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Sum-Frequency Generation at interfaces: a Fresnel story

III. Origin of pseudo-resonant processes in centrosymmetric bulks

Bertrand Busson

Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000,

91405 ORSAY, Francea)

(Dated: 13 June 2023)

The properties of the bulk contribution to Sum-Frequency Generation reflected and

transmitted by a finite layer in a multilayer system are described. The leading term is

essentially due to the processes emitting in the transmission geometry, in particular

for macroscopic layers. For such transmission processes, phase mismatch leads to

the production of interference fringes when the layer thickness or a wavelength is

tuned, which may be mistaken for resonant processes inside or at the surface of

the material. Experimental evidence of such fringes measured from centrosymmetric

bulks is provided for a diamond window in the far infrared, and suggested for other

materials in previously published data. The existence of a stationary point in the

phase mismatch, related to the group velocity mismatch, is shown to be the source of

another pseudo-resonant process in centrosymmetric calcium and barium fluorides,

for which theoretical predictions reproduce the experimental observations.

a)Electronic mail: bertrand.busson@universite-paris-saclay.fr
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I. INTRODUCTION

The surface versus bulk duality of the second-order nonlinear processes at interfaces has

been elaborated on since the beginning of nonlinear optics.1–3 For second harmonic gen-

eration (SHG), the bulk terms are conveniently mixed with surface ones into a common

formalism.4,5 For Sum-Frequency Generation (SFG), two tracks have been followed to de-

scribe the semi-infinite bulk contribution. From the original derivation of Bloembergen and

Pershan,1 a general formulation of SFG emission from a bulk polarization has been devel-

oped, separately from the surface response. Details on the source of this polarization have

led to models for a free electron gas6, then generalized to any polarizable material7 and

applied to the difficult case of gold in the visible range.8,9 On the other hand, equivalence

between bulk and surface terms have early been figured out,10 and widely applied thereafter

to simplify the handling of the bulk contribution in the surface spectroscopy frame: in Shen

group in the first place,11–13 then more universally, in particular for the separation between

surface and bulk contributions,14,15 and for the integration into the second order response of

the third order bulk contribution driven by a static electric field.16,17 Both interpretations

of the bulk contribution have recently been explicitly reconciled.18

In the literature, attention is most of the times paid to SFG bulk contributions when

they produce signals of the same order of magnitude as the surface ones, or even higher,

and separation between them becomes an issue.11,18 This is commonly the case for non-

centrosymmetric crystals,12,15 chiral bulks19,20 and metals.6,9 Influence of bulk contributions

has also been stressed for the liquid water surface: even if they remain rather small,21 at-

tention has been drawn on their dependence on the interfacial field, which may be modified

using electrochemical control or ions.22 Apart from the obvious particular cases listed above,

only few publications have experimentally investigated the bulk response of centrosymmetric

materials because most SFG users are interested in the reflection geometry, for which the

bulk terms appear much smaller than in transmission.23 It could be concluded that it is most

of the times pointless to focus on the bulk contributions from a transparent centrosymmetric

material. However, it must be kept in mind that such materials are precisely what experi-

menters use for windows and prisms in the SFG set-ups, as well as for substrates, expecting

their nonresonant background to remain below the detection threshold. In addition, back re-

flections may send any bulk SFG produced in a transmission geometry back to the detection
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line for reflected SFG. Some unwanted bulk contribution may thus spoil the expected SFG

signals from molecular monolayers, even without the experimenter’s knowing. Establishing

the conditions favourable to these bulk terms (or leading to their extinction) and the rules

they follow as a function of adjustable experimental parameters, like film thickness or angles

of incidence, helps highlight and control them.

In the two previous papers of this series,24,25 we have shown that the surface nonlinear

response, measured in the far field, of a nonlinear sheet in a stratified N-layer medium was in

all cases governed by universal equations (Eq. A1-A5). On the one hand, the nonlinear pro-

cess itself (driven by the second order susceptibility χ(2)) is independent on the complexity

of the interface (number N, thicknesses d[j] and indices of refraction n[j] of the media com-

posing the system) and on the location (i.e. depth inside the system) of the nonlinear sheet.

On the other hand, all these constitutive elements and details of the interface are taken into

account by the sole Fresnel factors governing the transfer from the far field to the local field.

The Fresnel factors thus transform the local hyperpolarizability into an effective one, which

acts as an equivalent (and virtual) source of nonlinear polarization emitting SFG radiation

just as if the interface was only composed of a freestanding nonlinear sheet surrounded by

two semi-infinite media. The case of several interfering nonlinear sheets is easily obtained

by summing the individual contributions in amplitude and phase.

In the present article, we address the case where one of the media is nonlinear as a whole,

and therefore generates a bulk SFG response. The symmetry properties of this bulk con-

tribution differ from the surface ones. SFG may stem from a dipolar hyperpolarizability,

allowed by the bulk symmetries (e.g. non-censtrosymmetric crystals,15 chiral liquids26). But

the dipolar components vanish for isotropic or even cubic materials.3 In these situations,

the bulk SFG signals arise from higher order contributions like magnetic and quadrupolar

terms.13 It has long been known that these higher order terms involving magnetic polariza-

tions and quadrupole moments may be recast into a dipolar polarization.27 The bulk SFG

response is thus the output of a nonlinear polarization wave travelling into the medium. In

addition, under the hypothesis that the electromagnetic fields are plane waves, all fields in

the bulk and their gradients are proportional to the electric field amplitudes.7 It is therefore

possible, in a very general way, to define a dipolar nonlinear susceptibility tensor χB for the

bulk which groups together all the contributions.

We first extend the well-known equivalence between bulk and surface contributions from
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a semi-infinite bulk to the more general situations of the last semi-infinite medium of an

N-layer system, and of a generic layer in such a system as soon as its thickness becomes neg-

ligible as compared to the wavelengths (or inverse wavevectors) of all light beams. For bulk

generation from a finite thick layer [k], we show that there is strictly speaking no equivalence

to a surface contribution, except when only the leading term is considered and the others

discarded. This approximation is usually very good for transmitted SFG, all the more when

the bulk layer is macroscopic. In this latter situation, the SFG generation process in the bulk

may be split between the two subsystems sandwiching layer [k] and the equivalent surface

susceptibility mimicking the bulk process depends on the layer thickness and wavevector

phase mismatch. Alternatively, the SFG process in transmission from a macroscopic bulk

layer becomes equivalent to two out-of-phase surface terms located at each boundary of the

layer. This creates interference effects in the bulk contributions, which are experimentally

shown to follow the theoretical predictions in a transparent diamond window. We also re-

consider previously published SFG spectra measured through a calcium fluoride window or

at the surface of silica wafers, for which we propose an alternate explanation in terms of

oscillations of the bulk response. Finally, further development of this description provides

an explanation to the experimental signals, looking like resonances but of unknown nature

so far, observed recently through calcium fluoride crystals, as a consequence of frequency

dispersion in the short laser pulses involved in the SFG process.

II. SEMI-INFINITE BULK CONTRIBUTION

In this Part, we examine SFG emitted in reflection by a semi-infinite bulk defined as the

last medium of an N-layer system (as sketched in Fig. 1). As the simplest case, we first

consider the 2-layer system, i.e. a simple interface between two semi-infinite media [1] and

[2], and start by evaluating the SFG field produced by a single sheet located in medium

[2] at depth z = −z0. We use Eq. (A1)-(A3) and plug in Eq. (A6)-(A8) where layer [3] is

removed by setting r23s/p = 0. We recover the Fresnel factors in the two-layer system with

fields evaluated inside layer [2], i.e. superscripts (2L−), and write

χ
(2)
eff =

∑
αβγ

F 2L−
α (ω3)e

[1]
α (ω3)F

2L−
β (ω1)e

[1]
β (ω1)F

2L−
γ (ω2)e

[1]
γ (ω2)χ

(2)
αβγe

i(∆k
[2]
z,R)z0

= χ
(2)
eff (z0 = 0−)ei(∆k

[2]
z,R)z0 (1)
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FIG. 1. Sketch of the bulk SFG process in layer [k] of the N-layer system. Multiple reflected,

refracted and transmitted rays are not shown for clarity. Thickness d[k] of each layer is equal to

z[k−1] − z[k], where z[j] < 0 is the depth of interface {j} between media [j] and [j+1].

where ∆k
[2]
z,R is the phase mismatch of the SFG process in medium [2] in the reflection

geometry, defined as ∆k
[2]
z,R = k

[2]
1,z + k

[2]
2,z + k

[2]
3,z where k

[2]
i,z =

ωi

c
n
[2]
i cos θ

[2]
i . This result means

that, when medium [2] becomes semi-infinite, the emission at depth z = −z0 is identical

to the emission at depth z = 0− modulated by a phase matching term evaluated at depth

z = −z0. We may rewrite this into28

χ
(2)
eff =

∫ 0

−∞
χ
(2)
eff (z0 = 0−)e−i(∆k

[2]
z,R)zδ(z + z0)dz =

∫ 0

−∞
χ
(2)
eff,B(z)e

−i(∆k
[2]
z,R)zdz (2)

where we define as usual10,24 the effective bulk susceptibility χ
(2)
eff,B(z) = χ

(2)
eff (z0 = 0−)δ(z+

z0) or, equivalently, χ
(2)
B (z) = χ(2)(z0 = 0−)δ(z + z0). In Ref. 29, a discrete (instead of

continuous) distribution of thin layers was used for the integration.

If we now consider that the whole medium [2] acts as a nonlinear source, we replace the

δ-distribution at z = −z0 by a uniform distribution χ
(2)
B (z) = χ

(2)
B constant over medium

[2]. Equation 2 shows that we may define an equivalent surface second-order susceptibility,

located at z = 0−, by

χ
(2)
eff =

∫ 0

−∞
χ
(2)
eff,Be

−i(∆k
[2]
z,R)zdz = χ

(2)
eff,B

i

∆k
[2]
z,R

(3)

In other words, the SFG emitted by the semi-infinite bulk with bulk susceptibility χ
(2)
B

is equal to that emitted by a surface polarization given by iχ
(2)
B /∆k

[2]
z,R, located at the
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interface inside medium [2].18 We recover the original conclusions of Ref. 10 under the same

hypotheses: a dipolar source for the bulk contribution excited by light modelled by plane

waves. This equivalence has proved very useful for the analysis of the bulk contribution of

water at a free or charged interface.16,17,30

When the semi-infinite bulk is defined as layer [3] in a three-layer system, we have for

each Fresnel factor at depth z = −z0 inside medium [3] (with z0 ⩾ D, where D is the usual

notation for thickness d[2]), noting αi = x, y or z:

Fαi
(ωi, z0) = F 3L−

αi
(ωi, z = −D)eik

[3]
i,z(z0−D). (4)

Following the same procedure as in the 2-layer system, we set

χ
(2)
eff =

∫ −D

−∞
χ
(2)
eff (z = −D)e−i∆k

[3]
z,R(z+D)δ(z + z0)dz =

∫ 0

−∞
χ
(2)
eff,B(z

′)e−i(∆k
[3]
z,R)z′dz′ (5)

with χ
(2)
eff,B(z

′) = χ
(2)
eff (z = −D)δ(z′ + z0 − D). To reconstruct the bulk, we set χ

(2)
B (z′)

constant over z′ ⩽ 0. As above, SFG emission by the semi-infinite bulk becomes equivalent

to that produced by a surface susceptibility iχ
(2)
B /∆k

[3]
z,R located at z = −D in medium

[3]. Here, only the phase mismatch generated by beam propagation in medium [3] appears

in the definition of the equivalent surface susceptibility. Phase mismatch and Fabry-Pérot

interference in medium [2] come separately out when F 3L−
αi

(ωi, z = −D) is evaluated using

Eq. A6-A8, to calculate the far field emitted towards medium [1] from Eq. A1.

This result generalizes to the SFG emission by a semi-infinite bulk defined as layer [N]

in an N-layer system. From Ref. 25, Eq. 4 holds when the various terms at interface {2}

and medium [3] are replaced by their counterparts at interface {N-1} and in medium [N],

respectively. The phase factor becomes k
[N ]
i,z (z0 + z[N−1]), where z[N−1] < 0 defines the last

interface of the system. After integration, SFG emitted by this semi-infinite bulk with uni-

form χ
(2)
B is identically modelled by an equivalent surface susceptibility iχ

(2)
B /∆k

[N ]
z,R located

inside medium [N] at z = z[N−1].

III. BULK CONTRIBUTION FROM A FILM OF FINITE EXTENT

A. General results

We note that the results of the previous Part are not relevant when the bulk nonlinear

medium is not the last one in the N-layer system, as a consequence of the Fabry-Pérot effects
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generated by the reflections at its boundaries. Comparing Eq. A6-A17 and A18-A29, we

see that the z0-dependences of the Fresnel factors in a generic layer [k] inside the N-layer

system and in layer [2] inside the three-layer system are analogous. We therefore focus on

the archetype bulk layer [2] (located between z = 0 and z = −D) in the three-layer case as

a representative of the general N-layer system, to which the results established in this Part

identically apply. Whatever the polarization, the expressions of the fields at arbitrary depth

z = −z0 in Eq. A6-A8 involve the sum of a downgoing and an upgoing wave,29 as evidenced

by their phases evolving as eik
[2]
i,zz0 and e−ik

[2]
i,zz0 , respectively. We rewrite these local Fresnel

factors for αi = x, y, z as:

F film
αi

(ωi) = Aαi
(ωi, D)

[
eik

[2]
i,zz0 +Bαi

(ωi)e
2iβie−ik

[2]
i,zz0
]

(6)

where Bαi
(ωi) terms are essentially reflection coefficients r23s/p(ωi) and bear the −ik

[2]
i,zz0 phase

factors of the upgoing wave. For SFG measured in transmission, the Fresnel factors for the

SFG beam become (Eq. A12-A14):

F film,T
α3

(ω3) = AT
α3
(ω3, D)

[
e−ik

[2]
3,zz0 +BT

α3
(ω3)e

ik
[2]
3,zz0
]

(7)

As detailed in the Appendix, for layer [k] inside the N-layer system, Eq. 6 and 7 still apply

with factors Aαi
(ωi) and Bαi

(ωi) now depending on all thicknesses d[j]. We write them for

short Aαi
(ωi, d

[k]) and Bαi
(ωi, d

[k]). Expressions for Aαi
(ωi, d

[k]) are shown in the Appendix,

whereas expressions for Bαi
(ωi, d

[k]) are complicated by the ruled product.

When the three beams are taken into account, the product of the Fresnel factors appearing

in Eq. A3 generates eight terms20 with different phase mismatches (±k
[2]
3,z ± k

[2]
1,z ± k

[2]
2,z)z0,

labelled ∆k
[2]
z,{±±±}z0,

31 for example ∆k
[2]
z,{−+−} for the (−k

[2]
3,z + k

[2]
1,z − k

[2]
2,z)z0 term weighted

by Bα3(ω3)Bα2(ω2)e
2i(β3+β2)

3∏
i=1

Aαi
(ωi). When layer [2] becomes the source of bulk SFG

between z = −D and z = 0, the result of the previous Part is generalized by factoring the

terms depending on z0 and using identities like

ei(∆k
[2]
z,{±±±})z0 =

∫ 0

−D

e−i(∆k
[2]
z,{±±±})zδ(z + z0)dz, (8)

then replacing the Dirac distribution at −z0 by a constant bulk susceptibility. After in-

tegration between −D and 0 as in Eq. 3, each term has a different behaviour as for the

relationship between bulk susceptibility and its equivalent surface susceptibility, appearing
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as a factor

i
(
1− ei∆k

[2]
z,{±±±}D

)
∆k

[2]
z,{±±±}

= D ei∆k
[2]
z,{±±±}D/2 sinc

(
∆k

[2]
z,{±±±}D/2

)
(9)

where we introduce function sinc(x) = sin(x)/x, commonly encountered in phase matching

analysis.32–35 These formulas generalize to the N-layer system by introducing ∆k
[k]
z,{±±±}(z0+

z[k−1]) instead of ∆k
[2]
z,{±±±}z0, and integrating between z[k−1] and z[k] to recover d[k]. In

Eq. 9, there appears to be no simple relationship common to all eight terms, and no general

behavior can be established for their sum. In particular, the presence of the denominators

prevents from retrieving products of complete Fresnel factors (Eq. 6 and 7) when summing

them up, and the total effective polarization emitting bulk SFG is here not equivalent to

a surface nonlinear polarization. Recovering the formal expression of the complete Fresnel

factors serves indeed as a criterion for the transformation of bulk SFG into an equivalent

surface SFG, as was for example made explicit in Ref. 18.

B. Extension to Sum-Frequency scattering

Throughout this article series, the interface has been described as a stack of layered media

separated by infinite plane and parallel interfaces. In this section we consider how Fresnel

factors may influence the Sum-Frequency scattering process.36

1. Equivalence between phase-matched and scattered SF emission

Briefly, we consider an individual object of arbitrary shape, with a characteristic size of

a few tens of nanometers or more, interacting with the same incoming light beams as in

Fig. 1. The essential difference lies in the fact that SFG radiation is now scattered by the

object in any direction, defined by a wavevector k, because the phase-matching condition

[Eq. A2] is specific to the plane multilayer system and does not apply here. The effective

susceptibility37 Γ(2) for scattering differs from Eq. A3 (or Eq. A5) for several reasons. In

Eq. A3, the effective susceptibility sums up into a scalar quantity the projections of the

local susceptibility χ(2), linked to the symmetries of the interface, onto the incoming and

outgoing (fixed) polarization vectors (hence the decomposition into x, y and z components

in Eq. A6-A8). In a scattering experiment, the far field intensity is measured in the direction
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of k, which is not fixed (hence Eq. A4 is modified). The effective susceptibility has to be

re-projected onto the scattering frame (linked to k), so Γ(2) is expressed as a tensor quantity.

In addition, the local susceptibility and its projections onto polarization vectors e now vary

with the point considered on the object, and, for large objects, so do the phases of the three

beams. The effective susceptibility tensor Γ[2] thus integrates over the object all these local

variations (we neglect nonlocal contributions):

Γ
[2]
αβγ(q) =

∫
V

∑
µνξ

[Fα(ω3, r)eα]µ χ
(2)
µνξ(r)[Fβ(ω1, r)e

[1]
β ]ν [Fγ(ω2, r)e

[1]
γ ]ξ e

iq·rd3r (10)

where q = k− (k1 + k2) is the scattering vector, which has a form analogous to ∆k
[2]
z,{+−−}.

As they transfer the far field to the local field, Fresnel factors account here for the boundary

conditions at the surface of the object, the choice for eα(ω3) depending on the medium

in which the scattered intensity is measured in the far field. For a spherical object, the

components of tensor Γ[2] may be calculated.38 For dielectric (e.g. liquid) droplets,36,39 the

Rayleigh-Gans-Debye (RGD) approximation is often applied, which states that the light

beams are not modified by the presence of the objects. This is equivalent to postulate re-

fractive index matching between the object and its surrounding medium,40 hence essentially

setting Fresnel factor amplitudes to 1. Within this approximation, for isotropic particles,

the relationships between χ(2), Γ(2) and far field intensity becomes simpler.37,40,41

As pointed out in the literature,36 Eq. 10 may also be evaluated when the object is an

infinite homogeneous plane layer (between z = 0 and z = −D as above) in a multilayer

system, to recover the equations specific to the phase-matched situation. In this case,

we set χ(2)(r) = Π(z,−D, 0)χ
(2)
B where Π(z,−D, 0) is a rectangular function along z,

equal to 1 between −D and 0. As boundary conditions evaluated on a plane interface,

Fresnel factors become constant, equal to Aβ(ω1, D), Aγ(ω2, D) and AT
α(ω3, D) for the three

beams, respectively. Origin of the phases is taken in medium [1] and factors Aαi
include the

dephasing up to the scattering layer (Eq. A21-A23), so the origin of the scattering phase

eiq·r is at z = 0. Eq. 10 becomes

Γ
[2]
αβγ(q) =

∑
µνξ

[AT
α(ω3)eα]µ[χ

(2)
B ]µνξ[Aβ(ω1)e

[1]
β ]ν [Aγ(ω2)e

[1]
γ ]ξ

∫
V

Π(z,−D, 0) eiq·rd3r (11)

Separating the integration between in-plane [r∥ = (x, y)] and perpendicular (z) components,
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the integral becomes∫
V

Π(z,−D, 0) eiq·rd3r =

∫
x,y

eiq∥·r∥d2r∥

∫
z

Π(z,−D, 0)eiqzzdz (12)

The first term is the Fourier transform of a constant function and equals δ(q∥), which

translates into k∥ = (k1 + k2)∥ = (k3)∥ when the total scattered intensity (i.e. integrated

over all values of k) is calculated. We recognize the phase matching condition, and the SF

scattering turns down to the phase-matched process at the planar interface. In addition,

using |k| = |k3|, we get kz = ±k3,z. The two solutions correspond to SFG emitted in

transmission (T,+) and reflection (R,-), leading to iqzz = −i∆kz,T and iqzz = −i∆kz,R,

respectively. Evaluation of the second integral gives the Fourier transform of the rectangular

function Π, equal to Eq. 9 evaluated for ∆kz,T and ∆kz,R, respectively. Finally, we remark

that the scattering frame, linked to k, becomes equal to the phase-matched frame associated

with k3. Projections onto (µ, ν, ξ) identify to projections onto (α, β, γ), so the summation

over (µ, ν, ξ) disappears, and we have

Γ
[2],R/T
αβγ = AR/T

α (ω3)e
R/T
α χ

(2)
B,αβγAβ(ω1)e

[1]
β Aγ(ω2)e

[1]
γ D sinc

(
∆k

[2]
z,{R/T}D

2

)
ei

β1+β2(+/−)β3
2 (13)

where (+/−) corresponds to R/T, respectively. We recognize the (αβγ) component of the

effective susceptibility (as defined by Eq. A3 and A5), limited to Aαi
terms only in Eq. 6 and

7. This, together with the equations governing emission of SFG intensity in the far field as

a function of Γ[2] in this situation,37 shows the equivalence of scattering and phase matched

description of SFG from a bulk layer in a multilayer system.

2. SF scattering inside an N-layer system

One may wonder why only the Aαi
terms are present in Eq. 13, displaying only one of

the total eight terms described earlier. This is due to the fact that scattering of the three

beams by the object (as a linear optical process) is neglected in the description of SFG

nonlinear scattering. When the object is an infinite plane layer, integration of the scattered

beams gives birth to the refracted and reflected waves inside and outside the layer. Fresnel

factors in Eq. 10 integrate indeed refraction at, and up to, the surface of the object, but

cannot take reflection at the exit side of the layer into account as these reflected beams

have a different value as for their ki,z components (i.e. different q). These reflected beams
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correspond to the Bαi
terms. This shows that, for a plane layer, it is not possible to neglect

this linear scattering effect (the reader may refer to Sections IIID and III E, and to Ref. 24-

25 describing how Bαi
terms may nevertheless be neglected in some cases, for example

in macroscopic layers). Conversely, for an arbitrary nanoscale object, it is conceivable to

neglect linear scattering in the interpretation of its nonlinear SF scattering. Taking it into

account would add other contributions to k1, k2 and k, scattered by the object in arbitrary

directions in space. This has been addressed in the literature,38 but for most situations the

wavevectors are kept fixed (all the more when the RGD approximation is used).

However, in realistic experimental conditions, such a nanoscale object is embedded in

a dispersion medium (matrix, solvent), with finite thickness D, and may be in addition

included in a multilayer system. So the complete system in that case is described as a usual

N-layer system (so z axis is uniquely defined), where phase-matched SFG may be produced

at interfaces or bulks, with one of the layers (the dispersion medium) containing sources of

SFG scattering. In that layer, local electric fields also involve beams reflected at its exit

boundary z = −D, having −ki,z (resp. −kz) components as for their incident (resp. SFG)

wavevectors. It is easily checked that accounting for these reflected beams inside Eq. 10,

weighted by their amplitudes, turns down to adding seven new terms to Eq. 10, each one

carrying its own value for wavevector q = q∥ + qzz inside the object. For each position r at

the sample, splitting the phase factor eiqzz in three terms (corresponding to ω1, ω2 and ω3)

allows integrating each of them into the corresponding Fresnel factor. This reconstructs the

complete Fresnel factors inside the dispersion medium (Eq. 6 and 7), to the expenses of the

uniqueness of scattering vector q, whose z-component now may take eight values q{z,±±±}.

Eq. 10 transforms into

Γ
[2]
αβγ(q∥, q{z,±±±}) =

∫
V

∑
µνξ

χdressed
µνξ,αβγ(r)e

iq∥·r∥ d3r (14)

where

χdressed
µνξ,αβγ(r) = [F film,T

α (r,−kz)eα]µ χ
(2)
µνξ(r) [F

film
β (r,−k1,z)e

[1]
β ]ν [F

film
γ (r,−k2,z)e

[1]
γ ]ξ (15)

with implicit dependence of the three Fresnel factor on ω3, ω1 and ω2. These equations

provide a generalized frame for the analysis of SFG scattering by a nanoscale object dispersed

in a finite layer included inside a multilayer system. The total intensity, summing up the

contributions of all these individual objects, may involve additional interference effects at
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larger scales,37,42,43 depending on the size, density, separation and relative orientation of the

nanoscale objects inside the dispersion medium.

C. Layers with negligible thickness

We go back to the usual phase-matched SFG and consider the results of Part IIIA in

particular cases. When the thickness D of layer [2] is small enough to neglect the Fabry-

Pérot and phase matching effects (e.g. D ≪ λ3/2π), it behaves like a zero-thickness layer

(i.e. D → 0, z0 → 0 and βi → 1) and we recover in Eq. 6 and 7 the Fresnel factors of the

usual three-layer model.44 Care must be taken for strongly absorbing materials like metals,

for which more stringent conditions on D may apply (e.g. D smaller than the skin depth).

Summing up the eight terms, the effective susceptibility of layer [2] becomes

χ
(2)
eff =D

∑
αβγ

e[1]α e
[1]
β e[1]γ F 3L

α (ω3)F
3L
β (ω1)F

3L
γ (ω2)χ

(2)
B,αβγ (16)

This shows that the bulk SFG emission of such a thin film with bulk susceptibility χ
(2)
B

is equal to that generated by an equivalent surface susceptibility Dχ
(2)
B placed in layer [2].

Using the results of Ref. 25, it is possible to show in the same way that, in an N-layer system,

the SFG emitted by the bulk of a thin layer [k], with thickness d[k] ≪ λ3/2π, is equivalently

obtained by replacing the bulk susceptibility χB by a surface susceptibility equal to d[k]χ
(2)
B

located between layers [k-1] and [k+1]. These conclusions are also valid for SFG emitted in

transmission.

There are thus two extreme regimes for which the SFG signal emitted by the bulk of a

layer [k] in an N-layer system is equivalent to a single surface SFG signal: for an ultrathin

layer [k], with an equivalent surface susceptibility equal to d[k]χ
(2)
B , and in reflection from

the semi-infinite layer [N], with an equivalent surface susceptibility located at the {N-1,N}

interface in medium [N] and equal to iχ
(2)
B /∆k

[N ]
z,R. We note that, in these two situations,

the Fabry-Pérot effects do not apply, giving rise to this equivalence, which is not possible in

other cases.
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D. Leading contributions

Considering a general layer as in Part IIIA, the complete bulk SFG response sums

up eight terms. Among these, we call ”direct process” the term driven by the product

Aα3(ω3)Aα1(ω1)Aα2(ω2) (or AT
α3
(ω3)Aα1(ω1)Aα2(ω2) in transmission), involving no inter-

nal reflection of one of the beams inside the bulk layer. These eight contributions don’t

have the same orders of magnitude, as a consequence of their denominators in Eq. 9.

The highest one shall naturally be related to the lowest phase mismatch, which is by far

∆k
[2]
z,{−++} = k

[2]
1,z + k

[2]
2,z − k

[2]
3,z = ∆k

[2]
z,T (or equivalently ∆k

[k]
z,T in the N-layer system). As

a first approximation, this leading term, together with the conjugate ∆k
[2]
z,{+−−} = −∆k

[2]
z,T ,

may become sufficient to describe the bulk response.

1. Transmission geometry

For SFG measured in transmission, selecting the terms driven by ±∆k
[2]
z,T keeps the di-

rect ”downward” contribution, together with the ”upward” contribution involving the three

reflected beams, and the effective nonlinear susceptibility transforms into

χ
(2)
eff,T ≈D sinc

(
∆k

[2]
z,TD

2

)
ei

β1+β2−β3
2

∑
αβγ

χdressed,T
B, αβγ (17)

where

χdressed,T
B, αβγ = e[3]α e

[1]
β e[1]γ AT

αAβAγχ
(2)
B,αβγ

[
1 +BT

αBβBγe
i(β1+β2+β3)

]
(18)

All other terms following from Eq. 9 are minored indeed for two reasons: (i) they scale

like their own 1/∆k
[2]
z,{±±±} where ∆k

[2]
z,{±±±} ≫ ∆k

[2]
z,T , and (ii) their Fresnel factors involve

reflection coefficients Bαi
, with magnitudes usually smaller than one. With this second

argument, it may also be inferred that the second term in Eq. 18, weighted by a product of

three reflection coefficients is, in most situations, much smaller than the direct term. The

direct contribution alone is thus a good approximation of bulk SFG emitted in transmission.

2. Reflection geometry

When the reflection geometry is considered, the direct process is discarded because it

corresponds to the biggest phase mismatch ∆k
[2]
z,R among all ∆k

[2]
z,{±±±}, so its relative weight

13



[∼ (1/∆k
[2]
z,R)

2 as for the intensities] is also the smallest. Restricting the sum to the leading

±∆k
[2]
z,T terms, we get:

χ
(2)
eff ≈D sinc

(
∆k

[2]
z,TD

2

)
ei

β1+β2+β3
2

∑
αβγ

χdressed
B, αβγ (19)

with

χdressed
B, αβγ = e[1]α e

[1]
β e[1]γ AαAβAγχ

(2)
B,αβγ

[
Bαe

iβ3 +BβBγe
i(β1+β2)

]
(20)

As they are driven by the transmission phase mismatch, these two dominant processes in-

volve SFG measured in reflection but locally produced by interaction of three beams in the

transmission geometry, either after reflection of the ”downward” SFG beam at the {23}

interface (first term in the sum in Eq. 20) or after reflection of the two source beams at the

same interface (second term in the sum). Both contributions propagate indeed with phase

mismatch equal to ±∆k
[2]
z,T . Selecting a single dominant process is less straightforward here

than in transmission because the two leading contributions in Eq. 20 have orders of magni-

tude closer to each other. In addition, in practical applications, SFG emitted in reflection

may compete with a third process, namely the direct process generated in transmission, go-

ing out of the system then back reflected into the system from medium [3] by the presence of

a reflector in the experimental set-up. In particular, this third process may not be neglected

when {23} transmission coefficients are favourable and the reflector has a high efficiency like

a metal, which is typically the case in an electrochemical set-up using p-polarized light with

incidences close to the Brewster angles.45

In all cases, the leading contributions stem from a combination of Eq. 19 and 17, all

bearing a common amplitude dependence on ∆k
[2]
z,T through the sinc function. We may wrap

the various components into the dressed susceptibility and concentrate on the dependence

of the emitted signals on the argument of the sinc function, as is usually done as soon as

phase matching is under consideration.46

E. Macroscopic layers in transmission

1. Three-layer system

When thickness of the bulk layer is large, and all the more when it becomes macroscopic,

we have seen in Ref. 24 and 25 that the influence of the beams reflected inside this layer
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decreases. For a macroscopic layer emitting in transmission (Eq. 18), one may expect that

mostly unreflected beams, with Fresnel factors weighted by AT
αAβAγ alone, interact inside

the bulk and that the direct SFG process naturally dominates the nonlinear response. There

is therefore no ambiguity in considering that the SFG response in transmission is essentially

driven by the direct term. We note that neglecting the Fabry-Pérot effect inside a macro-

scopic film leads to identify coefficients Aαi
to Fresnel factors of the two-layer model inside

layer [2] (2L–), leading to

χ
(2)
eff,T ≈D sinc

(
∆k

[2]
z,TD

2

)
ei

β1+β2−β3
2

∑
αβγ

e[3]α e
[1]
β e[1]γ F 2L−,T

α F 2L−
β F 2L−

γ χ
(2)
B,αβγ (21)

Formally, the transmitted bulk SFG process in the macroscopic layer corresponds to the

downward propagation of the incoming beams in the upper 2L-system {1,2} down to the

middle of layer [2], as shown by the explicit phase (β1 + β2)/2, where a second order polar-

ization sheet is created by a surface nonlinear susceptibility equal to D sinc

(
∆k

[2]
z,TD

2

)
χ

(2)
B ,

which generates a downward beam at the SFG frequency propagating forward (hence the

phase −β3/2) in the lower 2L-system {2,3}. An alternate interpretation of the generation

process in such a thick layer is provided below in Part IVA.

2. N-layer system

We have seen25 that the Fresnel factors applying to the bulk of layer [k] in the N-layer

system simplify when this layer becomes macroscopic. More precisely, they may be decom-

posed as a product between the transmission of subsystem {1;k} (called F {1;k}−) and the

Fresnel factor in layer [k] as belonging to the {k;N} subsystem. For SFG measured in trans-

mission, keeping only the direct product proportional to AT
αAβAγ in Eq. 18 is equivalent

for the incoming beams (resp. the transmitted SFG beam) to neglecting reflection at the

{k} (resp. {k-1}) interface, as rk,k+1
s/p (resp. rk,k−1

s/p ) drives the Bβ and Bγ (resp. Bα) contri-

butions in Eq. A18-A20 (resp. Eq. A24-A26). It has been shown25 that, in this particular

case, Fresnel factors in layer [k] reduce to F {1;k}− (resp. F {k;N}−) alone multiplied by phase

factor eiβ
[k](z0) (resp. e−iβ[k](z0)) quantifying the dephasing induced by propagation in layer

[k]. We therefore identify Aβ/γ to F
{1;k}−
β/γ , and AT

α to F
{N ;k}−
α . Integration over z0 leads to

χ
(2)
eff,T ≈d[k] sinc

(
∆k

[k]
z,Td

[k]

2

)
ei

β
[k]
1 +β

[k]
2 −β

[k]
3

2

∑
αβγ

e[3]α e
[1]
β e[1]γ F {N ;k}−

α F
{1;k}−
β F {1;k}−

γ χ
(2)
B,αβγ (22)
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This shows that, as in the three layer case, SFG emitted in transmission by a macroscopic

layer [k] is equivalent to a split process involving (i) propagation of both incoming beams

to the middle of layer [k] (through the ”upper” {1;k} subsystem with full account of Fabry-

Pérot interference effects); (ii) generation of an equivalent surface nonlinear polarization

and SFG emission (equivalent surface nonlinear susceptibility d[k] sinc

(
∆k

[k]
z,T d[k]

2

)
χ

(2)
B ); (iii)

propagation of SFG radiation through the second half of layer [k] then across the ”lower”

{k;N} subsystem, finally leading to far field emission in medium [N].

Having established the rules governing the evolution of the bulk nonlinear response as a

function of experimental parameters in various film configurations, in particular as for its

leading terms, we may now consider how bulk contribution may impact on experimental

spectra of transparent centrosymmetric materials, and how interference fringes help identify

bulk from surface response.

IV. INTERFERENCE FRINGES FROM A MACROSCOPIC LAYER

A. Principles

Without loss of generality, we consider in the following the SFG emitted in transmission

by a macroscopic bulk layer in the three layer system as a simplified representative of the

general N-layer situation. We note that it may be seen as a generalization to three-wave

mixing of the SHG process used to measure the bulk nonlinearities with the help of the so-

called Maker fringes,47 for which the essential features are indeed described for an arbitrary

angle of incidence by the ”direct” process, and account of the internal reflections appear in

most cases as a higher order correction.48 We rewrite Eq. 21 as

χ
(2)
eff,T = χ

(2)
eff,B

i

∆k
[2]
z,T

[
1− ei(∆k

[2]
z,T )D

]
. (23)

This expression shows that the bulk SFG emission in transmission geometry is also equivalent

to the SFG intensity generated by two surface nonlinear susceptibilities set in medium [2],

one equal to iχ
(2)
B /∆k

[2]
z,T located at the entrance interface z0 = 0− and the second one,

with opposite sign, at the exit interface z0 = D+, hence its phase factor. The total emitted
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FIG. 2. Evolution of the complex amplitude of the SFG electric field along propagation in the

bulk, normalized by its value at the entrance. Plain line: real part, dotted line: imaginary part.

intensity then follows the classical phase matching curve:32,49

I(ω3) ∝

(
ω3

cos θ
[3]
3

)2 ∣∣∣χ(2)
eff,B

∣∣∣2 sin2
(
∆k

[2]
z,TD/2

)
(
∆k

[2]
z,T

)2 , (24)

with an alternate increase and decrease of the outgoing intensity when D grows, reaching

maximal and zero intensities for D = (2n + 1)Lc and D = 2nLc, respectively, where the

coherence length Lc is defined by Lc = π/|∆k
[2]
z,T |. This results in fringes with period linked

to the ratio Lc/D. These fringes vary dramatically with the value of ∆k
[2]
z,T , which happens

to be calculated as the difference between two almost equal quantities (k
[2]
1,z + k

[2]
2,z and k

[2]
3,z).

Its small value is therefore very sensitive to the differences between the SFG refractive index

on one side, and the visible and IR indices on the other side, to an accuracy in the 10−4

range,48 as is rather common when transmission phase matching is involved.50

The origin of the sign change of the effective surface susceptibility at z0 = D+ may be

understood graphically. On Fig. 2 is shown the evolution of the complex amplitude of the

SFG electric field inside bulk layer [2] as a function of z0. The total emitted field is the

integral of this local field over the whole layer from z0 = 0 to z0 = D. We see that the field

changes sign after travelling over Lc, and consequently integration over any interval with

length 2Lc vanishes. Integration over the whole bulk therefore boils down to the integration

over zone 4 (called I4), i.e. after removing an even number of coherence lengths. We may add

zones 1, 2 and 3 to the integration (I1+I{2+3} = 0) without changing the result. Considering
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that integral I2 is opposite to integral I4, we have

I4 =
1

2

[
I1 + I{3+4}

]
=

1

2

[
I1 + ei(∆k2z,T )D I{2+3}

]
(25)

=
1

2
I1

[
1− ei(∆k2z,T )D

]
(26)

Eq. 26 allows to recover Eq. 23, whereas Eq. 25 shows that the full bulk contribution sums

up a Lc-long contribution I1 from the entrance surface, and a second Lc-long contribution

I{3+4} from the exit side, shifted by ei(∆k
[2]
z,T )D and opposite in sign as I{2+3} = −I1. As for

the amplitude iχ
(2)
eff,B/∆k

[2]
z,T of this bulk contribution, it may also be understood graphically.

Inspecting the curves on Fig. 2 shows indeed that integration over zone 1 leads to I1 having

a vanishing real part and a positive imaginary part proportional to Lc. This explains why it

reduces to an equivalent imaginary surface contribution located at z0 = 0, with an amplitude

proportional to the bulk susceptibility χ
(2)
eff,B by a factor I1/2 with I1 =

∫ Lc

0
eiπz0/Lcdz0 =

iLc/π
∫ π

0
sin η dη = 2i/∆k

[2]
z,T .

Maker fringes make use of the SHG phase mismatch by observing oscillations in the output

SHG signal when the effective thickness of the sample is varied by changing its tilt angle

with respect to the fixed incoming beam.47,51 The fringes, and in particular the positions of

their minima, allow precise measurement of the nonlinear coefficients by comparison to a

known material, on the condition that the phase mismatch is precisely known. This implies a

knowledge of the dispersion of the refractive index within 0.1% or less. When this cannot be

achieved, a fit of experimental data provides the required phase mismatch, to the expenses of

nonlinear coefficient accuracy.48 Eq. 24 shows that, when IR-visible SFG is involved instead

of SHG, there is another way to get the oscillation fringes: modulation of ∆k
[2]
z,T may stem

from wavelength tuning rather than from angle tuning. The phase mismatch varies indeed

when the infrared wavenumber (ω2) is tuned by the experimenter, which is rather easily

achieved on a vibrational SFG set-up. The great advantage in this case is that one keeps

all angles of incidence fixed, so that only the phase mismatch, and to a lower extent factor

(ω3)
2, varies with ω2. Considering the narrow range of variation for ω3 and the usually

very stable values of the refractive indices of materials over an infrared scan out of the

phonon excitation domain, one may also consider cos θ3 in all media and all Fresnel factors

as essentially constant when scanning the infrared. All the information about the fringes

therefore lies in Eq 24, in particular their period. Conversely, in a Maker-type experiment,

the envelope of the fringes, responsible for the positions of the maxima, is a function of
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several factors all depending on the tuned angle of incidence,48 which have to be carefully

taken into account. Finally, we may fruitfully combine these results with those describing the

interference process between surface SFG produced at the entrance and exit interfaces24,25

of the bulk layer. By modulating its thickness, it seems conceivable to efficiently separate

surface and bulk SFG contributions of such a layer embedded in a multilayer system.

B. Low dispersion materials

In a material where dispersion is low, we may neglect the changes in n
[2]
2 , n

[2]
3 and θ

[2]
3

when ω2 is tuned. With fixed angles of incidence, the phase mismatch is separated into a

sum of a ω1-term and a ω2-term, becoming a linear function of ω2, as

c|∆k
[2]
z,T | = ω2(n

[2]
3 cos θ

[2]
3 − n

[2]
2 cos θ

[2]
2 ) + ω1(n

[2]
3 cos θ

[2]
3 − n

[2]
1 cos θ

[2]
1 ). (27)

This means that we may directly draw the transmitted SFG intensity as a function of ω2 to

visualize the fringes. In order to have a better understanding of the importance of the various

parameters involved, we note that, for ω2 in the infrared and ω1 in the visible, we have ω3

close to ω1, leading to n
[2]
3 ≈ n

[2]
1 and θ

[2]
3 ≈ θ

[2]
1 . Using cos θ

[2]
1 ≈ cos θ

[2]
3 − (θ

[2]
1 − θ

[2]
3 ) sin θ

[2]
3

and sin θ
[2]
1 ≈ sin θ

[2]
3 + (θ

[2]
1 − θ

[2]
3 ) cos θ

[2]
3 to rearrange Eq. A2 and 27, we may rewrite the

phase mismatch into

c|∆k
[2]
z,T | ≈

1

cos θ
[2]
3

{
ω2

[
n
[2]
3 − n

[2]
2 cos(θ

[2]
2 − θ

[2]
3 )
]
+ ω1(n

[2]
3 − n

[2]
1 )
}
. (28)

Qualitatively, and quantitatively within a few percents in most usual experimental configu-

rations (e.g. |θ[2]2 −θ
[2]
3 | < 20◦), the evolution of ∆k

[2]
z,T as a function of ω2 is essentially linear,

with a slope proportional to the difference in the refractive indices at the SFG and infrared

energies, and a constant shift proportional to ω1 and to the difference in the refractive in-

dices at the SFG and visible energies. The overall scaling factor, cos θ
[2]
3 , is mainly driven

by the value of θ
[1]
1 and n

[2]
3 . It is therefore possible to independently tune the slope and the

constant shift by playing separately with two properties of the visible beam: visible color

ω1 and visible angle of incidence θ
[1]
1 . From Eq. 28, plotting the fringes using Eq 24 while

tuning the infrared gives birth to a period Tσ given, when expressed in infrared wavenumbers

σ2 = ω2/2πc = 1/λ2, by

Tσ ≈ 1

D

cos θ
[2]
3

n
[2]
3 − n

[2]
2 cos(θ

[2]
2 − θ

[2]
3 )

(29)
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For a macroscopic film (D ≫ λ2, leading to a thickness from 100µm to the few centimeter

range), 1/D lies between one hundred and a fraction of cm−1. Including the correction

factors in Eq. 29, in particular the denominator, shifts the period towards higher values.

Observation of the fringes, that one may estimate as comfortable when the period lies

in the 10 to 100 cm−1 range, relies thus on a balance between film thickness and material

dispersion, to be adjusted by the experimenter: the more dispersive the material, the smaller

the thickness.

C. High dispersion materials

In such materials, the variations of the indices and, to a lower extent, of the angles as a

function of ω2 for beams 2 and 3 in Eq. 27 and 28 cannot be neglected. As the differences

in refractive indices modulate the ω1 and ω2-terms, their behaviours differ. For normal

dispersion, n
[2]
3 increases with ω2, leading to an increase in the ω1-term. On the contrary,

the increase in ω2 may be compensated or amplified in the ω2-term by the dispersion in the

difference n
[2]
3 − n

[2]
2 (as both n

[2]
2 and n

[2]
3 increase). As a consequence, the effective period

of the fringes differs from the prediction of Eq. 29 and is not constant over the spectrum

under the influence of both terms. In this case, plotting the fringe spectrum is still possible,

but an accurate modeling becomes difficult because it relies on very small variations of the

indices, which are hard to benchmark with high accuracy. When this cannot be achieved,

an analysis is still possible using the low dispersion approximation to estimate the average

period of the fringes.

D. Examples of experimental bulk SFG fringes

Bulk SFG is seldom considered experimentally for itself (with the notable exception of

liquid bulks11,52), because the interest of the technique essentially lies in the spectroscopic

analysis of very small amounts of matter at interfaces. In some cases, bulk SFG signals may

however represent an additional experimental contribution disturbing or even overwhelm-

ing the response of the interface.9,15 We present here several examples of bulk SFG signals

which properties follow the principles described above. In particular, we focus on the bulk

response of centrosymmetric materials transparent in the infrared and the visible ranges

20



(diamond, CaF2, BaF2, silica glass) for which long range propagation of the three beams

can be achieved. In principle, they should not generate any bulk SFG as a consequence of

their symmetry properties and of the absence of phonon excitations by light in the probed

infrared ranges. As a consequence, these materials are conveniently used as substrates to

support adsorbed molecular monolayers, and as windows or prisms closing experimental

cells for controlled chemical conditions (gas phase, liquid interfaces, electrodes under elec-

trochemical control) as they let incoming and outgoing light beams pass through for SFG

spectroscopy. It may seem surprising that such materials, designed as SFG-free, may be

used precisely to study bulk SFG response. Generation of bulk Sum-Frequency intensity

from these materials may have several origins: (i) a weak symmetry-allowed quadrupolar

contribution may become measurable for a thick material because of the amount of mat-

ter probed; (ii) some defects or inclusions in their crystal structure may alter their local

symmetry properties and create a small density of bulk SFG-active centers; (iii) the use of

intense and sometimes highly focused laser beams may dynamically disturb the ideal cen-

trosymmetric crystal structure through heat exchange53 or even local damage over the laser

overlapping zone, making them slightly SFG-active. It is in fact important to characterize

the conditions leading to such a ”forbidden” SFG emission in order to avoid artefactual

signals from these materials to compete with the sought-after molecular signatures.

We have used an experimental SFG setup with the following properties. The visible

source stems from a Nd:YVO4 laser (7.5 ps, 62.5 MHz) which, after temporal shaping in

2 µs long trains at 25 Hz followed by amplification and frequency tripling, synchronously

pumps a visible OPO to generate tunable visible colors. The infrared source used here was

the CLIO free electron laser, providing ∼1ps pulses with the same time structure as the

visible OPO, widely tunable in the infrared range. The two lasers are focused, temporally

synchronized and geometrically overlapped on the sample to generate SFG photons in the

ppp polarization configuration, measured either in transmission or in reflection after spatial

and frequency filtering through a Notch filter and a double grating monochromator (Acton

Trivista).

As a example of the phase mismatch interference fringes, we first consider a CVD diamond

window (511µm thick, Diamond Materials) in the far infrared range (250-900cm−1). The

visible wavelength was set at 532nm (angle of incidence 38.8◦), and we used KRS-5 optical

parts for the IR line (angle of incidence 55◦). In Fig. 3, we present the interference fringes

21



FIG. 3. SFG interference fringes of a 511µm thick CVD diamond window. Open dots are experi-

mental points, red line a fit according to Eq. 24 as explained in the text.

measured in the transmission geometry. The full IR interval has been scanned in several

overlapping spectra, put together to reconstruct the complete spectrum. Various absorption

bands from water and carbon dioxide are used to check the calibration of the IR wavelength.

The measured signals are rather high even though the symmetry of diamond should prevent

bulk SFG to be measured, as the phonons are not infrared-active. The signal may thus be

referred to as ”nonresonant”, stemming from quadrupolar interaction or local disturbance of

the perfect diamond crystal structure as explained above. As a corollary, contrary to what

could be expected, such a diamond window cannot be considered an appropriate material

to act as the entrance window of an experimental cell in the far infrared.

The period is measured as approximately 120cm−1, which is far too much for a pure

Fabry-Pérot effect. The dispersion in refractive indices for the CVD diamond used here is

not known with a great accuracy, so we use the low dispersion approximation. Considering

Eq. 29 with θ
[2]
2 − θ

[2]
3 ∼ 6◦, the experimental period corresponds to a calculated difference of

0.14 between the SFG and IR indices of refraction. Tabulated refractive indices in the visible

(around 2.42-2.43) and infrared ranges (around 2.36-2.38) for natural and CVD diamond

favor a value around 0.06, which does not fit.54–57 However, the optical properties of such

a synthetic material strongly depend on its preparation conditions and local structure and,

as already mentioned, the period of the fringes is extremely sensitive to small changes

in the refractive indices. The transmission curves provided by the manufacturer of our

diamond window show peculiar properties which differ from usual diamond materials. First,
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transmission in the infrared reaches 75%, far above the predicted limit for Fresnel losses,58

showing that the refractive index in this region is lower than the theoretical values. Values

as low as n
[2]
2 = 2.29 in the infrared have for example been reported.59 Second, transmittivity

varies a lot in the visible range, even between visible and SFG frequencies: the values (68%

and 67%, respectively), correspond to refractive indices around 2.44 and 2.48, respectively.

As an illustration, we plot on Fig. 3 the fringes calculated with D=511µm, n
[2]
1 = 2.4397,

n
[2]
2 = 2.3420 and n

[2]
3 = 2.4820. We see that the essence of the oscillations is recovered,

whereas the theoretical amplitudes are more regular than the experimental ones. This may

be due to several experimental effects: stability and pulse to pulse reproducibility of the IR

power during the scan of the IR wavelength, jitter on the delay between the visible and IR

pulses, full spectrum split into several experimental scans. In particular, we note that the

low energy peak seems to shift off the regular spacing of the other maxima. This low energy

part of the spectrum is perturbed by the transparency edge of KRS-5 material and by the

bandwith of the Notch filter in the detection line, which in fact remove most SFG photons

produced below 300cm−1. The true peak position at low energy may therefore lie further

to the lower frequency side of the spectrum. On the theoretical point of view, discrepancies

between data points and model may be due to the neglect of some contributions among the

eight terms detailed in Part IIIA, in particular the second term in Eq. 18. We should also

consider that the infrared wavenumbers in this experiment are very small, so the second

lowest term in the ∆k
[2]
z,{±±±} series, namely ∆k

[2]
z,−+− = [k

[2]
1,z − k

[2]
2,z − k

[2]
3,z] has a value only

between 2.4 and 5 times higher than ∆k
[2]
z,T , so its intensity (Eq. 24) scales like 5.8 to 25 that

of the leading term. Of course, its influence is lowered because, in transmission geometry,

it also encompasses reflection coefficients at the boundaries, which is not the case of the

direct leading term. Finally, we have not taken into account the unknown dispersion of

the refractive indices from point to point (for ω2 and ω3), which may distort the calculated

fringes with respect to the experimental ones.

The existence of these experimental phase mismatch fringes for a centrosymmetric mate-

rial like diamond, which in principle should not show any measurable bulk SFG signal, leads

us to wonder whether this phenomenon could have been observed in the past from wafers or

windows. Scanning the literature, we have found two striking examples of experimental data

which seem compatible with such interference fringes. In spite of its centrosymmetry, glass

is known to produce bulk SHG in some conditions,60 with bulk contributions of the same
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FIG. 4. Simulated SFG interference fringes of a 2mm thick CaF2 window.

order of magnitude as the surface ones,61,62 as was also observed by SFG in transmission.23

In a series of papers, a group from Pennsylvania State University has studied the SFG

response of soda lime glass wafers.63–65 In these papers, they observed oscillations in the

SFG response in the 3000–4000cm−1, which were attributed to OH stretching modes.64 Five

regularly spaced maxima were measured for a 1mm thick glass wafer, and only three for

a 0.7mm thick wafer, with the SFG intensity reaching zero between all peaks. Here we

propose an alternate explanation, namely phase mismatch fringes arising from bulk SFG

production in transmission and back-reflected to the SFG detector. As for the diamond

window, the optical properties of float glass (refractive index and dispersion) are not accu-

rately known as they depend on glass composition. We therefore rely on the low dispersion

approximation to assess the likelihood of this hypothesis. Using standard soda lime glass

values66 for the indices of refraction in Eq. 29, we obtain for the period of the fringes Tσ =

186.1cm−1 at 3500cm−1 for a thickness of 1mm. The experimental spacings between max-

ima are equal to 212, 160, 176 and 192cm−1, these values match the predicted period. More

interestingly, the spacings between experimental maxima increase when the wafer thickness

decreases to 0.7mm, reaching values 272 and 280cm−1. In these conditions, the predicted

period for the fringes increases to 265.9cm−1, close to the experimental value. The fact that

the experimental period seems indeed inversely proportional to the thickness of the wafer is

a good indication that the bulk nature of the signals, i.e. phase mismatch fringes, cannot

be discarded.

In the second example, a CaF2 window was used to close a spectro-electrochemical cell to

let all laser beams reach the platinum electrode surface to perform SFG in situ.45 Here, no
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less than nine clear maxima were measured in the 1000–1500cm−1 range, regularly spaced,

with a period increasing with the infrared wavenumber. Some other features were more

difficult to distinguish in the spectra. Our hypothesis is again that these maxima, rather

than originating in molecular vibrations, may stem from the phase mismatch fringes in

transmission, this time probably back-reflected by the Pt electrode itself. The interesting

point in this study is that the material (CaF2 crystal) is this time very well known and its

optical properties tabulated with great accuracy using a Sellmeier equation.67 It becomes

therefore possible to simulate these fringes using the exact dispersion of the refractive index

and compare their positions to the experimental ones. We show in Fig. 4 the predicted

fringe spectrum for a 2mm CaF2 window using Eq. 24 and 27. The spectrum strikingly

resembles the original experimental one, with maxima located at 1011.2, 1041.4, 1075.0,

1113.0, 1156.3, 1206.5, 1266.1, 1338.8 and 1432.7cm−1, closely following the original values

(1030, 1056, 1084, 1122, 1168, 1214, 1270, 1330/1348 and 1432cm−1) within an acceptable

error on the exact positions of the experimental peaks. We have checked that, in this region,

∆k
[2]
z,−+− has a value between 11 and 22 times higher than ∆k

[2]
z,T , so its intensity (Eq. 24) is

of the order of 1% (and below) that of the leading term.

In the two previous examples, we do not claim that the original interpretations in terms of

OH stretches and adsorbate vibration modes, respectively, are wrong. We rather suggest that

an alternate explanation should be considered in terms of phase mismatch fringes, and that

this deserves at least further experimental analysis in order to solve this open question. It is

also possible that both types of signals are superimposed on the experimental spectra. We

understand that the authors of these studies were aware of the striking regularity of their

peaks, and that they have provided additional experimental evidence in order to discard

the possibility of an artefact. In the soda lime glass case,64 an index-matching liquid was

added to the experimental cell to remove reflected beams, and no difference was observed.

This indeed is a good way to get rid of interference patterns due to Fabry-Pérot effects

in the wafer. However, our alternate explanation involves bulk SFG produced by a χeff,B

characteristic of the glass wafer along the course of the three beams, with a period linked

to the thickness of the wafer. When the index-matching liquid is added, it generates no

bulk SFG, so the signal, still produced inside glass alone in transmission following the direct

process, remains unchanged. In the second example, the experiment was repeated in the

absence of the molecular species, and the observed peaks disappeared.45 This observation is
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more difficult to account for, but could be due to a change in beam alignment and overlap,

concentrating on the high peak at 1408cm−1, to the expenses of the observation of the

fringes. On some spectra, it is possible to see that the fringes sometimes appear at the

very limit of detection (e.g. spectrum with applied potential 0.9V in Figure 5). Finally, it

could have been assumed that the fringes arise from surface terms instead of bulk. More

precisely, interference between SFG surface contributions from the entrance and exit planes

could give rise to fringes modulated by phase mismatches. Going back to the three-layer

equations governing the phase evolution of these two contributions24 shows that, this time,

the eight terms from Eq. 6 and 7 coexist in the final response, each one with its own fringe

period. Contrary to the bulk case, there is no selection of a dominant process through the

value of denominator ∆k
[2]
z,T . In the reflection geometry in particular, the direct reflected

process is expected to be high, exhibiting a much shorter period for the fringes. There is

no experimental evidence of such a signal (neither in the results above nor in our reflection

measurements of the diamond window), which is a clear signature of the bulk origin for the

fringes.

V. ALTERNATE ORIGIN OF PSEUDO-RESONANT BULK SFG

RESPONSE

This work on CaF2 (Ref. 45) is very interesting also because the experimental spectra

therein show another type of contribution from the CaF2 window, apart from the phase

mismatch fringes, namely the giant peak at 1408cm−1. This peak has been observed by

several groups in the world68 but most published data do not mention its existence because

no explanation of its origin has ever been given.69 In order to determine the source of this

peculiar feature, we have recorded dedicated spectra using SFG and DFG spectroscopies with

a tunable visible color. A CaF2 equilateral prism was used in air in total internal reflection

configuration, with angles of incidence at the entrance plane equal to +5.0◦ for the infrared

beam and -5.3◦ for the visible beam, respectively. The CLIO free electron laser was tuned

in the 1100–1500cm−1 range, and the visible color set to five values: 442nm, 488nm, 532nm,

568nm and 594nm. As expected, a very intense peak was seen on all SFG and DFG spectra

(Fig. 5). Their profiles were nicely fit with a gaussian curve to determine the positions of

their maxima. From these spectra and the literature, we can observe the following facts:
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(i) the peak is observed in different configurations: a flat window in Ref. 45, a prism in

total reflection, and a prism in contact with water69 (i.e. without total reflection); (ii) the

SFG peak position at 532nm differs between the flat window (1408cm−1) and the prism

(1352cm−1); (iii) the peak position varies when the visible color is tuned, and when SFG is

switched to DFG; (iv) the peaks were equally measured with the free electron laser (high

peak power, pulse duration ∼1ps) and a tabletop OPO (low peak power, pulse duration

25ps) as the IR source; (v) the peaks seem broader in Fig. 5 than in Ref. 45; (vi) peak

positions do not depend on the sample thickness, contrary to the phase mismatch fringes.

From these facts, we know that this signal is not IR-resonant with a conventional vibrational

feature (e.g. phonon), and not related to the total reflection phenomenon. In addition, the

visible beam properties are clearly involved, either energy or wavevector. Discrepancies in

vibrational frequencies as experimentally measured by SFG and DFG have recently been

reported.70 This phenomenon was explained by an asymmetric temporal overlap between

IR vibrational polarization and visible pulse as a consequence of frequency dispersion and

distortion of the visible pulse. Such a phenomenon is thus specific to molecular vibrations

and short pulse (i.e. broadband) nonlinear spectroscopy, which is not relevant here.

Here we propose the following interpretation. The source of the signal is still bulk SFG

produced in the forward direction along the course of the three beams and detected in

reflection geometry. From the analysis of the phase mismatch fringes, we know that the SFG

intensity emitted in the forward direction depends very precisely on the value of ∆k
[2]
z,T =

k
[2]
1,z + k

[2]
2,z − k

[2]
3,z. The three beams involved in the SFG process have a finite duration, which

means that they carry a distribution of frequencies (ω̃i) around their central frequency

(ωi). For these non-central frequencies, the values of k̃
[2]
i,z differ from the central k

[2]
i,z, i.e.

it is not a constant over the whole components of the laser pulse. As a consequence, the

phase mismatch ∆k
[2]
z,T is neither a constant for the whole SFG process, which involves all

the combinations of frequencies ω̃3 = ω̃1 + ω̃2. Several components with different ∆k̃
[2]
z,T

participate in the phase matching process and, for example, when ∆k
[2]
z,TD/2 corresponds

exactly to a maximum, the neighbouring ∆k̃
[2]
z,TD/2 don’t. The full process is thus the

sum of elementary processes, all of them slightly out of phase with respect to the others.

As phase coherence is not maintained over the whole pulses, the maxima measured in the

fringe spectra do not imply the total intensity of light interacting in phase. We have seen

in the previous Part that a small variation of ∆k
[2]
z,T leads to a dramatic change in the
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FIG. 5. SFG (top) and DFG (bottom) spectra recorded in internal reflection inside a CaF2 prism.

Five visible colors were used in each panel. Peak positions are determined by a Gaussian fit (black

lines).

fringes. In fact, in the analysis of the fringes in Fig. 3 and 4, the maxima were observed

for ∆k
[2]
z,TD = 2nπ, with n varying between 44 and 49 for diamond, 30 and 39 for CaF2,

respectively. A 1% change in ∆k
[2]
z,T represents more than 30% change in phase for a single

beam, which accumulates over the three beams.

In order to quantify this dephasing process, we may write at first order71

∆k̃
[2]
z,T ≈ ∆k

[2]
z,T +

3∑
i=1

(ω̃i − ωi)

(
∂∆k

[2]
z,T

∂ω̃i

)
ω̃i=ωi

(30)

We see that, if
3∑

i=1

ωi

(
∂∆k

[2]
z,T

∂ω̃i

)
ω̃i=ωi

= 0, (31)

the quantity ∆k̃
[2]
z,T will remain almost equal to ∆k

[2]
z,T for all frequencies close to ωi. This

means that the overall phase of the SFG process induced by the phase mismatch remains al-

most constant over the whole pulses when Eq. 31 is fulfilled, and SFG is coherently produced

by all frequencies composing the pulses, leading to an enhancement of the SFG output. In a
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simple view, we consider a frequency ω̃1 scanning the frequencies carried by the first pulse,

and ω̃2 scanning the second pulse, so that (ω̃1 − ω1)/ω1 = (ω̃2 − ω2)/ω2. In this case, this

quantity (ω̃3 − ω3)/ω3 is equal to the two others for the SFG pulse too and ω3 identically

scans the SFG pulse, so that (ω̃i − ωi)/ωi is a constant quantity of the process. Plugging

this into Eq. 30, we get

∆k̃
[2]
z,T ≈ ∆k

[2]
z,T +

ω̃i − ωi

ωi

3∑
i=1

ωi

(
∂∆k

[2]
z,T

∂ω̃i

)
ω̃i=ωi

(32)

and conditions expressed by Eq. 31 leads to the equality between ∆k̃
[2]
z,T and ∆k

[2]
z,T , ensuring

the phase coherence for all these elementary processes. This equation thus establishes a

”phase mismatch resonance condition” of the bulk SFG process over the frequency distri-

butions inside the three pulses. The experimental phenomenon described in Fig. 5 does

not originate in a vibrational or electronic resonant transition of the sample, as is usually

observed by SFG spectroscopy. Still, it consists of a giant increase in experimental intensity,

peaking at one specific frequency in the spectra, with a finite width. As we shall see below,

it follows in addition the phase mismatch resonance condition as a function of beam frequen-

cies. Having all characteristics of a true resonant process, we dub it as ”pseudo-resonant”

in the following to avoid any ambiguity. From the definition of ∆k
[2]
z,T , we have

c

(
∂∆k

[2]
z,T

∂ω̃i

)
ω̃i=ωi

= εi

(
∂n

[2]
i

∂ωi

ωi cos θ
[2]
i + n

[2]
i cos θ

[2]
i − n

[2]
i ωi sin θ

[2]
i

∂θ
[2]
i

∂ωi

)
(33)

where εi=1 for i=1, 2 and ε3=-1, and

(
∂

∂ω̃i

)
ω̃i=ωi

is written
∂

∂ωi

for clarity. Differentiating

Snell’s law between media [1] and [2], we have, for a dispersionless medium [1],

∂n
[2]
i

∂ωi

sin θ
[2]
i + n

[2]
i

∂θ
[2]
i

∂ωi

cos θ
[2]
i = 0 (34)

leading to

n
[2]
i ωi

∂θ
[2]
i

∂ωi

= −ωi
∂n

[2]
i

∂ωi

tan θ
[2]
i (35)

Finally, we obtain

c

(
∂∆k

[2]
z,T

∂ω̃i

)
ω̃i=ωi

= εi

[
n
[2]
g,i cos θ

[2]
i + (n

[2]
g,i − n

[2]
i ) sin θ

[2]
i tan θ

[2]
i

]
(36)
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Experimental Calculated Calculated GVM only GVM only

(corrected) (uncorrected) (corrected) (uncorrected)

CaF2 window 1408 1397.1 1322.6 993.4 954.9

BaF2 (SFG) 1380.4 1382.1 854.5 - -

BaF2 (DFG) 1427.5 1428.8 883.4 - -

TABLE I. Comparison between experimental and calculated peak positions (cm−1) with and with-

out correction of n
[2]
g index for a CaF2 window and a BaF2 prism.

where n
[2]
g,i = n

[2]
i + ωi

∂n
[2]
i

∂ωi

is the group velocity index. Eq. 31 is fulfilled when

3∑
i=1

εi n
[2]
g,i ωi cos θ

[2]
i +

3∑
i=1

εi(n
[2]
g,i − n

[2]
i ) sin θ

[2]
i tan θ

[2]
i = 0 (37)

The first term is the group velocity mismatch (GVM) of the process,

GVM =
1

c

(
n
[2]
g,1 ω1 cos θ

[2]
1 + n

[2]
g,2 ω2 cos θ

[2]
2 − n

[2]
g,3 ω3 cos θ

[2]
3

)
, (38)

characterizing the phase differences induced by the propagation of the envelopes of the three

laser pulses (whereas ∆k
[2]
z,T quantifies the phase velocity mismatch, accounting for the phase

differences induced by the propagation of the light waves composing the laser pulses). This

first term in Eq. 37 accounts for the refractive index dependence on the frequencies, whereas

the second term may be seen as the contribution accounting for angular dependence on the

frequencies. In a different formulation, the resonance condition may be written:[
n
[2]
g,1 − n

[2]
1 (sin θ

[2]
1 )2

] ω1

cos θ
[2]
1

+
[
n
[2]
g,2 − n

[2]
2 (sin θ

[2]
2 )2

] ω2

cos θ
[2]
2

=
[
n
[2]
g,3 − n

[2]
3 (sin θ

[2]
3 )2

] ω3

cos θ
[2]
3

(39)

The group velocity mismatch has been thoroughly studied for optically active crystals be-

cause of its influence on the frequency generation processes in the bulk (e.g. SHG or OPO

systems using BBO72 and KTP73,74 crystals). Here we propose a simplified, but operative,

view of this phenomenon, which would require for a complete description a finer account of

temporal and frequency structures of the pulses and of the coupled wave equations in the

bulk.75–77

To check that this phenomenon is indeed the source of the experimental CaF2 peak,

we calculate the infrared wavenumber for which the resonance condition is fulfilled using
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FIG. 6. Infrared resonance frequency (cm−1) in the CaF2 prism as a function of the experimental

SFG (circles) and DFG (squares) wavenumber. Experimental values (red), calculated values ac-

cording to Eq. 39 (green), calculated values after correction of group index n
[2]
g (blue).

experimental parameters of Ref. 45 and Fig. 5. The group index is calculated from the

derivative of the Sellmeier equation for the refractive index.67 For DFG, Eq. 37 is modified

using ω3 = ω1 − ω2 and ε2=-1. The results for the CaF2 prism are plotted in Fig. 6(A)

as a function of the SFG and DFG experimental wavenumbers, respectively. Comparison

between experimental values in red and calculated ones in green shows that the trend is

nicely reproduced: the calculated resonance values lie a few tens of wavenumbers below the

experimental ones, but the slopes as a function of the SFG and DFG energy is reproduced.

Eq. 37 and 39 have succeeded in capturing the essential features of the phenomenon, linked

to a group velocity phase matching of the SFG process during propagation in the bulk. This

GVM is achieved for the envelopes of the laser pulses, traveling at the group velocity (c/n
[2]
g,i),

rather than the individual light waves composing the pulses, traveling at the phase velocity

(c/n
[2]
i ). It is interesting to remind that, for a normally dispersive material, phase matching

of the SFG process is impossible because of the continuous growth of the refractive index

with the energies. However, the group index is not a monotonic function and often has a

minimum in the transparency region for dielectric materials (because the refractive index

varies more steeply at the edges of the transparency region, where resonant processes start

increasing dispersion). For frequencies located on each side of this minimum, it may become

possible to cancel the GVM term.

We have successfully reproduced the trends for the location of the CaF2 giant peak, but
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not exactly the values. This may be due to several reasons linked to various approximations

in the derivation of the model: (i) only the first order in the derivative of ∆k
[2]
z,T has been

taken into account. The second order, related to the group velocity dispersion (GVD) effect,

may slightly shift the resonance wavenumber. GVD is usually considered for ultrashort

pulses in the femtosecond range, which is not our case;71 (ii) in a similar way, we have

neglected the other ∆k
[2]
z,{±±±} terms from reflected beams and considered only the leading

term ∆k
[2]
z,T . Their contributions, even small, may alter the resonance condition; (iii) as for

the phase mismatch fringes, the ω2 value fulfilling the resonance condition is sensitive to

the dispersion of the material to a great accuracy but, this time, dispersion involves both

the refractive index and the group index. In the original publication, the Sellmeier equation

was deduced to nicely fit the experimental data for the CaF2 refractive index.67 However,

deriving this equation has not been originally designed to model the group index, which has

not been cross-checked against experimental group index data. We may therefore expect a

bigger error on the group index rather than on the refractive index. In order to estimate the

amplitude of the error which could cause the discrepancies in Fig. 6(A), we have tried to

slightly modify the values of n
[2]
g,i in a coherent way over the visible and the infrared ranges.

Adding to the group index a small corrective term in the 426–721nm range, quadratic as a

function of visible wavenumbers (with a maximum of 1.4× 10−3 at 535nm), together with a

constant value of 0.01 in the IR range, leads to calculated positions of the pseudo-resonant

peaks closer to the experimental values (blue points in Fig. 6). We see that very small

changes in the group index suffice to match the experimental data points.

As was said before, the pseudo-resonant peaks in CaF2 have also been observed in a flat

window.45 The experimental and predicted values appear in Table I. As above, the raw esti-

mation is lower than the experimental one, but they closely match after the same correction

in the CaF2 group index as above is introduced. Interestingly, in this example we may check

the essential contribution of the angular corrective term in Eq. 37. In the Table, we have

shown the resonance frequencies calculated from the cancellation of the GVM term only,

with and without correction of the group index. We see that the results (below 1000cm−1)

are far off the experimental value, proving that the angular term, complementary to GVM,

is necessary to recover the experimental observation. In the prism configuration, this correc-

tive term is very small indeed, as all angles are very close to zero, and its importance could

not be tested. The observed pseudo-resonance is therefore not a pure GVM effect, rather
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the proof of the existence of a stationary point in the ∆k
[2]
z,T function of ω2. We may also

note that the experimental peaks show up as Gaussian rather than Lorentzian profiles, and

that they appears narrower in the window than in the prism. This may be accounted for by

the origin of the pseudo-resonant process: in the laser pulses, the distribution of frequencies

follows approximately a Gaussian profile. In addition, the peaks were measured in the prism

using the CLIO free electron laser, for which the pulse length is around 25 times smaller

than the OPO used for the window. The Gaussian frequency dispersion in the infrared

pulse is therefore much smaller for the window than for the prism, which accounts for the

differences in the experimental widths of the pseudo-resonant peaks.

In a last experiment, we have checked by SFG and DFG the existence of the same pseudo-

resonance phenomenon in a BaF2 prism using the same sources and the same incidence

angles as the CaF2 prism, with ωvis = 532nm. The experimental pseudo-resonant peaks,

which positions are also given in Table I, appear close to the CaF2 ones. However, the

calculated positions lie very far from those, below 900cm−1. A slightly bigger correction of

the BaF2 group index matches calculated and experimental values: 0.01 in the infrared, 0

for the SFG, 0.005 at 532nm and 0.01 for the DFG. This shows that the phenomenon should

be universal, as it is not related to the nature of a specific material like calcium fluoride.

VI. CONCLUSION

Surface specificity represents the main asset of Sum-Frequency Generation, accounting

for the stress put on the surface contributions in the literature. Bulk contributions on the

other side can be considered as complementary or competing terms, and in worst cases as a

nuisance interfering with the sought-after surface signals. Even if the theoretical framework

used for the description of bulk terms appears sometimes different from the surface one, they

both rely on the same underlying equations. Their intrinsic differences lie in the symmetries

and the order of the optical processes involved (usually dipolar versus multipolar), but the

surface contribution is originally a bulk one reduced to a very thin volume. We have shown

that it is conversely possible to recover the bulk contribution from the surface formalism,

even in the N-layer case. The advantage here is that the corpus of equations describing the

surface contributions is well established and universally adopted by SFG users. It remains

universal whatever the structure of the interface. For bulk terms, as for surface ones, all
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the information about this structure is carried out by the Fresnel coefficients, including the

phase terms. Phases are essential in the bulk because, as the bulk nonlinear susceptibility is

supposed uniform over the whole material, all effects specifically induced by the bulk nature

relate to beam propagation through the phases.

When considering the various beam reflections at each interface in the multilayer system,

the number of beams involved in the SFG process becomes high, each one carrying its own

phase. In some cases, the number of beams reduces or their dephasings may be neglected.

This is in particular the case by construction for a semi-infinite bulk (neither back reflec-

tion nor Fabry-Pérot effects) and a small thickness layer (no induced dephasing). For a

macroscopic layer on the other hand, the Fabry-Pérot interference may be neglected, but

the SFG process still sums up eight contributions. Among these, the direct forward process

dominates in the transmission geometry because it involves the smallest phase mismatch.

In all these particular situations, the equations simplify and the bulk contribution recovers

the properties of one (or two) surface contribution, the conversion being quantified by the

wavevector phase mismatch and the layer thickness.

In the bulk, the phase mismatch, inherent to beam propagation, cannot be laid aside.

Its presence induces the most significant bulk effects experimentally measured in SFG spec-

tra, namely the interference fringes related to the interplay between wavevector mismatch

and thickness, and the phase mismatch pseudo-resonance. As the amplitudes related to the

transmission phase mismatch dominate, most effects are experimentally observed in trans-

mission (apart from semi-infinite bulks for which transmitted beams cannot be observed).

Beyond the famous cases (e.g. air-metal or dielectric-liquid two-media interfaces) where

the semi-infinite bulk contribution may not be neglected and intimately mixes with the sur-

face contributions,11,13,18 a careful study of experimental data from finite thickness interfaces

shows that the bulk effects may also there interact with, or even overwhelm, the expected

surface terms. As they possess well defined properties (interference conditions, period, res-

onance conditions), they may be more easily disentangled from the surface response than

in the semi-infinite case. Even if it requires some slight adjustment of the material proper-

ties; in particular the refractive indices, we have shown that the predicted properties match

indeed the observed experimental behaviors.
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Appendix A: Fresnel factors at arbitrary depth

In a general way, the SFG intensity emitted in reflection (i.e. towards medium [1]) by a

surface nonlinear sheet inside an N-layer system is equal to:

IR(ω3) =
8π3(ω3)

2

c3n
[1]
3 n

[1]
1 n

[1]
2 (cos θ

[1]
3 )2

|χ(2)
eff |

2I(ω1)I(ω2) (A1)

where intensities are defined by I(ωi) =
cn

[1]
i

2π
|E0(ωi)|2 with E0 the far field, n

[j]
i and θ

[j]
i

are the refractive index and angle of incidence of beam i (frequency ωi) in medium [j],

respectively. Angles in all media stem from angles in medium [1] following Snell’s law, and

SFG angle is determined by the phase matching condition (conservation of the wavevectors

parallel to the interface):

n
[1]
1 ω1 sin θ

[1]
1 + n

[1]
2 ω2 sin θ

[1]
2 = n

[1]
3 ω3 sin θ

[1]
3 (A2)

Attaching a Cartesian coordinate system to the interface, with (x,y) defining the interface

planes, z the normal pointing towards medium 1 and z = 0 the first interface, the effective

surface susceptibility is defined as:

χ
(2)
eff =

∑
αβγ

Fα(ω3)e
[1]
α (ω3)Fβ(ω1)e

[1]
β (ω1)Fγ(ω2)e

[1]
γ (ω2)χ

(2)
αβγ (A3)

where α, β, γ stand for the Cartesian coordinates and e[1] is the polarization unit vector

perpendicular to wavevector k[1] in medium [1]. For transmitted SFG, the equations become

IT (ω3) =
8π3(ω3)

2

c3n
[N ]
3 n

[1]
1 n

[1]
2 (cos θ

[N ]
3 )2

|χ(2)
eff,T |

2I(ω1)I(ω2). (A4)

and

χ
(2)
eff,T =

∑
αβγ

F T
α (ω3)e

[N ]
α (ω3)Fβ(ω1)e

[1]
β (ω1)Fγ(ω2)e

[1]
γ (ω2)χ

(2)
αβγ (A5)

where the last medium of the system is labelled [N]. The Fresnel factors apply at the location

where the nonlinear sheet is placed, i.e. depth z = −z0 ≤ 0. We recall the formulas for the

reflection Fresnel factors inside layer [2] of the three layer (3L) system:24

F 3L
x (ωi) =

[
1− r12p (ωi)

] eik[2]i,zz0 − r23p (ωi)e
2iβie−ik

[2]
i,zz0

1 + r12p (ωi)r23p (ωi)e2iβi
(A6)

F 3L
y (ωi) =

[
1 + r12s (ωi)

] eik[2]i,zz0 + r23s (ωi)e
2iβie−ik

[2]
i,zz0

1 + r12s (ωi)r23s (ωi)e2iβi
(A7)
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F 3L
z (ωi) =

[
1 + r12p (ωi)

] eik[2]i,zz0 + r23p (ωi)e
2iβie−k

[2]
i,zz0

1 + r12p (ωi)r23p (ωi)e2iβi

(
n
[1]
i

n
[2]
i

)2

(A8)

where rj,j+1
s/p are the reflection coefficients at interface j between media [j] and [j+1]; k

[2]
i,z =

ωi

c
n
[2]
i cos θ

[2]
i ; βi = k

[2]
i,zD and D is the thickness of layer [2]. For completeness, we give the

values of coefficients Aαi
below:

Ax(ωi, D) =
1− r12p (ωi)

1 + r12p (ωi)r23p (ωi)e2iβi
(A9)

Ay(ωi, D) =
1 + r12s (ωi)

1 + r12s (ωi)r23s (ωi)e2iβi
(A10)

Az(ωi, D) =
1 + r12p (ωi)

1 + r12p (ωi)r23p (ωi)e2iβi

(
n
[1]
i

n
[2]
i

)2

(A11)

with Bx(ωi) = −r23p (ωi), By(ωi) = r23s (ωi) and Bz(ωi) = r23p (ωi).

Transmission factors for the SFG beam follow from the transformation of the reflection

ones according to the lines explained in Ref. 24 and read:

F 3L,T
x (ω3) =

[
1− r32p (ω3)

] e−ik
[2]
3,zz0 − r21p (ω3)e

ik
[2]
3,zz0

1 + r32p (ω3)r21p (ω3)e2iβ3
(A12)

F 3L,T
y (ω3) =

[
1 + r32s (ω3)

] e−ik
[2]
3,zz0 + r21s (ω3)e

ik
[2]
3,zz0

1 + r32s (ω3)r21s (ω3)e2iβ3
(A13)

F 3L,T
z (ω3) =

[
1 + r32p (ω3)

] e−ik
[2]
3,zz0 + r21p (ω3)e

ik
[2]
3,zz0

1 + r32p (ω3)r21p (ω3)e2iβ3

(
n
[3]
3

n
[2]
3

)2

(A14)

Accordingly, we have

AT
x (ω3, D) =

1− r32p (ω3)

1 + r32p (ω3)r21p (ωi)e2iβ3
(A15)

AT
y (ω3, D) =

1 + r32s (ω3)

1 + r32s (ω3)r21s (ω3)e2iβ3
(A16)

AT
z (ω3, D) =

1 + r32p (ω3)

1 + r32p (ω3)r21p (ω3)e2iβ3

(
n
[3]
3

n
[2]
3

)2

(A17)

with BT
x (ω3) = −r21p (ω3), B

T
y (ω3) = r21s (ω3) and BT

z (ω3) = r21p (ω3).

The formulas for the N-layer system may be found in Ref. 25. The factors applying inside

layer [k] (defined by z[k] ≤ z ≤ z[k−1] < 0, thickness d[k], refractive index n[k]) at z = −z0
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are:

F [k]
x (z0) =

[
eiβ

[k](z0) − rk,k+1
p ξ[k]e−iβ[k](z0)

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k∏

j=2

[
1− rj−1,j

p

] k−1∏
j=2

eiβ
[j]

(A18)

F [k]
y (z0) =

[
eiβ

[k](z0) + rk,k+1
s ξ[k]e−iβ[k](z0)

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
k∏

j=2

[
1 + rj−1,j

s

] k−1∏
j=2

eiβ
[j]

(A19)

F [k]
z (z0)=

(
n[1]

n[k]

)2[eiβ[k](z0) + rk,k+1
p ξ[k]e−iβ[k](z0)

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k∏

j=2

[
1 + rj−1,j

p

] k−1∏
j=2

eiβ
[j]

(A20)

where β[k](z0) =
ω

c
n[k](z[k−1] + z0) cos θ

[k], and ξ[k] = e2iβ
[k]

with β[k] =
ω

c
n[k]d[k] cos θ[k]. The

dagger (†) superscript indicates use of the ruled product: under this rule, all factors of the

form (rj,j+1
s/p )2 are set to 1. This gives for coefficients Aαi

(ωi, d
[k]):

Ax(ω3, d
[k]) =

N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k∏

j=2

[
1− rj−1,j

p

] k−1∏
j=2

eiβ
[j]

(A21)

Ay(ω3, d
[k]) =

N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
k∏

j=2

[
1 + rj−1,j

s

] k−1∏
j=2

eiβ
[j]

(A22)

Az(ω3, d
[k])=

(
n[1]

n[k]

)2 N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k∏

j=2

[
1 + rj−1,j

p

] k−1∏
j=2

eiβ
[j]

(A23)

Fresnel coefficients for the SFG beam in the transmission geometry follow by swapping

the indices for reflection coefficients, i.e. {1, 2, · · · , k − 1, k, · · · , N − 1, N} into {N,N −
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1, · · · , k, k − 1, · · · , 2, 1}, calculating the propagation phases from the last interface and

subtracting
N−1∑
j=2

β
[j]
3 to account for the origin of the phases set at z = 0:

F [k],T
x (z0) =

[
e−iβ[k](z0) − rk,k−1

p eiβ
[k](z0)

]† k−1∏
j=2

[
1 + ξ[j]rj+1,j

p rj,j−1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj+1,j

p rj,j−1
p

]†
N−1∏
j=k

[
1− rj+1,j

p

] N−1∏
j=k+1

e−iβ[j]

(A24)

F [k],T
y (z0) =

[
e−iβ[k](z0) + rk,k−1

s eiβ
[k](z0)

]† k−1∏
j=2

[
1 + ξ[j]rj+1,j

s rj,j−1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj+1,j

s rj,j−1
s

]†
N−1∏
j=k

[
1 + rj+1,j

s

] N−1∏
j=k+1

e−iβ[j]

(A25)

F [k],T
z (z0) =

(
n[N ]

n[k]

)2 [e−iβ[k](z0) + rk,k−1
p eiβ

[k](z0)
]† k−1∏

j=2

[
1 + ξ[j]rj+1,j

p rj,j−1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj+1,j

p rj,j−1
p

]†
N−1∏
j=k

[
1 + rj+1,j

p

] N−1∏
j=k+1

e−iβ[j]

(A26)

This leads to

AT
x (ω3, d

[k]) =

k−1∏
j=2

[
1 + ξ[j]rj+1,j

p rj,j−1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj+1,j

p rj,j−1
p

]†
N−1∏
j=k

[
1− rj+1,j

p

] N−1∏
j=k+1

e−iβ[j]

(A27)

AT
y (ω3, d

[k]) =

k−1∏
j=2

[
1 + ξ[j]rj+1,j

s rj,j−1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj+1,j

s rj,j−1
s

]†
N−1∏
j=k

[
1 + rj+1,j

s

] N−1∏
j=k+1

e−iβ[j]

(A28)

AT
z (ω3, d

[k]) =

(
n[N ]

n[k]

)2 k−1∏
j=2

[
1 + ξ[j]rj+1,j

p rj,j−1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj+1,j

p rj,j−1
p

]†
N−1∏
j=k

[
1 + rj+1,j

p

] N−1∏
j=k+1

e−iβ[j]

(A29)
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22N. Garćıa Rey, E. Weißenborn, F. Schulze-Zachau, G. Gochev, and B. Braunschweig, J.

Phys. Chem. C 123, 1279 (2019).

23X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, J. Physi. Chem. B 104, 3349

(2000).

24B. Busson, submitted to J. Chem. Phys. (2023).

25B. Busson, submitted to J. Chem. Phys. (2023).

26M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, Phys. Rev. Lett. 85,

4474 (2000).

27R. E. Raab and O. L. de Lange, Multipole theory in electromagnetism (Oxford University

Press, Oxford, 2005).

28M. Kauranen and S. Cattaneo, Prog. Opt. 51, 69 (2008).

29C. Hirose, H. Ishida, K. Iwatsu, N. Watanabe, J. Kubota, A. Wada, and K. Domen, J.

Chem. Phys. 108, 5948 (1998).

30Y. R. Shen and V. Ostroverkhov, Chem. Rev. 106, 1140 (2006).

31J. T. Murray, N. Peyghambarian, R. C. Powell, R. A. Stolzenberger, S. Jie, and B. Jassem-

nejad, Phys. Rev. A 49, 4066 (1994).

32R. W. Boyd, Nonlinear optics (Academic Press, San Diego, CA, USA, 2003).

33M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quant. Elec. 28, 2631

(1992).
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