongside observations reported by Lindh and Eriksson [33] and Zetterholm, Blomberg,375

and Elenius [75], which found differences between human judgements and scores produced376

by automatic speaker verifications. Taken together, these findings continue to support the377

idea that there are important nuances between how human and machines model speak-378

ers [48]. Moreover, they underline a larger issue considering the use of ASV systems:379

despite providing information regarding their efficiency, i.e., equal error rates, they do not380

provide any additional information as to how speakers are modelled and how pairs are381

judged. Recent developments by Amor and Bonastre [1] aim to provide metrics that explain382

decisions made by ASV systems.383

When considering the relationship between task-dependent temporal metrics and LLR,384

significant negative correlations were observed for Lineup and Cluster tasks. Interestingly385

no significant correlation was observed between reaction time and LLR for SD task trials.386

This finding suggests correlating unfamiliar listener reaction times with likelihood scores387

based on a pair of speech recordings is far too limited. Alternatively they suggest that per-388

ceptual SID tasks with more than two speech recordings or response types provide wider389

contexts in which to identify the capacities and limitations of individual listeners. Moreover,390

likelihood scores generated by ASV systems appear to be more suited to model perceptual391

SID tasks designed with multiple speech recordings, response types, and unlimited listens,392

as observed with the Lineup and Cluster tasks.393
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6 Conclusion 394

This paper detailed the development of three perceptual speaker identification tasks with a 395

similar set of speech stimuli. The findings served as important benchmarks for the effects 396

of task design on perceptual performance by unfamiliar French listeners. While optimising 397

perceptual performance is important, its value depends on whether the task provides users 398

with the means to make correct choices and avoids introducing artificial biases. Although 399

both humans and machines complete pairwise comparisons of speech materials in order to 400

evaluate their similarity, there are still differences in their approaches to modelling speak- 401

ers. Our results revealed context affects the efficiency of using automatic scores to model 402

perceptual performance. One approach to improving automatic speaker verification system 403

performance is to consider how context shapes listeners responses. In comparison to more 404

traditional tasks, the perceptual clustering method developed for the study highlighted how 405

unfamiliar listeners performed at a high level, which correlated strongly to log-likelihood 406

scores (r2 = 0.5). Because of its design the cluster task produces a manifest of responses 407

that can represent the perceptual profile of each listener. In comparison to more restrictive 408

perceptual tasks, it is much more-detailed and sophisticated, capable of capturing nuances 409

via speech material groupings. Future research in automatic speaker verification systems 410

might aim to develop methods that, like cluster tasks, provide a context in which speaker 411

model training takes advantage of all available materials. 412

AppendixA: Speech utterances 413

Description of each speech utterance group assignment, French text, and English translation. 414

Group Text English translation

Target je m’approchais du bord de la fenêtre I approached the edge of the
window

Target serrait son manteau autour de lui [he] tightened his coat around
him

Target on trouve une espèce de chat we found a species of cat
Target la bise et le soleil se disputaient the wind and the sun were

fighting
Target pour rencontrer ces deux espèces to meet these two species
Target le soleil a commencé à briller the sun began to shine
Target faire ôter son manteau au voyageur to make the traveler take off his

coat
Target s’éloignant d’un nid perché sur un arbre [it] moved away from a nest

perched on a tree
Target il avait dû faire fuir l’oiseau he had to scare the bird away
Target son plumage était beau et doux its plumage was beautiful and

soft
Target ses deux ailes étaient blessées his two wings were injured
Target serait regardé comme le plus fort [he] would be regarded as the

strongest

415
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Group Text English translation

Non-Target vit une colonie d’oiseaux lives a colony of birds
Non-Target ma sœur n’a qu’à traverser la rue my sister only has to cross the

street
Non-Target son cœur battait très vite his heart was beating very fast
Non-Target que le soleil était le plus fort des deux that the sun was the strongest of

the two
Non-Target au cœur d’un parc naturel in the heart of a natural park
Non-Target sur le coup de midi at the stroke of noon
Non-Target pour regarder dans la rue to look in the street
Non-Target quand ils ont vu un voyageur qui when they saw a traveler coming

s’avancait forward
Non-Target leur poil est beau et doux his hair is beautiful and soft
Non-Target ma sœur est venue chez moi hier my sister came to my house

yesterday
Non-Target elle me parlait de ses vacances en she spoke about her vacations at

mer du Nord the North Sea
Non-Target ils sont noirs avec deux tâches blanches they are black with two white
sur le dos spots on their backs

416

Appendix B: Lineup task interface417

A screenshot of the Lineup task interface, where each speaker icon represents a speech418

recording. The top speaker icon is the Target, while the rest constitute the Lineup. The419

following are French to English translations: “Comparaison de voix” (“Voice comparison”);420

“Reponse” (“response”); “Valider” (“Confirm”); “Effacer” (“Reset”). The boxes above the421

Lineup were optional for marking progress.422

423
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Appendix C: Same-Different task interface 424

A screenshot of the Same-Different interface. After listening to two speech recordings sep- 425

arated by 2 s, they decided whether the voices belonged to the same (“Même voix”) or 426

different speakers (“Voix différentes”). 427

428

Appendix D: Cluster task interface 429

A screenshot of the Cluster task interface. Each numbered circle represents a speech record- 430

ing and the color and grey assignments represent whether it has been assigned or not to a 431

specific speaker, respectively. 432

433
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54. Quené H (2001) On the just noticeable difference for tempo in speech. J Phon 35:353–362.563
https://doi.org/10.1016/j.wocn.2006.09.001564

55. Ramos D, Franco-Pedroso J, Gonzalez-Rodriguez J (2011) Calibration and weight of the evidence by565
human listeners. The atvs-uam submission to nist human-aided speaker recognition 2010. In: 2011566
IEEE International conference on acoustics, speech and signal processing (ICASSP), pp 5908–5911.567
https://doi.org/10.1109/ICASSP.2011.5947706568

56. Rietveld ACM, Broeders APA (1991) Testing the fairness of voice identity parades: the similarity569
criterion. In: Proceedings of the 12th international congress of phonetic sciences, pp 46–49570

57. Roebuck R, Wilding J (1993) Effects of vowel variety and sample length on identification of a speaker571
in a line-up. Appl Cogn Psychol 7:475–481. https://doi.org/10.1002/acp.2350070603572

58. Schwartz R, Campbell JP, Shen W, Sturim DE, Campbell WM, Richardson FS, Dunn RB,573
Granville R (2011) Usss-mitll 2010 human assisted speaker recognition. In: 2011 IEEE Inter-574
national conference on acoustics, speech and signal processing (ICASSP), pp 5904–5907.575
https://doi.org/10.1109/ICASSP.2011.5947705576

59. Schweinberger S, Kawahara H, Simpson A, Skuk V, Zaske R (2014) Speaker perception. Wiley577
interdisciplinary reviews. Cogn Sci 5. https://doi.org/10.1002/wcs.1261578

60. Singh N, Agrawal A, Khan PR (2017) Automatic speaker recognition: current approaches and progress579
in last six decades. Glob J Enterp Inf Syst 9:38–45. https://doi.org/10.18311/gjeis/2017/15973580

61. Smith HMJ, Bird K, Roeser J, Robson J, Braber N, Wright D, Stacey PC (2020) Voice parade procedures:581
optimising witness performance. Memory 28(1):2–17. https://doi.org/10.1080/09658211.2019.1673427582

62. Smith HMJ, Roeser J, Pautz N, Davis JP, Robson J, Wright D, Braber N, Stacey PC (2023) Eval-583
uating earwitness identification procedures: adapting pre-parade instructions and parade procedure.584
Memory 31(1):147–161. https://doi.org/10.1080/09658211.2022.2129065. https://arxiv.org/abs/https://585
doi.org/doi:10.1080/09658211.2022.2129065. PMID: 36201314586

63. Snyder D, Garcia-Romero D, Sell G, Povey D, Khudanpur S (2018) X-vectors: robust DNN embed-587
dings for speaker recognition. In: 2018 IEEE international conference on acoustics, speech and signal588
processing (ICASSP). IEEE, pp 5329–5333589

64. Stevenage SV (2018) Drawing a distinction between familiar and unfamiliar voice processing: a review590
of neuropsychological, clinical and empirical findings. Neuropsychologia 116:162–178. Special Issue:591
Familiar Voice Recognition592

65. Stevenage S, Symons A, Fletcher A, Coen C (2019) Sorting through the impact of familiarity when593
processing vocal identity: results from a voice sorting task: familiarity and voice sorting. Q J Exp Psychol594
73. https://doi.org/10.1177/1747021819888064595

66. Sussman J (1991) Stimulus ratio effects on speech discrimination by children and adults. J Speech596
Hearing Res 34:671–8. https://doi.org/10.1044/jshr.3403.671597

67. Titze I (2000) Principles of voice production, second printing. National Center for Voice and Speech,598
Iowa City, pp 245–251599

68. Tomashenko N, Srivastava BML, Wang X, Vincent E, Nautsch A, Yamagishi J, Evans N et al The600
VoicePrivacy 2020 challenge evaluation plan. https://doi.org/10.48550/ARXIV.2205.07123601

69. Tomashenko N, Wang X, Vincent E, Patino J, Srivastava B, Noe P-G, Nautsch A, Evans N, Yamagishi J,602
O’Brien B, Chanclu A, Bonastre J-F, Todisco M, Maouche M (2022) The voiceprivacy 2020 challenge:603
results and findings. Comput Speech 74:101362. https://doi.org/10.1016/j.csl.2022.101362604

70. Van Lancker D, Kreiman J (1987) Voice discrimination and recognition are separate abilities. Neuropsy-605
chologia 25(5):829–834. https://doi.org/10.1016/0028-3932(87)90120-5606

71. Venezia J, Saberi K, Chubb C, Hickock G (2012) Response bias modulates the speech motor system607
during syllable discrimination. Front Psychol 3:157. https://doi.org/10.3389/fpsyg.2012.00157608

72. Whiteside SP (1998) Identification of a speaker’s sex: a study of vowels. Percept Mot Skills 86:579–584609
73. Wu K-C, Childers DG (1991) Gender recognition from speech. Part i: coarse analysis. J Acoust Soc Am610

90(4 Pt 1):1828–1840611
74. Yarmey A (2003) Earwitness identification over the telephone and in field settings, vol 10.612

https://doi.org/10.1558/sll.2003.10.1.62613
75. Zetterholm E, Blomberg M, Elenius D (2004) A comparison between human perception and a speaker614

verification system score of a voice imitation615

https://doi.org/10.1121/1.1907349
https://doi.org/10.1109/ICCV.2007.4409052
https://doi.org/10.1016/j.wocn.2006.09.001
https://doi.org/10.1109/ICASSP.2011.5947706
https://doi.org/10.1002/acp.2350070603
https://doi.org/10.1109/ICASSP.2011.5947705
https://doi.org/10.1002/wcs.1261
https://doi.org/10.18311/gjeis/2017/15973
https://doi.org/10.1080/09658211.2019.1673427
https://doi.org/10.1080/09658211.2022.2129065
https://arxiv.org/abs/https://doi.org/doi:10.1080/09658211.2022.2129065
https://arxiv.org/abs/https://doi.org/doi:10.1080/09658211.2022.2129065
https://doi.org/10.1177/1747021819888064
https://doi.org/10.1044/jshr.3403.671
https://doi.org/10.48550/ARXIV.2205.07123
https://doi.org/10.1016/j.csl.2022.101362
https://doi.org/10.1016/0028-3932(87)90120-5
https://doi.org/10.3389/fpsyg.2012.00157
https://doi.org/10.1558/sll.2003.10.1.62


JrnlID 11042 ArtID 15391 Proof#1 - 18/05/2023

UNCORRECTED
PROOF

Multimedia Tools and Applications

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps 616
and institutional affiliations. 617

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 618
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 619
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 620
law. 621



JrnlID 11042 ArtID 15391 Proof#1 - 18/05/2023

AUTHOR QUERY

AUTHOR PLEASE ANSWER QUERY:

Q1. Please check the inserted city in affiliations 1 and 2 if correct.


	Evaluating the effects of task design on unfamiliar Francophone listener and automatic speaker identification performance
	Abstract
	Introduction
	Related work
	Perceptual speaker identification tasks
	Automatic speaker verification

	Methods
	Stimuli
	Perceptual task designs
	Participants
	Automatic speaker verification system
	Data processing
	Preliminary analysis

	 Results
	Discussion
	Conclusion
	Appendix: A: Speech utterances
	Appendix B: Lineup task interface
	Appendix C: Same-Different task interface
	Appendix D: Cluster task interface
	Declarations
	References


