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ABSTRACT 

This work investigates the adherence of 12.7 mm glass fiber-reinforced polymer (GFRP) bars in 

concrete with carbon nanotubes (CNT) through pull-out tests. Eighteen specimens were used to 

investigate the impact of CNT content (0% and 0.05% by weight of cement) and anchorage length (5d 

and 10d). Reference samples were produced using 12.5 mm steel bars. An additional fifty-four 

specimens were cast to evaluate the influence of CNTs on the mechanical and durability properties of 

the concrete. This research provides satisfactory results regarding utilizing GFRP bars instead of steel 

ones and incorporating CNT in concrete. 
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INTRODUCTION 

Concrete is one of the most widely used materials in civil construction, and nanotechnology offers 

several possibilities for improving its properties, one of them being the use of nanoparticles to enhance 

the strength and durability of the material (Van Tonder & Mafokoane, 2014). Due to their minimal size, 

nanoparticles can fill the voids between the larger cement, aggregate, and sand particles, resulting in a 

more compact and resistant concrete structure. The small particles serve as nucleation sites for cement 
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hydration products, which may lead to similar enhancement of the cement matrix. In addition, 

nanoparticles can prevent the penetration of aggressive agents, such as water and chemicals, that can 

cause long-term damage to concrete (Ahmed et al., 2019). Using more durable concrete can help reduce 

waste generation, promoting sustainability by reducing the environmental and economic impacts of 

waste generation and disposal in the construction industry (Vieira et al., 2019). 

 

Carbon nanotubes (CNTs) are promising for improving concrete strength and durability. CNTs are 

tubular carbon structures with diameters in the order of nanometers, with exceptional mechanical 

properties, such as high strength and stiffness (Liew et al., 2016). For this reason, several researchers 

have directed efforts to investigate their application in concrete (Han et al., 2023). However, 

incorporating these structures in concrete is still a technological challenge, which requires developing 

techniques for the dispersion and alignment of these materials in concrete (Jung et al., 2020; Reis et al., 

2022).  

 

In the case of reinforced concrete, steel bars are the most commonly used material as reinforcement due 

to their mechanical properties and ease of forming. However, using steel bars in reinforced concrete 

presents disadvantages, such as its susceptibility to corrosion, high density, and waste generation (Yu 

et al., 2020). Thus, it is essential to adopt preventive measures to minimize these problems, such as 

applying protective coatings on steel bars (Wu et al., 2019), using construction techniques that reduce 

waste generation (Martins et al., 2022), and using alternative materials for concrete reinforcement, such 

as glass-fiber reinforced polymers (GFRP) (Raza & Rafique, 2021). 

 

GFRP bars are an alternative to steel for concrete reinforcement, presenting several advantages over 

traditional materials, such as corrosion resistance, lightness, high strength, and durability (Benmokrane 

et al., 2021). It is also essential to emphasize the sustainable aspect of GFRP bars since they are made 

of recyclable materials, just like steel (De Fazio et al., 2023), the latter having a large-scale recycling 

process already consolidated, which is not yet the case with polymers. However, it is still a relatively 

new alternative in the market and may require adaptations in construction techniques and applicable 

technical standards. 

 

With this perspective, the study of bonding between bars and concrete is significant to ensure the 

effectiveness of the strengthening system. The adherence refers to the ability of the bars to bond to the 

concrete and transfer the forces applied between the materials (Xiong et al., 2021). In the case of GFRP 

bars, the adherence between them and the concrete is essential to ensure uniform and efficient 

distribution of the load applied to the structure and its resistance to external and internal forces (Liu et 

al., 2023). The adhesion between FRP bars and concrete depends on many factors, such as the bar 

diameter, anchorage length, and concrete type. The additions to the cementitious matrix aim to improve 

its properties and positively influence its adhesion to the reinforcement bars. The topic still requires 

further research, even though it is being increasingly investigated (Reis et al., 2023). 

 

Considering the potential of using nanotechnology and alternative materials in civil construction to 

develop more resistant, durable, and sustainable structures, besides contributing to reducing the 

environmental impact caused by the construction industry, this paper aims to investigate the bond 

behavior of GFRP bars in concrete with carbon nanotubes (CNT-concrete), as well as the mechanical 

and durability properties of CNT-concrete. Specifically, this manuscript answers the following 

questions: What are the effects of CNT incorporation on the (i) compressive and tensile strength, (ii) 

static and dynamic modulus of elasticity, and (iii) porosity and water absorption of concrete? (iv) What 

does adding CNT to concrete influence its bond strength with GFRP bars? To this end, an experimental 

campaign and future research directions were presented. 

 

MATERIALS AND METHODS 

 

Materials 

The materials used in the concrete production were: (i) Brazilian Type CPV-ARI RS Portland cement—

cement with low content of additions in its chemical composition and a high degree of fineness—
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produced by Holcim, with physical and mechanical properties shown in Table 1; (ii) natural sand (fine 

aggregate, FA) with a fineness modulus of 2.75 and a maximum diameter of 2.4 mm, characterized 

according to NBR NM 248 (ABNT, 2003), and a specific gravity of 2.632 g/cm3, characterized 

according to NBR 9776 (ABNT, 1987); (iii) gneiss gravel (coarse aggregate, CA) with a fineness 

modulus of 4.92 and a maximum diameter of 9.5 mm (ABNT, 2003), and a specific gravity of 2.646 

g/cm3 (ABNT, 1987); (iv) MWCNTs (only for CNT–concrete samples) selected from the CTNano, 

Brazil. They were synthesized by chemical vapor deposition (CVD) and present estimated lengths 

between 5 μm and 30 μm, external diameter between 10 and 30 nm, and purity greater than 93%—

complete specifications described in the nanomaterial data sheet (NanoView, 2022). The isopropanol 

used to disperse the CNTs was the absolute grade of the EMFAL brand; (v) FRP bars of 12 mm 

diameter, a tensile strength of 917 MPa, 0.8d–1.2d rib spacing (e), and rib inclination (β) ≥ 60°, as 

indicated in Figure 1—detailed specifications in the manufacturer data sheet (Stratus, 2019); (vi) ribbed 

steel bars of 12.5 mm diameter (d), a yield point of 591 MPa, a tensile strength of 674 MPa, 0.02d–

0.04d rib height, 0.5d–0.8d rib spacing (e), and rib inclination (β) ≥ 45°, as shown in Figure 1; (vii) 

superplasticizer (SP) and hydration stabilizer (HS) additives in water suspension, whose specifications 

are in Table 2. The choice of a polycarboxylate-type SP is worth mentioning because the cement and 

calcium ions' alkaline medium directly influences nanomaterials' agglomeration. Chuah et al. (2018), 

for example, used a polycarboxylate-type SP to disperse graphene oxide and obtained promising results. 

 

Table 1. Physical and mechanical properties of CPV-ARI RS Portland cement 

Test type Characteristic Reference standard Limit 

Specific area—Blaine (cm2/g) 4620 NBR 16372 (2015) ≥ 3000 

Setting time (mins) 
Start 135 NBR 16607 (2018) ≥ 60 

End 205 NBR 16607 (2018) ≤ 600 

Compressive strength (MPa) 

1 day 19.6 NBR 7215 (2019) ≥ 14.0 

3 days 31.8 NBR 7215 (2019) ≥ 24.0 

7 days 41.3 NBR 7215 (2019) ≥ 34.0 

28 days 52.4 NBR 7215 (2019) – 

 

 
Figure 1: Geometric characteristics: (a) GFRP bar; (b) steel bar 

 

Table 2. Properties of superplasticizer and hydration stabilizer additives 

Property Superplasticizer Hydration stabilizer 

Name Sika® ViscoCrete®–5800 FTN Matchen stabilizer 

Aspect at 25 ºC Brown liquid Blue liquid 

pH 4.5 ± 1.0 3.5–5.5 

Density at 25 ºC (g/cm3) 1.07 ± 0.02 1.035–1.095 

Suggested content 0.2%–2.0% – 

 

CNT dispersion 

The dispersion method was the pre-dispersion of CNTs on cement particles in an isopropanol medium, 

a proven effective process in previous research (Makar & Chan, 2009; Rocha & Ludvig, 2018). The 

method consisted of three steps: (i) CNTs and approximately 200 ml of isopropanol were added to a 

glass container, shaken at 10.000 rpm, and sonicated on ultrasonic apparatus with 42 kHz frequency for 

30 minutes; (ii) ten percent of the cement mass and another 200 ml of isopropanol were incorporated 

into the mixture, which was transferred to a plastic container and mechanically stirred and sonicated for 
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additional 90 minutes; (iii) in a glass container, drying in an oven at 100±5 ºC for 24 hours, leaving 

only a visually homogeneous dry power of cement particles coated with CNTs. The resulting dry 

mixture was then mixed with the remaining cement to prepare the CNT–concrete samples before adding 

water. Figure 2 details the dispersion process. 

 

      
(a) (b) (c) (d) (e) (f) 

Figure 2: CNT dispersion steps: (a) weighing of CNTs and cement; (b) CNTs ultrasonication in 

isopropanol; (c) mechanical stirring of CNTs and cement in isopropanol; (d) oven drying of the 

mixture; (e) aspect of the dry mixture; (f) mixing of the dispersed CNTs with the remaining cement 

 

Mixture compositions and specimen production 

The concrete samples were prepared in the Laboratory of Construction Materials, Structures, and 

Components of the Federal Center for Technological Education of Minas Gerais (CEFET–MG). The 

concrete mixes in Table 3 were produced with a w/c ratio of 0.53 for a target slump class S160 and 

compressive strength Group I (30 MPa) according to NBR 8953 (ABNT, 2015). For the CNT–concrete 

samples, the contents of MWCNTs were limited to 0.05% (CNT0.05) and 0.10% (CNT0.10) by weight of 

cement to avoid agglomeration (Hassan et al., 2019). Concrete without CNTs (REF) was also produced 

as a reference for comparison purposes. 

 

Table 3: Concrete mix design 

Sample 
Cement 

(kg/m3) 

Aggregates (kg/m3) Water 

(kg/m3) 

Additives (kg/m3) CNT 

(%wc) FA CA SP HS 

REF 384 960 838 204 0.80 0.26 0.00 

CNT0.05 384 960 838 204 0.80 0.26 0.05 

CNT0.10 384 960 838 204 0.96 0.26 0.10 

 

The mixture was produced using a 120 L concrete mixer in three steps: (i) a small amount of water was 

added to moisten the inside surface of the mixer; (ii) the aggregates were mixed with 60% of the total 

mixing water for three minutes; (iii) the cement (with or without CNTs), SP and HS additives, and the 

remaining 40% of mixing water were added and mixed for additional five minutes. The slump test 

followed the recommendations of NBR NM 67 (ABNT, 1998) to measure concrete consistency. 

Eighteen cylindrical pull-out specimens measuring 150 mm diameter and 150 mm in length were 

prepared. FRP and steel bars were embedded in the center of the concrete specimens—according to the 

literature, the cover-to-bar diameter greater than five (C/d > 5) is more likely to lead to pullout failure 

(Carvalho et al., 2018), as desired in this research. Bond lengths of five and ten times the bar diameter 

(5d and 10d) were adopted. The bar verticality was ensured using a styrofoam plate with 30 mm thick 

holes under the cylindrical molds' 20 mm thick wooden base. Figure 3 presents the pull-out test setup 

and the molded specimen, and Table 4 summarizes the corresponding test program. Fifty-four 

specimens 100 mm in diameter and 200 mm long were produced for the mechanical and durability tests, 

eighteen of each mixture. The properties studied were compressive strength, static modulus of elasticity, 

dynamic modulus of elasticity, tensile strength, porosity, and water absorption. All specimens were cast 

at the same time, de-molded after 24 h, and cured in saturated calcium hydroxide solution at 23 ± 2 °C 

for 28 days, as recommended by NBR 5738 (ABNT, 2015b). 
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Figure 3: Pull-out test setup and the molded specimen (10d bond length case) 

 

Table 4: Details of pull-out test program 

Specimen designation Bar type CNTs (%wc) Diameter (mm) Bond length (mm) Specimens 

G-0.05-12-5d GFRP 0.05 12.0 60.0 (5d) 3 

G-0.00-12-5d GFRP 0.00 12.0 60.0 (5d) 3 

G-0.00-12-10d GFRP 0.00 12.0 120 (10d) 3 

S-0.05-12.5-5d Steel 0.05 12.5 62.5 (5d) 3 

S-0.00-12.5-5d Steel 0.00 12.5 62.5 (5d) 3 

S-0.00-12.5-10d Steel 0.00 12.5 125 (10d) 3 

 

Test procedures 

Figure 4 provides an overview of the tests, indicating the reference procedure, the related equipment, 

and the number of specimens. Care was taken to ensure that the conditions for all tests were the same, 

and the specimens were chosen randomly to represent the samples best. 
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Figure 4: Overview of the tests and details of the procedures 

 

Statistical analysis 

Tukey's means contrast test, with a significance level of 5%, was used to examine the impact of the 

individual factor (CNT content). In Tukey's test, A represents the sample with the highest mean value 

for a specific property, B corresponds to the second highest mean value, and so on. Treatments with the 

same letter indicate statistically equivalent means. The Anderson-Darling normality test (at a 5% 

significance level) was used to validate the Tukey test results, with a p-value greater than or equal to 

the significance level, implying a normal distribution condition. 

 

 

 

 

 

 

 

 

 

Compressive strength 

Method: Compression test—NBR 5739 (ABNT, 2018) 

Equipment: Universal Testing Machine—EMIC PC 200 CS Model 

Specimens: 9 (3 per sample) 

Dynamic modulus of elasticity 

Method: Natural resonance frequency—ASTM E1876 (ASTM, 1983) 

Equipment: Erudite MKII equipment 

Specimens: 18 (6 per sample) 

Splitting tensile strength 

Method: Diametral compression (Lobo Carneiro test)—NBR 7222 (ABNT, 2011) 

Equipment: Universal Testing Machine—EMIC DL 30000 Model 

Specimens: 9 (3 per sample) 

Porosity 

Method: Surface pore area of scanned cross-sections (Mendes et al., 2017) 

Equipment: Scanner and MATLAB code developed by Rabbani et al. (2014) 

Specimens: 24 (8 per sample) 

Water absorption 

Method: Saturated and dry mass ratio—NBR 9778-2 (ABNT, 2009) 

Equipment: Model CE 220/150 oven and Model LD 2051 balance 

Specimens: 27 (9 per sample) 

Static modulus of elasticity 

Method: Static compression test 

Equipment: Universal Testing Machine—EMIC PC 200 CS Model 

Specimens: 9 (3 per sample) 

Bond strength 

Method: Pull-out test—RILEM-RC-6 (RILEM, 1983; Carvalho et al., 2018) 

Equipment: Universal Testing Machine—EMIC PC 200 CS Model 

Specimens: 18 (3 per sample) 
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RESULTS AND DISCUSSIONS 

 

Mechanical and durability properties 

Figure 5 presents the mean values, extreme coefficients of variation (CV), mean confidence intervals 

(CI – 95% reliability), and the results of Tukey's means contrast test (5% significance) for the evaluated 

properties. The p-values of the Anderson-Darling (AD) normality test ranged from 0.092 to 0.673, 

validating the Tukey test results (p-value ≥ 0.05). 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5: Test results for mechanical and durability properties: (a) CS—Compressive strength; (b) 

TS—Tensile strength; (c) Es—Static modulus of elasticity; (d) Ed—Dynamic modulus of elasticity; 

(e) P—Porosity; (f) WA—Water absorption 

 

The results of Tukey's test indicated statistically significant improvements in the CS relative to the 

reference sample when 0.05% CNT (12% increase) and 0.10% CNT (23% increase) were added to the 
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mix (Figure 5a). The same pattern occurred with TS, with increases of 26% (CNT0.05) and 29% 

(CNT0.10) relative to CNT-concrete (Figure 5b). In the case of Es (Figure 5c) and Ed (Figure 5d), 

adding CNTs to the cement matrix did not lead to significant effects, with the Tukey test indicating 

equivalent means for the three samples. The results of P (Figure 5e) and WA (Figure 5f), on the other 

hand, showed a positive effect of the addition of 0.05% CNT to concrete, with reductions of 18% and 

16%, respectively, concerning plain concrete. According to Tukey's test, the content of 0.10% CNT 

resulted in P and WA equivalent to the reference sample. 

 

The increase in CS and TS caused by CNTs can generally be explained by the nucleation effect, which 

facilitates the cement hydration reaction. In addition, CNTs can act as bridges for stress transfer between 

cracks and voids, contributing to this increase (Konsta-Gdoutos et al., 2019). However, it is essential to 

mention that a high proportion of CNTs can lead to agglomeration and coating of the material surface, 

hindering the hydration reaction. The compressive and tensile strengths may decrease below the 

maximum values in this case (Jung et al., 2020). In addition, CNTs positively affect the pore structure 

of concrete because they can fill capillary pores and the voids between cement hydration products, 

which results in advantages in terms of concrete durability, such as the reduction of P and WA (Xu et 

al., 2015). 

 

Therefore, adding 0.05% CNT to concrete positively affected CS, TS, P, and WA. However, there was 

no significant impact on Es and Ed. As reported by the literature, CNTs are more difficult to disperse 

in high concentrations. They may agglomerate due to van der Walls forces and generate large pores in 

the cementitious composite, which worsens its mechanical properties (Gillani et al., 2017). With this in 

mind and knowing that CNTs are not yet industrially scaled and therefore are expensive, this research 

indicates that future research should avoid using contents higher than 0.05% CNT. 

 

Bond slip behavior 

Maximum bond strength 

Figure 6 displays the mean values, extreme CV, mean CI (95% reliability), and the results of Tukey's 

means contrast test (5% significance) for the maximum bond strength (τb). The p-values of the AD 

normality test ranged from 0.119 to 0.293, validating the Tukey test results (p-value ≥ 0.05). 

 

 
Figure 6: Pull-out test results 

 

The results of Tukey's test showed that the maximum bond stress occurred in the concrete samples with 

an addition of 0.05% CNT, which may be linked to the higher compressive strength (Figure 5a) and 

lower porosity (Figure 5e) of these samples compared to plain concrete. Specifically, in the samples 

with CNTs, τb was 22% and 4% higher than in the reference samples with GFRP and steel bars, 

respectively, with statistically significant differences. Tukey's test also indicated that the bar type did 

not significantly influence τb, resulting in equivalent means in the samples with or without CNTs. 
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Regarding the anchoring length, very relevant differences were noted. Precisely, in the samples with 

10d anchorage length, τb was 50% and 56% lower than in those with 5d anchorage length.  

 

In terms of the failure mode, it was observed that all specimens experienced pullout failure, confirming 

that a C/d ratio greater than 5 is more prone to result in pullout failure. It is worth mentioning that the 

ribs of the GFRP bars were deformed (by shear) in the direction of the pullout force, which did not 

occur with the steel bars, as shown in Figure 6. 

 

 
Figure 6: GFRP and steel bars pulled from the specimens 

 

Considering aspects of strength, durability, weight, and corrosion resistance, this research brings 

satisfactory results about using GFRP bars over steel ones. It can also be said that considering the 

proposed cylindrical specimens, the anchorage length of 5d, recommended by the RILEM-RC-5 

standard (RILEM, 1982) and commonly employed by the literature (Qasem et al., 2020; Song et al., 

2020), is sufficient to ensure uniform distribution of stresses between the grout and the concrete. 

 

CONCLUSIONS 

This research evaluated the bond behavior of GFRP bars in CNT-concrete and its mechanical and 

durability properties. The following conclusions can be drawn: 

 

i. The addition of 0.05% CNT resulted in an 12% increase in CS and a 26% increase in TS, 

while the addition of 0.10% CNT showed even more significant improvements with a 23% 

increase in CS and a 29% increase in TS. 

ii. The CNT addition to the cement matrix did not significantly affect the values of Es and Ed. 

iii. Incorporating 0.05% CNT into the concrete led to reductions of 18% and 16% in P and 

WA, respectively, compared to plain concrete. On the other hand, adding 0.10% CNT did 

not show further significant improvements. 

iv. The bond strength (τb) in samples with CNTs was significantly higher than in reference 

samples. The bar type did not importantly influence τb in all samples. Notably, a longer 

anchorage length (10d) led to significantly lower τb than the 5d anchorage length. 

 

These conclusions refer to the CNT dispersion method employed, which proved to be effective, and to 

the cylindrical samples used. Another point that deserves attention is that the millimeter difference 

between the diameters of the GFRP and steel bars should have been evaluated. Based on these findings, 

future research directions are conducting pull-out tests using different bar diameters, surface types, and 

cubic specimens. Additionally, investigating other durability properties like ultrasonic pulse velocity, 

electrical resistivity, and mass loss due to acid attack is also suggested. 
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