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Abstract
Many questions remain with regards to how context affects perceptual and automatic
speaker identification performance. To examine the effects of task design on perceptual
speaker identification performance, three tasks were developed, including lineup and binary
tasks, as well as a novel clustering task. Speech recordings of native French speakers were
compared similarly across tasks evaluated by unfamiliar Francophone listeners. True posi-
tive (sensitivity) and true negative (specificity) response rates across tasks were measured.
Our results showed participants had similar sensitivity and specificity for binary (88%) and
clustering (84%) tasks, but random selection rates for the lineup task. Pearson correlation
procedures were used to evaluate the efficiency of scores produced by a state-of-the-art
automatic speaker verification to model perceptual responses (equal error rate = 89%).
Automatic scores modelled lineup (r2 = 0.6) and clustering (r2 = 0.5) task accuracy quite
well, however, they were less robust when modelling binary task responses (r2 = -0.2). The
results underscore the role task design plays in shaping perceptual responses, which, in turn,
affects the modelling effectiveness of automatic scores. As evidence points to humans and
algorithms modelling speakers differently, our findings suggest automatic speaker identifi-
cation performance might be improved with a greater understanding on how context shapes
perceptual responses.
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1 Introduction

When hearing a voice, listeners are oftentimes capable of obtaining information associated
with the speaker, such as their sex, age, emotional state, and whether they are familiar
[59]. Recent literature reviews on voice perception [25, 34, 35, 59, 64] have distinguished
listeners who are familiar or unfamiliar with speaker voices, where the former relies more on
identity processing [25] and the latter perceives and compares voice qualities [70]. However,
the methods used by unfamiliar listeners remain unclear.

While evidence suggests unfamiliar listeners use various acoustic features, such as F0
and formant frequencies [4, 26, 29] and phonetic content [6, 51, 57], when identifying
speakers, the situation in which they are tasked is equally influential on performance (see
Levi [30] and Perrachione [49] for methodological overviews of speaker processing tasks).
For example, contextual parameters, such as the number of speakers and environmental fac-
tors, have been shown to affect perceptual speaker identification (SID) performance [25].
Several perceptual SID tasks have been designed, and a key distinction between them is
whether listeners are tasked with identifying a certain speaker from a set or discriminat-
ing between voices. The artificial constraints of the task can influence how listeners engage
with speech materials, which, in turn, can affect their voice perception performance.

The potential influence of task on performance can be contextualized in the domain of
automatic speaker verification (ASV) systems. Like unfamiliar listeners, ASV systems rely
on various acoustic features to develop speaker models that are used to produce scores
describing the likelihood that a pair of speech recordings were produced by the same or
different speakers (see Singh et al. [60], Poddar et al. [50], and Naika [41] for recent devel-
opmental trends in ASV systems). As a way of modelling the perceptual experiences of lis-
teners with voices, ASV systems typically train models on large datasets with many different
speakers. Only a handful of studies have compared human and machine performances,
which have focused on the effects of speech types, such as the length of utterances [17, 22,
48]. However, to the authors’ knowledge no findings have been reported with regards to the
effectiveness of automatic scores to model listener responses across perceptual tasks.

Many questions remain regarding the effect of context on perceptual and automatic
speaker identification performance. The primary goal of the current study was to examine
the effects of task design on perceptual performance by unfamiliar listeners. Since listen-
ers vary in their detection of inter- and intra-speaker variability, e.g., Lavan, Burston, and
Garrido [27] and Clopper [10], a major challenge was to develop a method of standardizing
speech recordings across tasks, i.e., avoid acoustic feature bias emerging from the different
artificial task constraints. In addition, a common metric was required to evaluate perfor-
mance per speaker across tasks. After collecting listener responses, our second goal was
to evaluate how effective automatic scores were at modelling perceptual responses across
tasks. Any observations could offer insight into ways ASV systems could be designed dif-
ferently to improve speaker identification estimation performance, as growing research has
shown there are distinctions between how humans and algorithms model speakers.

2 Related work

2.1 Perceptual speaker identification tasks

Listeners evaluating perceptual speaker identification (SID) tasks are typically asked to
either identify a target speaker in or make discriminations from a set of speech recordings.
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A target refers to a specific speaker in a set. Speech recordings from speakers outside of the
set are considered non-target speakers. Due to study objectives, task designs may vary with
regards to the number of (non-)target speaker speech stimuli, which, in turn, can affect per-
ceptual performance. The following outlines three perceptual SID tasks developed for the
current study.

The lineup [20] task asks listeners to identify a target from a set of speech recordings.
Typically, the utterance (speech recording) of the target differs from lineup utterances,
which are oftentimes the same to avoid phonetic bias. The lineup method has been employed
in a number of voice perception studies, including the effects of telephone recordings on
identification performance [24, 36, 43, 74]. Although the general facial-recognition task is
transformed from the visual to the auditory domain, it is not obvious that visual and audi-
tory displays are comparable from the point of view of memory or perception. While vision
provides a global, static scene of individuals to be processed, audition requires sequential
processing, as each voice in a set needs to be compared directly to a target voice. This
sequential process suggests listeners require a more complex memory process in compar-
ison to viewers. Moreover, evaluations may be compromised, as listeners characterise and
compare target and lineup voice qualities while considering the possibility that the target is
absent from the lineup [47]. This observation raises further questions regarding the effects
of a lineup task on working memory, as the artificial framework introduces the possibil-
ity of true negative response (“correct reject”) into an already complex auditory-memory
processing chain (see Smith et al. [61, 62] for evidence that the task is error-prone).

The much simpler same-to-different (SD) task presents listeners with a pair of speech
recordings separated by a short pause and asks them to judge whether they belong to the
same or different speakers. SD tasks have been used to test the impartiality of non-target
speakers used in lineups [32, 56], as well as to examine the effects of such things as speaker
familiarity [4], language familiarity [13, 31], noise [61], and stimuli selection methods
[32, 39]. The selection of stimuli used in SD trials requires careful control, as design
biases have been shown to drive listener responses. For example, Sussman showed that
performance by unfamiliar child and adult listeners was influenced by manipulating same-
to-different ratios [66]. Although effective, the low-level SD task is not optimized for
identifying which voice qualities listeners associate with target speakers. To do so would
require numerous speech recording repetitions for each target speaker, which would be time-
consuming and possibly introduce fatigue (see Mühl [39] for a protocol with an approximate
10 minute duration). This observation raises concerns for memory bias or speech prim-
ing, as a “fresh voice” is not equivalent to a voice that was presented in a previous
SD trial.

The voice sorting task requires listeners to organise speech recordings into groups or
clusters that represent perceived speaker identities. An alternative to the restrictive types
of responses derived from lineup and same-different tasks, voice sorting provides listeners
with the opportunity to (re-)listen and (re-)group speech recordings until they are satisfied
with their judgements. A major boon of the task is that it neutralises the concept of a “tar-
get” speaker, as listeners merely organize voices in terms of their perceived likeness. One
potential drawback is that it requires numerous speech recordings per trial. Thus, in order
to increase the speaker group homogeneity, listeners are required to make numerous com-
parisons between speech recordings, which, in turn, can be time-consuming. Nevertheless
the method has been used in a number of studies examining the sorting behaviors of famil-
iar and unfamiliar listeners [27, 28, 65]. By instructing participants to sort 32 stimuli into 1
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to 32 different speaker groups, Johnson et al. suppressed the possibility of introducing arti-
ficial bias [21]. Recently O’Brien et al. [44–46] developed a perceptual clustering method
and reported unfamiliar listeners were effective at navigating the intuitive interface.

2.2 Automatic speaker verification

Very few studies have compared human and machine speaker identification (SID) perfor-
mance [3, 16, 55, 58]. One area where perceptual and automatic speaker verification (ASV)
system performance have been compared has focused on grouping speech recordings into
similar and dissimilar speaker groups. Kelly et al. [23] developed an i-vector-based ASV
system to make similar and dissimilar speaker groups and reported that unfamiliar listeners
were able to judge male speakers and their similar comparison speakers, but not their dis-
similar comparison speakers. In addition, they reported no significant findings for female
speakers and their similar and dissimilar comparison speakers, which suggests humans dis-
tinguish similar and different voices differently. To maximise and minimise the similarities
between speaker groups, O’Brien et al. [46] used a similar process by compressing acous-
tic features into i-vectors and producing similarity scores via cosine distance with Within
Class Covariance Matrix procedures. Park et al. [48] reported that humans outperformed
an i-vector-based ASV system when completing a text-independent speaker discrimination
task. Revealing a weak correlation between human and machine performance, the authors
suggest the two represent speakers differently.

3 Methods

3.1 Stimuli

Speech recordings from 10 female and 10 male native-French speakers were selected from
the PTSVox database [7]. Speaker descriptions are detailed in Table 1. The age range of the
speakers was 18 to 24 years (mean age 19.7± 1.6 years). All speakers read three traditional
French-texts, entitled “Ma soeur est venue chez moi hier”, “Au nord du pays, on trouve une
espèce du chat”, and “La bise et le soleil se disputaient”. The texts were selected due to their
familiarity with native French speakers and rich phonetic content. Speech was recorded in
a double-walled, sound attenuated room with a Zoom H4N stereo microphone (sampling
rate: 44.1 kHz; bit-depth: 16-bit).

Female and male speakers were separated. The decision to separate speakers by sex was
based on findings that have shown listeners are quite capable of discriminating male from
female speakers and vice-versa (see Titze [67], Mendoza et al. [37], Whiteside [72], and
Wu and Childers [73]). As the goal of our study was to examine the effects of task design
on perceptual performance, it was decided to eliminate the potential confounding factor of
speaker sex.

Each speaker was assigned to either a Target (in-set) or Non-Target (out-of-set) group.
As it was important to create balance in terms of the acoustic difference between each Tar-
get speaker and all Non-Target speakers, the fundamental frequency (F0) and speech tempo
of each speaker was extracted (Table 1) and used to calculate the standardized euclidean
distances (SED) between speakers. A YIN algorithm [8] written in MATLAB 2016b (Math-
Works Inc, USA) was used to calculate F0, while speech tempo (phones per second) was
obtained in Praat [5]. A custom script was written to select Non-Target speakers with the
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Table 1 Description of PTSVox speakers

Speaker Group Sex Age Region (FR) F0 (Hz) Tempo (pho/s)

LG001 Target Female 19 Alsace 222 12.8

LG002 Target Male 24 Lorraine 114 13.7

LG003 Target Female 19 Rhône 200 11.2

LG004 Target Male 19 Donzère 111 15.3

LG005 Target Male 18 Saint-Etienne 147 13.4

LG006 Target Male 22 Loire 125 14.2

LG007 Target Female 19 Grenoble 190 13.7

LG008 Target Male 20 Isère 138 14.8

LG009 Target Female 19 Picardie 202 12.0

LG010 Target Female 19 Haut-Rhin 227 12.0

LG011 Foil Female 21 Chaumont 220 13.9

LG012 Foil Female 20 Bourgogne 220 14.5

LG013 Foil Male 22 Loire 117 13.5

LG014 Foil Male 18 Rhône 101 13.8

LG015 Foil Female 18 Rhône 190 14.0

LG016 Foil Female 18 La Tour du Pin 180 14.0

LG017 Foil Male 19 Aisne 115 14.0

LG018 Foil Male 20 Loire 111 14.4

LG019 Foil Female 19 Grenoble 206 12.4

LG020 Foil Male 20 Auvergne 117 14.1

smallest SED. Figure 1 illustrates SED across female and male Target and Non-Target
speakers.

For each speaker 24 utterances were extracted with Praat [5] and evenly distributed across
Target and Non-Target speaker groups (see Appendix A for French text and English trans-
lations). The duration of the utterances ranged from 1.1 to 3.5 s (mean duration 1.9 ± 0.4
s). Limiting the duration of the utterances reduced the possibility of introducing fatigue to
participants. In order to compare the effects across tasks, it was important to avoid a thresh-
old effect. All 480 speech recordings were normalised in MATLAB, such that the maximal
amplitude of each recording was adjusted to a target of 100% of the signal dynamic.

3.2 Perceptual task designs

Figure 2 provides an illustrated overview of the three perceptual tasks developed for the
study. Table 2 describes the number of trials, stimuli per trial, design, and mean duration
across tasks. For each task, the sex of the speakers remained the same.

Participants evaluated 30 Lineup task trials (random order, non-repeating) programmed
in Lancelot [2]. Each Target was presented six times (1:1 ratio present-to-absent in Lineup).
Participants were instructed to first listen to the Target utterance located at the top of the
interface (see Appendix B) and then each Lineup utterance (unlimited listens). Their task
was to decide whether the Target speaker was present in the Lineup by selecting a cir-
cle below the Lineup voice. If they believed the Target was absent from the Lineup, they
selected a circle below a red ‘X’.
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Fig. 1 Heat maps of standardized euclidean distances between each female (Left) and male (Right) Target
and Non-Target speakers

Participants evaluated 100 Same-Different (SD) task trials (random order, non-repeating)
programmed in Perceval [2]. Each SD trial began with a short “beep” generated by a sinu-
soidal oscillator (frequency: 500 Hz; duration: 0.8 s). Following 2 s of silence, a speech
recording was automated with Voix A (“Voice A”) text displayed in a yellow rectangle. Fol-
lowing 0.5 s of silence without an image, a different speech recording with Voix B (“Voice
B”) in a blue rectangle. Participants had 5 s to decide whether the two voices belonged to
the same speaker or different speakers by pressing a button on the left or right, respectively
(see Appendix B). Each Target was presented 1:1 ratio same-to-different. For each different
trial, Target (A) and Non-Target (B) speakers were presented AB and BA.

Participants evaluated 10 Cluster task trials programmed in a state-of-the-art interface
developed at Laboratoire Informatique d’Avignon, Université du Vaucluse-Avignon (open
source and available upon request). Each trial was composed of 12 speech recordings
derived from the Lineup task trials: the six utterances of each Target speaker were randomly
distributed across two trials (balanced) with the remaining nine speech recordings composed
of two to five Non-Target utterances. For each Cluster trial participants were tasked with
listening to each recording (unlimited) and classifying it into a cluster representing a unique
speaker identity. To classify a speech recording, participants were instructed to right-click
on the circle, which revealed a drop-down menu with classification colors (Appendix D).

3.3 Participants

All participants were native-French speakers and reported good hearing. They consented to
voluntary participation in the study and were compensated for their time. The study was
approved by the Ethics Committee of Aix-Marseille University.
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Fig. 2 Illustration of the perceptual task designs

Table 2 Overview of perceptual tasks

Task Trials (#) Stimuli (#) Design Duration (s)

Lineup 30 6 Different utterance for Target & Lineup speakers 27.7 ± 8.6

Same utterance for Lineup speakers

Target speaker in Lineup 1
2 -trials

Target speaker out of Lineup 1
2 -trials

Same-Different 100 2 Different utterance per trial 1.3 ± 0.3

Same speaker for 1
2 -trials

Different speaker for 1
2 -trials

Cluster 10 12 Different utterance per trial 69.3 ± 12

4 different speakers per trial

2–5 different utterances per speaker
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35 people (27 F and 8 M; mean age 26.2 ± 8.0 years) evaluated Lineup and Same-
Different task trials on desktop computers at CEP-LPL. Throughout the study participants
wore Superlux HD 681B headphones. Prior to testing, participants listened to a speech
recording and adjusted the volume to their comfort.

19 people (17 F and 2 M; mean age 24.8 ± 2.7 years) evaluated Cluster task trials online.
This change in testing location was due to the 2020 pandemic. Participants were encouraged
to use personal headphones and were provided detailed instructions on how to complete the
task and use the interface.

3.4 Automatic speaker verification system

The state-of-the-art automatic speaker verification (ASV) model developed for the current
study was trained on the VoxCeleb-1,2 [9, 40] corpus, which contains around 2800 hours of
multilingual speech from 7363 (2912 F and 4451 M) speakers. This corpus was extracted
from videos uploaded to YouTube and designed for speaker verification research. Similar to
recent work by Tomashenko et al. [68, 69], the Kaldi toolkit [52] was used to train the ASV
model. As shown in Fig. 3, the ASV model relies on x-vector [63] speaker embeddings and
probabilistic linear discriminant analysis (PLDA) [53]. The ASV model has a time delay
neural network (TDNN) architecture with the following configuration. 30-dimensional Mel
Frequency Cepstral Coefficients (MFCC) were used as input features. The model contains
7 hidden layers including a single (6th) statistics pooling layer. The statistics pooling layer
aggregates all frame-level outputs from the previous (5th) layer and computes its mean and
standard deviation. The dimension of the output layer is 7232 that corresponds to speaker
ids. The neural network was trained to classify the speakers in the training data using cross
entropy criteria. The 512-dimensional x-vectors were extracted after the statistics pooling
layer. Additional details about model training can be found in Tomashenko et al. [69] and
Snyder et al. [63].

The ASV model was used to obtain PLDA scores [18] for evaluated pairs of speech
recordings, where sa, sb denote a pair of utterances. PLDA scores were computed as log-
likelihood ratios (LLR) between corresponding x-vectors xa, xb as (1):

PLDA(sa, sb) = log
P(xa, xb|Hsame)

P (xa, xb|Hdifferent)
, (1)

whereHsame andHdiff erent are the hypotheses same speaker and different speakers, respec-
tively. Following the training with the VoxCeleb dataset, we reported an equal error rate of
11.55% and corresponding true positive (sensitivity) and true negative (specificity) response
rates are provided in Table 3.

Accept (same speaker)

Enrollment 
u erance

Trial u erance

MFCC feature 
extr

MFCC feature 
extr

x-vector

x-vector

LLR score
PLDA Threshold

Reject (different speaker) 

Fig. 3 Illustration of the ASV system
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Table 3 Sensitivity, specificity,
and temporal responses across
tasks

Task Metric Result

Lineup sensitivity 49.1%

trial duration 25.9 ± 14.4 s

specificity 34.9%

trial duration 31.5 ± 16.4 s

Same-Different sensitivity 88.4%

reaction time 1.26 ± 0.5 s

specificity 88.0%

reaction time 1.51 ± 0.7 s

Cluster sensitivity 83.0%

listen count 3.8 ± 2.2

specificity 84.1%

listen count 5.1 ± 2.53

ASV (log-likelihood ratio) sensitivity 88.5%

specificity 88.5%

3.5 Data processing

To measure the effect of task on response performance, sensitivity, commonly known as
“hit” rate, and specificity, or “correct reject” rate, were obtained from each participant per
task. Equations (2) and (3) describe sensitivity and specificity metrics, where T P , T N ,
FP , and FN represent the number of true positive, true negative, false positive, and false
negative responses, respectively.

sensitivity = T P

T P + FP
(2)

specif icity = T N

T N + FN
(3)

For each Lineup task trial participants received a TP or TN for correctly identifying or
rejecting the Target from the Lineup. Otherwise, they received a FP or FN for falsely iden-
tifying a Non-Target or incorrectly rejecting the Target from the Lineup, respectively. For
each SD task trial participants received a TP or TN for correctly identifying the pair of
voices as belonging to the same or different speakers, respectively. Otherwise, they received
a FN or FP for the trial. For each Cluster task trial, mean specificity, i.e., the number of Tar-
get utterances in a cluster divided by the cluster size, and mean sensitivity, i.e., the number of
the same Non-Target speaker utterances in a cluster divided by cluster size, were calculated.

To accurately reflect task design discrepancies, i.e., the different number of stimuli
and outcomes per task, scores were adjusted by a task baseline coefficient. For each task
accuracy ((4)) was simulated in MATLAB by randomly making responses after 10,000
trials.

accuracy = T P + T N

T P + T N + T P + FN
(4)

After 40 simulations, the mean accuracy for Lineup, Same-Different, and Cluster tasks
were 16.5%, 49.8%, 45.6%, respectively. Equation (5) describes original St and adjusted At
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sensitivity and specificity and task baseline coefficient et :

At = St − et

100 − et

(5)

Linear mixed models (lmer from the lme4 R-package) were used to evaluate the effects
of task design on perceptual performance. Task (Lineup, Same-Different, Cluster), Target
speaker (10 total), and response type (sensitivity, specificity) were set to fixed factors with
random participant factor. Chi-squared (χ2

d,N ) tests were used to report p-values (Anova

from the car R-Package) with d degrees of freedom and N samples. Main effects were
reported for task, response, and their interactions with speaker. Estimated marginal means
(emmeans) were used to conduct pairwise comparisons, where X ± Y represent mean and
standard error, respectively.

Pearson correlation procedures were used to evaluate the effects of task design on effi-
ciency of automatic scores to model perceptual responses. In addition to mean accuracy per
trial, different task-dependent temporal metrics were measured: Lineup task trial duration
(s); Same-Different task trial reaction time (s); and mean number of listens (“listen count”)
in a cluster for the Cluster task. For automatic scores, log-likelihood ratios (LLR) were
used differently across tasks. For each Lineup task trial, the LLR between the Target and
the selected Lineup utterance was used, except when the Lineup was rejected, whereupon
a mean value was calculated from Target and Lineup utterances. For each SD task trial the
LLR for each pair were used. A mean LLR value was calculated from all cluster utterances
in a Cluster task trial.

3.6 Preliminary analysis

To evaluate participant normalcy, normal distribution functions were fitted to the mean trial
duration across tasks. All participant data were included, except responses collected from
two SD task participants, i.e., their means were greater than three standard deviations from
the group mean. Table 2 illustrates mean duration per task. Table 3 illustrates sensitivity,
specificity, and temporal responses across tasks.

4 Results

Main effects of adjusted score were observed for task χ2
2,3718 = 301.22 and response type

χ2
1,3718 = 21.06, p < 0.001, as well as interactions task x response x target speaker

χ2
18,3718 = 35.94, p < 0.01. Participants were more accurate when evaluating SD (79.2 ±

2.3%) and Cluster (83.2 ± 3.6%) tasks in comparison to the Lineup task (43.4 ± 2.1%),
p < 0.001. They were also more sensitive (71.0 ± 2.2%) rather than selective (65.3 ±
2.0%), p < 0.01.

Pairwise comparisons on task and response type interactions revealed participants per-
formed better when evaluating SD (sensitivity: 82.6 ± 3.5%; specificity: 75.8 ± 2.0%) and
Cluster (sensitivity: 82.2 ± 4.6%; specificity: 84.1 ± 4.6%) task trials in comparison to
Lineup task trials (sensitivity: 50.9 ± 2.5%; specificity: 35.9 ± 2.8%), p < 0.001. The fol-
lowing describes pairwise comparisons for interactions between task x response x speaker:
Table 4 compares task sensitivity and specificity across speakers; Table 5 compares task
sensitivity across speakers; and Table 6 compares task specificity across speakers. Figure 4
illustrates response type (sensitivity, specificity) and task (Cluster, Lineup, Same-Different)
interactions across speakers.
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Table 4 Within-task performance across speakers. mean ± se, t , and {*, **, ***} represent mean difference
(true positive - true negative) and standard error, t-ratio, and p < {0.05, 0.01, 0.001} significance, respectively
Speaker Cluster Lineup Same-Different

Mean ± se (%) t p Mean ± se (%) t p Mean ± se (%) t p

LG001 −19.1 ± 19.5 −1.0 30.0 ± 9.6 3.1 ** 12.9 ± 10.7 1.2

LG002 −3.3 ± 17.2 −0.2 25.5 ± 9.4 2.7 ** 38.8 ± 11.1 3.5 ***

LG003 1.0 ± 20.8 0.0 2.9 ± 10.1 0.3 12.9 ± 10.8 1.2

LG004 1.9 ± 17.7 0.1 13.5 ± 9.6 1.4 3.7 ± 11.1 0.3

LG005 10.5 ± 16.8 0.6 0.2 ± 10.4 0.0 41.3 ± 11.1 3.7 ***

LG006 3.3 ± 6.8 0.2 4.4 ± 10.3 0.4 10.0 ± 11.1 0.9

LG007 −21.6 ± 20.1 −1.1 24.7 ± 9.8 2.5 * 54.4 ± 10.8 −5.1 ***

LG008 6.1 ± 20.1 0.3 11.9 ± 10.1 1.2 −22.5 ± 11.1 −2.0 *

LG009 43.6 ± 20.3 0.3 22.8 ± 10.2 2.3 * 28.2 ± 10.7 2.6 ***

LG010 −3.5 ± 20.1 −0.2 19.0 ± 10.4 1.8 3.5 ± 10.8 0.3

Table 7 shows the results of Pearson correlation procedures applied to log-likelihood
ratios and perceptual responses (trial accuracy, temporal metrics) across tasks.

5 Discussion

The primary goal of the current study was to examine whether perceptual SID task design
affected performance by unfamiliar listeners. Our findings revealed participants performed
both Same-Different (SD) and Cluster tasks relatively similarly with sensitivity and speci-
ficity greater than 80%, however, performance dropped below 50% when evaluating Lineup
task trials. In general, the task comparison results confirmed our hypothesis that the degree

Table 5 Task sensitivity across Target speakers. mean ± se, t , and {*, **, ***} represent mean difference
(between tasks) and standard error, t-ratio, and p < {0.05, 0.01, 0.001} significance, respectively
Speaker Cluster - Lineup Same-Different - Lineup Same-Different - Cluster

Mean ± se (%) t p Mean ± se (%) t p Mean ± se (%) t p

LG001 24.1 ± 15.5 1.6 52.8 ± 11.8 4.5 *** 28.7 ± 17.3 1.7

LG002 39.5 ± 13.9 2.8 * 50.0 ± 12.0 4.2 *** −10.5 ± 16.1 −0.7

LG003 45.8 ± 16.6 2.8 * 24.8 ± 12.2 2.0 −21.0 ± 18.0 −1.2

LG004 38.6 ± 14.3 2.7 * 39.3 ± 12.2 3.22 ** 0.7 ± 16.3 0.1

LG005 30.9 ± 14.1 2.2 −10.7 ± 12.6 −0.9 −41.6 ± 15.9 −2.6 *

LG006 25.4 ± 14.1 1.8 28.0 ± 12.5 2.3 2.7 ± 15.9 0.2

LG007 18.9 ± 16.0 1.2 51.9 ± 11.9 4.3 *** 33.0 ± 17.6 1.9 ***

LG008 30.5 ± 14.4 2.1 5.3 ± 12.4 0.4 −25.2 ± 16.3 −1.5

LG009 39.0 ± 16.0 2.4 * 44.6 ± 12.0 3.7 *** 5.7 ± 17.6 0.3

LG010 21.1 ± 16.1 1.3 31.3 ± 12.1 2.6 * 10.2 ± 17.6 0.6
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Table 6 Task specificity across Target speakers. mean ± se, t , and {*, **, ***} represent mean difference
(between tasks) and standard error, t-ratio, and p < {0.05, 0.01, 0.001} significance, respectively
Speaker Cluster - Lineup Same-Different - Lineup Same-Different - Cluster

Mean ± se (%) t p Mean ± se (%) t p Mean ± se (%) t p

LG001 73.1 ± 16.5 4.5 *** 69.8 ± 9.1 7.6 *** −3.3 ± 14.1 −0.2

LG002 68.4 ± 14.5 4.7 *** 36.8 ± 9.0 4.1 *** −31.5 ± 13.3 −2.4 *

LG003 42.0 ± 16.8 2.5 * 34.8 ± 9.0 3.9 *** −7.1 ± 15.8 −0.5

LG004 50.1 ± 14.7 3.5 * 56.5 ± 9.0 6.3 *** 6.4 ± 13.6 0.5

LG005 20.7 ± 14.5 1.4 30.8 ± 9.3 3.3 ** 10.2 ± 13.1 0.7

LG006 26.5 ± 14.5 1.8 22.5 ± 9.4 2.4 * −4.0 ± 13.1 −0.3

LG007 65.2 ± 16.5 4.0 *** 22.1 ± 9.1 2.4 * −43.1 ± 15.3 −2.8 *

LG008 36.5 ± 14.9 2.4 * 39.7 ± 9.3 4.3 *** 3.2 ± 13.6 0.2

LG009 55.6 ± 16.6 3.3 ** 39.2 ± 9.4 4.2 *** 16.4 ± 15.3 −1.1

LG010 43.6 ± 16.7 2.6 * 46.8 ± 9.5 4.9 *** 3.2 ± 15.3 0.2

of constraints designed into a perceptual SID task can influence performance. The target-
absent feature distinguished the Lineup task from the other tasks, which had an adverse
effect on performance. Participants appeared to be more inclined to find a target despite
its absence from the lineup, which, in turn, decreased specificity in comparison to sensitiv-
ity (Table 3). Our findings were consistent with those reported in Smith et al. [61], which
found participants were 39% accurate when identifying targets present in lineups, while

Fig. 4 Interactions between performance (sensitivity, specificity) and tasks (Cluster, Lineup, Same-Different)
across speakers. {*, **, ***} represent p < {0.05, 0.01, 0.001}. Black represents within-task performance,
while red and blue represent sensitivity and specificity, respectively, across tasks
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Table 7 Pearson correlation
procedures between
log-likelihood ratio scores and
mean accuracy and
temporal-metrics across tasks. {*,
***} represent p < {0.05, 0.001}

Task Metric Log-likelihood ratio

ρ p

Lineup accuracy 0.49 ***

trial duration −0.6 ***

Same-Different accuracy −0.21 *

response time 0.08

Cluster accuracy 0.58 ***

listen count −0.26 ***

only 6% accurate when judging their absence. These findings underscore the importance of
minimizing artificial biases designed into perceptual SID tasks.

Although SD and Cluster task performance differed significantly from the Lineup task,
no significant main effects were observed between them. Our observations are consistent
with those reported in Johnson et al. [21], which found no significant correlations between
voice discrimination and sorting tasks. These collective findings suggest each task requires
unique processing of sensory information. On one hand, Jenson and Saltuklaroglu [19]
showed same-different tasks affect working memory processing, where more recent items
are processed more rapidly and efficiently. The authors found left hemisphere brain activa-
tions were stronger during different speaker trials and weaker activations were observed in
the right hemisphere during same speaker trials. Their findings suggest that the mismatch
between different speech materials leads to a shift in speech and language processing (left
hemisphere), whereas the repetition of the same speaker leads predictive coding to repe-
tition suppression. This distinction between auditory and decision-making processing was
investigated by Venezia et al. [71], who used different signal-to-noise ratios to neutralise
perceptual speech processing variability. The authors identified brain regions that were acti-
vated during the decision making process, i.e., the temporal lobe was involved in speech
analysis processing, whereas motor-related regions were involved in task responses. These
findings highlight that although same-different tasks are simple and efficient, they appear
to divide processing and are sensitive to bias via stimuli sequencing. On the other hand,
the more natural and open-ended Cluster task provided listeners with a platform to dynam-
ically engage with the speech materials in highly personal ways. Interestingly, this increase
in sensory information did not encumber performance. Lavan et al. [28] suggested that the
voice sorting task provided familiar listeners with an advantage over unfamiliar listeners.
Although the listeners in the current study were unfamiliar with speakers, the Cluster task
results suggest they were able to take advantage of any accessible information, i.e., Tar-
get or Non-Target utterances alike, when grouping voices into perceived identities. This
observation is consistent with O’Brien et al. [46], where 20 speech stimuli were provided.
While all auditory perceptual tasks are constrained to sequentially processing, the Cluster
task affords listeners with time to perceive and compare vocal qualities extracted from all
available stimuli.

The stimuli used in the current study were consistent across tasks, which made it pos-
sible to observe any interactions with specific Target speakers on performance. In general
some Target speakers were more difficult to discriminate from Non-Target speakers. For
example, the lowest mean specificity across tasks was from speakers LG002 (46.5%) and
LG007 (46.6%), who appeared to be quite similar to Non-Target speakers (see Table 1 and
Fig. 1). It was possible that features, such as pitch [4], vowel quality [38, 42], and speech
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tempo [11, 54] were difficult for unfamiliar listeners to process from non-regional speakers,
as suggested by findings in Dufour, Nguyen, and Frauenfelder [12]. The authors reported
that standard-French was perceived differently depending on a listener’s regional accent.
As a majority of the participants were associated with Aix-Marseille University and orig-
inated from the region, its plausible that they perceived the speakers from various French
regions differently. The effects of accent on listener perception were also studied in Floccia
et al. [14], which reported that, in order to overcome regional accents, unfamiliar listeners
required short-term speech processing adjustments. This finding suggests that, when con-
sidering the different perceptual SID tasks, a voice sorting or clustering task is optimal, as
it provides unfamiliar listeners with time to familiarise themselves with the vocal charac-
teristics of unfamiliar speakers, i.e., they can capitalise their judgements with a larger set of
speech stimuli. Alternatively, these findings suggest reaction times during perceptual binary
tasks trials are affected by the presence of unfamiliar accents.

The secondary goal of the study was to evaluate whether task influenced the effectiveness
of using automatic judgements to model perceptual performance. First, the log-likelihood
ratios (LLR) had comparable sensitivity and specificity (88.5%) to the SD task. This is a
promising observation, but not entirely surprising, as ASV systems similarly evaluate and
judge speech recording pairs. It is likely that performance could be improved by training
with a different (French) dataset.

Pearson correlation procedures revealed significant correlations between automatic and
perceptual accuracy across tasks. In general these findings suggest LLR provide a good
measurement for estimating the unfamiliar listener performance, however, their precision
depends on the design of the perceptual SID task. The findings support those reported by
Gerlach et al. [15], who observed positive relationships between listener judgements and
automatic speaker recognition scores for both English and German language speakers. Inter-
estingly the positive relationships between trial accuracy and LLR were only observed for
the Lineup and Cluster tasks. However, this trend was not observed for the SD task. This
is an important observation, when considering the use of ASV systems to select non-target
speakers used in perceptual SID task. This difference in trends between tasks can be consid-
ered alongside observations reported by Lindh and Eriksson [33] and Zetterholm, Blomberg,
and Elenius [75], which found differences between human judgements and scores produced
by automatic speaker verifications. Taken together, these findings continue to support the
idea that there are important nuances between how human and machines model speak-
ers [48]. Moreover, they underline a larger issue considering the use of ASV systems:
despite providing information regarding their efficiency, i.e., equal error rates, they do not
provide any additional information as to how speakers are modelled and how pairs are
judged. Recent developments by Amor and Bonastre [1] aim to provide metrics that explain
decisions made by ASV systems.

When considering the relationship between task-dependent temporal metrics and LLR,
significant negative correlations were observed for Lineup and Cluster tasks. Interestingly
no significant correlation was observed between reaction time and LLR for SD task trials.
This finding suggests correlating unfamiliar listener reaction times with likelihood scores
based on a pair of speech recordings is far too limited. Alternatively they suggest that per-
ceptual SID tasks with more than two speech recordings or response types provide wider
contexts in which to identify the capacities and limitations of individual listeners. Moreover,
likelihood scores generated by ASV systems appear to be more suited to model perceptual
SID tasks designed with multiple speech recordings, response types, and unlimited listens,
as observed with the Lineup and Cluster tasks.
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6 Conclusion

This paper detailed the development of three perceptual speaker identification tasks with a
similar set of speech stimuli. The findings served as important benchmarks for the effects
of task design on perceptual performance by unfamiliar French listeners. While optimising
perceptual performance is important, its value depends on whether the task provides users
with the means to make correct choices and avoids introducing artificial biases. Although
both humans and machines complete pairwise comparisons of speech materials in order to
evaluate their similarity, there are still differences in their approaches to modelling speak-
ers. Our results revealed context affects the efficiency of using automatic scores to model
perceptual performance. One approach to improving automatic speaker verification system
performance is to consider how context shapes listeners responses. In comparison to more
traditional tasks, the perceptual clustering method developed for the study highlighted how
unfamiliar listeners performed at a high level, which correlated strongly to log-likelihood
scores (r2 = 0.5). Because of its design the cluster task produces a manifest of responses
that can represent the perceptual profile of each listener. In comparison to more restrictive
perceptual tasks, it is much more-detailed and sophisticated, capable of capturing nuances
via speech material groupings. Future research in automatic speaker verification systems
might aim to develop methods that, like cluster tasks, provide a context in which speaker
model training takes advantage of all available materials.

AppendixA: Speech utterances

Description of each speech utterance group assignment, French text, and English translation.

Group Text English translation

Target je m’approchais du bord de la fenêtre I approached the edge of the
window

Target serrait son manteau autour de lui [he] tightened his coat around
him

Target on trouve une espèce de chat we found a species of cat
Target la bise et le soleil se disputaient the wind and the sun were

fighting
Target pour rencontrer ces deux espèces to meet these two species
Target le soleil a commencé à briller the sun began to shine
Target faire ôter son manteau au voyageur to make the traveler take off his

coat
Target s’éloignant d’un nid perché sur un arbre [it] moved away from a nest

perched on a tree
Target il avait dû faire fuir l’oiseau he had to scare the bird away
Target son plumage était beau et doux its plumage was beautiful and

soft
Target ses deux ailes étaient blessées his two wings were injured
Target serait regardé comme le plus fort [he] would be regarded as the

strongest
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Group Text English translation

Non-Target vit une colonie d’oiseaux lives a colony of birds
Non-Target ma sœur n’a qu’à traverser la rue my sister only has to cross the

street
Non-Target son cœur battait très vite his heart was beating very fast
Non-Target que le soleil était le plus fort des deux that the sun was the strongest of

the two
Non-Target au cœur d’un parc naturel in the heart of a natural park
Non-Target sur le coup de midi at the stroke of noon
Non-Target pour regarder dans la rue to look in the street
Non-Target quand ils ont vu un voyageur qui when they saw a traveler coming

s’avancait forward
Non-Target leur poil est beau et doux his hair is beautiful and soft
Non-Target ma sœur est venue chez moi hier my sister came to my house

yesterday
Non-Target elle me parlait de ses vacances en she spoke about her vacations at

mer du Nord the North Sea
Non-Target ils sont noirs avec deux tâches blanches they are black with two white
sur le dos spots on their backs

Appendix B: Lineup task interface

A screenshot of the Lineup task interface, where each speaker icon represents a speech
recording. The top speaker icon is the Target, while the rest constitute the Lineup. The
following are French to English translations: “Comparaison de voix” (“Voice comparison”);
“Reponse” (“response”); “Valider” (“Confirm”); “Effacer” (“Reset”). The boxes above the
Lineup were optional for marking progress.
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Appendix C: Same-Different task interface

A screenshot of the Same-Different interface. After listening to two speech recordings sep-
arated by 2 s, they decided whether the voices belonged to the same (“Même voix”) or
different speakers (“Voix différentes”).

Appendix D: Cluster task interface

A screenshot of the Cluster task interface. Each numbered circle represents a speech record-
ing and the color and grey assignments represent whether it has been assigned or not to a
specific speaker, respectively.
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