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Sum-Frequency Generation at interfaces: a Fresnel story

II. Analytical expressions for multilayer systems

Bertrand Busson

Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000,

91405 ORSAY, Francea)

(Dated: 10 May 2023)

The well-known formalism for Sum-Frequency Generation reflected or transmitted by

a three-layer system involves three equations defining the emitted SFG intensity, the

effective nonlinear susceptibility, and a set of Fresnel factors specific to the three-layer

system. We generalize the equations to a N-layer system, where all media have non-

vanishing thicknesses, by leaving the first two equations unchanged and modifying

only the Fresnel factors. These universal Fresnel factors bear all the complexity of

light propagation and interference in the system, in amplitude and phase. They are

analytically known anywhere in the N-layer system, either at any interface or in any

of the bulks, and share common expressions for the three beams, incoming or emitted,

of the SFG process in reflection. Enclosing of an ultrathin layer (e.g. a molecular

monolayer) in the system does not modify the Fresnel factors except for boundary

conditions at this layer, as in three-layer case. Specific rules are elaborated to simplify

systems comprising macroscopic layers. Equations for the four and five layer systems

are explicitly provided. Simulations in the four-layer system allow to recover the

results of the transfer matrix formalism, to a lower complexity cost for SFG users.

Finally, when several interfaces in the system produce SFG signals, we show that

it is possible to probe only the most buried one by canceling all the SFG responses

except at this last interface, generalizing the results of the three-layer system.

a)Electronic mail: bertrand.busson@universite-paris-saclay.fr
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I. INTRODUCTION

Second-order nonlinear optical techniques, like Second Harmonic generation (SHG) or

Sum-Frequency Generation (SFG), have a straightforward interest in analyzing the prop-

erties of surfaces and interfaces because of their peculiar properties. In short, they are

essentially blind towards a centrosymmetric bulk whereas interfaces, where this symmetry

is broken, become the main source of the output signal. In addition, as they change the

color (frequency) of their output as compared to their inputs, every measured photon carries

information specific from the interfaces. Finally, they extract spectroscopic information in

the infrared (of vibrational nature) or the visible (electronic) ranges provided that the laser

sources used to generate them are made tunable or broadband.

SFG spectroscopy becomes in fact a routine technique for molecular studies at interfaces,

with standard procedures for data analysis. The original system under study is however often

too complex for a straightforward application of this nonlinear spectroscopy tool. The system

is often transformed into a simplified interface for a model study aiming at elucidating the

key properties at stake in the full system. In particular, deeply buried interfaces in multilayer

systems may be modelled by open interfaces for an easy access by the SFG beams. In this

case, the system consists of two or three layers, namely the outside medium (air, vacuum

or a transparent window), the molecular film, and the substrate, in order to elucidate the

chemical and physical mechanisms at stake in catalysis or electrochemical reactions, or the

peculiar configurations adopted by the molecules at the surfaces of various liquids. A lot of

applications have been published concerning the study of molecules adsorbed on, or in close

contact with, a solid substrate, potentially buried1–3 and electrically charged,4,5 or interacting

at a liquid interface.6–9 Molecules at nanostructured interfaces are now commonly addressed

either.10–13

However, the complexity of heat, charge and matter exchange, together with conforma-

tion changes and long-time stability in operando systems makes it rather needful, after the

model interfaces, to tackle more realistic systems in situ. Such complex studies may in-

clude the influence of molecular orientation14 or of vibrational and vibronic coupling15–17

on the electron transfer at a molecule-substrate junction in a dye-sensitized solar cell; the

anodic and cathodic sides of an operating fuel cell;18 buried interfaces in organic micro-

electronic devices involving molecular components like conducting polymers, graphene or
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organic semiconductors.19–21

Burying the interfaces by piling up stacks of matter makes sample design but also SFG

data analysis difficult due to the existence of these additional layers, and of the additional

interfaces that come with them. In a few works, analysis of deeply buried interfaces in

systems comprising more than three layers has been attempted.22–27 Whatever the number

of layers, the nonlinear process is always represented by the creation of a local surface

nonlinear polarization P (ω3), proportional in the dipolar approximation to the product of

the electric fields E(ω1) and E(ω2) of the incoming light beams (with ω3 = ω1+ω2 for SFG),

emitting in turn light at the new frequency, eventually detected in the far field in reflection

or transmission. In other words, we have

P [k]
α (ω3) =

∑
βγ

χ
(2)
αβγE

[k]
β (ω1)E

[k]
γ (ω2) (1)

where the proportionality factor is the surface second-order susceptibility χ(2], a third-rank

tensor, and (α,β,γ) represent Cartesian coordinates. When the number of media grows, so

does the number of interfaces and accordingly the number of nonlinear polarization sources.

However, the emitted electric fields at the SFG frequency at the various interfaces just sum

up in the far field, so that, from a nonlinear optical point of view, there is no difference

between interfaces composed of 2 or N media.

The difficult point encountered in the quantitative and spectroscopic description of the

phenomenon does not lie in the nonlinear process itself. It arises from the fact that the

electric fields and polarizations are local quantities, to be evaluated in the medium [k] where

the nonlinear process actually takes place. These local fields are related to the far fields,

the ones that are controlled and measured by the experimenter, through the Fresnel factors.

These factors encompass all the linear optics at stake in the propagation, reflection, refraction

and interferences undergone by the light waves from the far field to the local position of the

nonlinear interaction. While equation 1 remains universal whatever the number of layers and

experimental tunable factors, the Fresnel factors on the other hand depend on the nature

of the interface and of its constituents, on the angles of incidence and on the wavelengths

involved. This can be summarized by the equation linking the intensity of the output to

those of the input:

IR(ω3) =
8π3(ω3)

2

c3n
[1]
3 n

[1]
1 n

[1]
2 (cos θ

[1]
3 )2

|χ(2)
eff |

2I(ω1)I(ω2) (2)
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where IR is measured in reflection, intensities are defined by I(ωi) =
cn

[1]
i

2π
|E0(ωi)|2 with E0

the far field, n
[1]
i and θ

[1]
i the refractive index and angle of incidence of beam i (frequency

ωi) in incident medium [1], respectively. In this equation, the Fresnel factors have shifted

from the fields to the nonlinear susceptibility itself, modifying it into an effective surface

susceptibility which bears all the burden of the linear optics. As a matter of fact, we have :

χ
(2)
eff =

∑
αβγ

Fα(ω3)e
[1]
α (ω3)Fβ(ω1)e

[1]
β (ω1)Fγ(ω2)e

[1]
γ (ω2)χ

(2)
αβγ (3)

where e[1](ωi) are the polarization vectors of the electric fields in the plane perpendicular

to their direction of propagation. For practical applications, factors e[1] represent the de-

composition of electric field E0
i on their (s,p) basis, projected onto the (x,y,z) laboratory

frame. Such a projection is necessary in order to account for the symmetry properties of

tensor χ(2), linked to the interface. We also note that the Fresnel factors have identical

expressions for the three beams, which is a universal property whatever the structure of the

interface in a reflection SFG experiment.28–30 For completeness, the corresponding equations

in transmission are:

IT (ω3) =
8π3(ω3)

2

c3n
[N ]
3 n

[1]
1 n

[1]
2 (cos θ

[N ]
3 )2

|χ(2)
eff,T |

2I(ω1)I(ω2). (4)

and

χ
(2)
eff,T =

∑
αβγ

F T
α (ω3)e

[N ]
α (ω3)Fβ(ω1)e

[1]
β (ω1)Fγ(ω2)e

[1]
γ (ω2)χ

(2)
αβγ (5)

where the last medium of the system is labelled [N].

Eq. 2 and 4 are universal whatever the complexity of the interface, whereas Eq. 3 and

5 contain all the details of the system: number and thicknesses of the layers, indices of

refraction, angles of incidence. Evaluation of the Fresnel factors is thus an ineludible step

during data analysis as it allows retrieving the sought-after quantity χ(2), characteristic of

the species acting as the source of the nonlinear process, from experimental data. It is

therefore necessary to calculate their amplitude and phase from dedicated formulas, using

all tunable experimental parameters as inputs. The formulas for two layer (2L) and three

layer (3L) systems have been known for long.31 In the latter case, when the middle layer

[2] becomes thicker than the wavelengths of light, Fresnel factors also account for the phase

differences induced by beam propagation coupled to the interference between all reflected

beams bouncing up and down in this layer. Such an interference may lead to interesting
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situations, completely independent on the nonlinear process itself, for the example the van-

ishing of the SFG response of one of the two interfaces in a three layer system.30,32,33 Even

if a universal formulation of the Fresnel factors in this case is not always achieved,34–38 their

description has become robust and rather straightforward.

The problems arise when the number of layers reaches four or more. Partial determination

of an analytic expression of Fresnel factors has been made in the four layer case, under the

hypothesis that one of the layers has a vanishing thickness.22–24 To our knowledge, there is

no analytical expression of Fresnel factors for a generic four-layer system, and all the more

for a N-layer system, to be plugged into Eq. (2) to (5). Such complex systems may still

be addressed using several theoretical methods. The transfer matrix approach allows to

express the electric fields at various interfaces or media through matrix products applied

to the external fields,25,27,39–41 even beyond dipolar approximation.42 Each interface crossing

results in the append of two matrices in the transfer matrix product, one accounting for

the reflectivity properties and the second one for the phase factors. The (4×4)-matrix

formalism developed by Berreman,43 and applied later on to nonlinear optics,44 allows to

introduce flexibility in the symmetries of the layers beyond in-plane anisotropy,45 or beyond

dipolar approximation.46 Finally, the mixed (4×4)-transfer matrix approach47 generalizes

the transfer matrix equations to anisotropic materials. All these techniques give access to

the numerical computation of the desired quantities, but they do not provide the analytical

expressions of the various internal fields in terms of reflection (or transmission) coefficients

and phase factors. They are well adapted to automated simulations, in particular when the

number of layers is high. On the other hand, analytical formulas offer some advantages:

they may be analyzed per se in order to provide predictions about their output before

performing any simulation. A good example is provided by the analysis of the conditions

required to achieve canceling of the SFG process at the first interface in a three-layer system,

as recalled above.30,32,33 In addition, analytical formulas allow easy plug and play into the

well-established formalism for three layer systems. It is easily conceivable that current SFG

users would like to keep the same tools and concepts they are accustomed to for their data

analysis, even for multilayer interfaces. Finally, Fresnel factors for arbitrary depth inside the

system (i.e. in between interfaces) are easier to access by analytical means as they represent

a continuous function of depth. Such depth-dependent factors are interesting for in situ

analysis of film growth48 or bulk SFG production49 in multilayer systems.
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In this article, we provide analytical formulas for Fresnel factors in a generic N-layer

system by elaborating on the formalism proposed by Abelès.50 The factors depend on the

location of the nonlinear polarization source, so we provide formulas for a polarization

located at one of the (N-1) interfaces, but also at any arbitrary depth inside the bulk of one

of the layers. These Fresnel factors have a simple form (i.e. as x, y and z-factors), which can

be directly plugged into the usual SFG equations (2) to (5). They may be obtained by the

direct application of algebraic formulas or using a recurrence relation. Their analysis shows

that a layer with negligible thickness has no influence on the factors of the whole system,

except for boundary conditions, similarly to the well-known three-layer case.30,31 We also

propose a way to account for the specificity of macroscopic layers inside the system: the user

may decide whether to take the Fabry-Pérot effect into account, or not. In the latter case,

the system splits in two subsystems on each side of the macroscopic layer. We explicitly

take the four and five layer systems as examples and provide the ”plug and play” formulas

for SFG users. Results for the 4-layer system both match the simplified versions found in

the literature and reproduce at low cost the simulations performed using the transfer matrix

formalism. Having access to analytic formulas also allows to analyze and predict without

simulation the conditions required to switch off the SFG produced at any interface inside

the N-layer film. In particular, we show that it is possible, by adapting the rules established

for the three layer system,30 to predict without simulation the design of samples in which

the SFG process vanishes at all interfaces except the last one, allowing to probe the most

buried interface in a multilayered system.

II. FRESNEL FACTORS IN A MULTILAYER FILM

We consider the Sum-Frequency Generation (SFG) process as sketched on Fig. 1. All

beams travel in a common (x,z) plane of incidence, with z axis perpendicular to the interface

and pointing ”up” (i.e. towards the incoming light beams). The generic sample is sketched

on Figure 1(B): N media, separated by N-1 plane interfaces located at z = z[k] ⩽ 0 with

k = {1, · · · , N−1}, each layer described by its own refractive index n[k] and thickness d[k] =

z[k−1]−z[k]. The SFG process may happen at any depth inside the film. As for notations, we

index quantities (refractive indices n, angles of incidence θ, electric field amplitudes E...) in

the following way. Subscripts incorporate s/p polarizations, beam number (i = 1, 2, 3) and
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FIG. 1. (A) Sketch of the SFG process in the N-layer model. Multiple beam reflections and

refractions at every interface are not shown for clarity. Definitions of the multilayer systems: (B)

full system {1,N}; (C) subsystem {k-1,N}.

component (α = x, y, z). Superscripts focus on the position where a quantity is evaluated:

[k] when defined inside a layer and {k} at an interface. For reflection rij and transmission tij

coefficients, superscript (ij) means that beam travels from [i] towards [j]. The beam number

subscript will be skipped every time it is possible without ambiguity.

As explained in the Introduction, we focus on Eq. 3 (or Eq. 5 when appropriate), to be

plugged into Eq. 2 and 4. Our goal is to provide analytical expressions for the electric fields

at any depth z ⩽ 0 inside the sample, thus defining the Fresnel factors applicable to these

equations. As we address the linear optical properties of the stack, only one light beam

(frequency ω, far field amplitude E0) is necessary, entering the system from medium [1] with

angle of incidence θ[1], refracted into θ[k] in each layer [k], transmitted to medium [N] with

far field amplitude E[N ], with n[1] sin θ[1] = n[k] sin θ[k] = n[N ] sin θ[N ]. We define the following
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parameters: β[k] =
ω

c
n[k]d[k] cos θ[k] is the phase delay induced by propagation through layer

[k] and ξ[k] = e2iβ
[k]
.

In order to achieve our goal, we rely on the compact formalism proposed by Abelès,50

summarized in subsequent publications51,52 and recently applied to the SFG case.32,53 The

principles of this optical description of interfaces are recalled in Appendix A. The Fresnel

factors relating the far field amplitudes and the local fields at arbitrary depth inside the film

are generally defined in the following way:

Fx =
Ex

E0
p cos θ

[1]
, Fy =

Ey

E0
y

and Fz =
Ez

E0
p sin θ

[1]
(6)

The detailed derivation of the following formulas can be found in Appendices B and C for s

(y factors) and p polarized (x and z factors) light, respectively. They incorporate quantities

ξ[k] defined above, and reflection coefficients rj,j+1
s/p at each interface {j} as

rj,j+1
s (ω) =

n[j] cos θ[j] − n[j+1] cos θ[j+1]

n[j] cos θ[j] + n[j+1] cos θ[j+1]
(7)

rj,j+1
p (ω) =

n[j+1] cos θ[j] − n[j] cos θ[j+1]

n[j+1] cos θ[j] + n[j] cos θ[j+1]
. (8)

All expressions below make use of the ruled product, marked with a dagger (†) superscript,

which we define as follows: when a product is evaluated under this rule, all factors of the

form (rj,j+1
s/p )2 are set to 1.

A. At the interfaces between two media

At the various interfaces, we calculate the local electric field amplitudes to deduce the

Fresnel factors to apply to incoming beams. For the outgoing SFG beam, the same formulas

apply as detailed in Part II C.

1. First interface {1}

F {1}
x =

(1− r12p )†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† (9)
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F {1}
y =

(1 + r12s )†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]† (10)

F {1}
z =

(1 + r12p )†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† (11)

The numerators in these equations do not simplify with the denominators because of the

ruled products with r12s/p at the numerator.

As an illustration of the handling of the ruled product, we detail the numerators above:

(1− r12p )†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
= (1− r12p )†

[
1 + ξ[2]r1,2p r2,3p

]† N−1∏
j=3

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
=

[
1− r12p + ξ[2]r1,2p r23p − ξ[2]r23p

]† N−1∏
j=3

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
= (1− r12p )(1− ξ[2]r23p )†

N−1∏
j=3

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
(12)

(1 + r12s )†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
=

[
1 + r12s + ξ[2]r12s r23s + ξ[2]r23s

]† N−1∏
j=3

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
= (1 + r12s )(1 + ξ[2]r23s )†

N−1∏
j=3

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
(13)

(1 + r12p )†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
=

[
1 + r12p + ξ[2]r12p r23p + ξ[2]r23p

]† N−1∏
j=3

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
= (1 + r12p )(1 + ξ[2]r23p )†

N−1∏
j=3

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
(14)

The alternate formulas below explicitly show the proportionality of the F {1} factors to the

Fresnel factors of the {1,2} two-layer system: (1 − r12p ) for x, (1 + r12s ) for y and (1 + r12p )

for z:
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F {1}
x = (1− r12p )

1− ξ[2]r23p
1 + ξ[2]r12p r23p

for N = 3

= (1− r12p )

(1− ξ[2]r23p )†
N−1∏
j=3

[
1 + ξ[j]rj−1,j

p rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† for N ⩾ 4 (15)

F {1}
y = (1 + r12s )

1 + ξ[2]r23s
1 + ξ[2]r12s r23s

for N = 3

= (1 + r12s )

(1 + ξ[2]r23s )†
N−1∏
j=3

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]† for N ⩾ 4 (16)

F {1}
z = (1 + r12p )

1 + ξ[2]r23p
1 + ξ[2]r12p r23p

for N = 3

= (1 + r12p )

(1 + ξ[2]r23p )†
N−1∏
j=3

[
1 + ξ[j]rj−1,j

p rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† for N ⩾ 4 (17)
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2. Arbitrary interface {k-1}, with 3 ⩽ k ⩽ N − 1

F {k−1}
x =

(1− rk−1,k
p )†

N−1∏
j=k

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k−1∏
j=2

[
1− rj−1,j

p

] k−1∏
j=2

eiβ
[j]

(k ⩽ N − 2) → =

(1− ξ[k]rk,k+1
p )†

N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k∏

j=2

[
1− rj−1,j

p

] k−1∏
j=2

eiβ
[j]

(k = N − 1) → =
(1− ξ[N−1]rN−1,N

p )
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1− rj−1,j

p

]N−2∏
j=2

eiβ
[j]

(18)

F {k−1}
y =

(1 + rk−1,k
s )†

N−1∏
j=k

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
k−1∏
j=2

[
1 + rj−1,j

s

] k−1∏
j=2

eiβ
[j]

(k ⩽ N − 2) → =

(1 + ξ[k]rk,k+1
s )†

N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
k∏

j=2

[
1 + rj−1,j

s

] k−1∏
j=2

eiβ
[j]

(k = N − 1) → =
(1 + ξ[N−1]rN−1,N

s )
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + rj−1,j

s

]N−2∏
j=2

eiβ
[j]

(19)
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F {k−1}
z =

(
n[1]

n[k−1]

)2 (1 + rk−1,k
p )†

N−1∏
j=k

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k−1∏
j=2

[
1 + rj−1,j

p

] k−1∏
j=2

eiβ
[j]

(k ⩽ N − 2) → =

(
n[1]

n[k−1]

)2 (1 + ξ[k]rk,k+1
p )†

N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k∏

j=2

[
1 + rj−1,j

p

] k−1∏
j=2

eiβ
[j]

(k = N − 1) → =

(
n[1]

n[N−2]

)2
(1 + ξ[N−1]rN−1,N

p )
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + rj−1,j

p

]N−2∏
j=2

eiβ
[j]

(20)

3. Last interface {N-1}

F {N−1}
x =

N−1∏
j=2

eiβ
[j]

N−1∏
j=1

[
1− rj,j+1

p

]
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† (21)

F {N−1}
y =

N−1∏
j=2

eiβ
[j]

N−1∏
j=1

[
1 + rj,j+1

s

]
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]† (22)

F {N−1}
z =

(
n[1]

n[N−1]

)2 N−1∏
j=2

eiβ
[j]

N−1∏
j=1

[
1 + rj,j+1

p

]
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† (23)

The formulas for y-polarization are deduced from x-polarization by replacing rp with rs

and changing all minus signs to plus signs. The formulas for z-polarization are very close

to their counterparts for y-polarization after the substitution of rs by rp, only differing by

the continuity conditions represented by the ratio of the squared refractive indices. As the

z-component is not continuous and differs on either side of interface {k-1}, they are valid
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in medium [k-1]. On the other side of the interface, i.e. in medium [k], the factor must be

multiplied by (n[k−1]/n[k])2.

Having established analytical formulas makes it possible to analyze their content. As for

the numerators, the last two products involved in Eq. 18-20 could have been anticipated:

(i) the first one involves the product of the local field coefficients (1− rj,j+1
p for x, 1 + rj,j+1

s

for y or 1 + rj,j+1
p = −1 for z), related to the transmission coefficients, at all interfaces

{j} up to {k-1}: if any of them vanishes, no beam is transmitted to layer [k]. This is

why the alternate formulas provided in Eq. 15-20 explicitly show such products up to and

including interface {k-1}. These terms represent in fact the various boundary conditions

at all interfaces involved along beam propagation. We note that the exact cancellation of

any of these transmission coefficients at some interface j is rather hypothetical as it would

require rj,j+1
p = 1 for x, rj,j+1

s = −1 for y or rj,j+1
p = −1 for z, hence one of the conditions

n[j], n[j+1] = 0 54 or θ[j], θ[j+1] = 90◦ (achievable only for attenuated total reflection at the

critical angle). However, we can get near cancellation when angles of incidence become

either very big, close to critical ATR angle or when |n[j+1]| ≫ (or ≪) |n[j]|, for example

at a dielectric-metal interface; (ii) the second product simply accounts for the total phase

acquired upon beam propagation after traveling through the [k-1] first layers of the system.

We study the denominator in more details below.

4. Recurrence relations

The algebraic formulas above (Eq. 9-23) provide the Fresnel factors at any interface in

any system. Their application to deduce explicit analytical formulas is complicated by the

presence of ruled product. Here we provide an alternate way to obtain these formulas,

by deducing the factors for the (N+1)-layer system from those of the N-layer system or,

alternatively, from the factors at the first layer of each system comprising between 2 and N

layers.

All the Fresnel factors above encompass denominator

DN−layer
s/p =

N−1∏
j=2

[
1 + ξ[j]rj−1,j

s/p rj,j+1
s/p

]†
, (24)

common to all of them. The first step is thus to write down this denominator. The dagger

product involved here may seem abstruse at first sight, but the analysis of the structure of

13



FIG. 2. Principle of calculation of the interference terms in multilayer systems, illustrated in the

N = 5 case.

each term in the final sum makes it possible to easily implement the result using a graphic

help (Fig. 2). For a system with N media, there are N-2 sandwiched layers introducing N-2

dephasing terms ξ[j], each corresponding to the bouncing of a beam inside layer [j]. The

denominator is constructed by enumerating and summing the 2N−2 possible products
∏

ξ[j].

The amplitude associated to each of these terms is graphically determined as the reflectivity

factors rs/p necessary to constraint the beam to bounce inside the corresponding layers, writ-

ten in the order of increasing layer numbers. When adjacent layers are involved, the beam

goes through their common border without reflection, the corresponding reflectivity term

disappears, and this is just what the dagger ruled product accounts for. As an application,

we can directly read on Fig. 2 the eight terms of the denominator for the 5-layer system:

D5−layer
s/p = 1 + r12s/pr

23
s/pξ

[2] + r23s/pr
34
s/pξ

[3] + r34s/pr
45
s/pξ

[4] + r12s/pr
34
s/pξ

[2]ξ[3]

+ r23s/pr
45
s/pξ

[3]ξ[4] + r12s/pr
45
s/pξ

[2]ξ[3]ξ[4] + r12s/pr
23
s/pr

34
s/pr

45
s/pξ

[2]ξ[4] (25)

Starting with the x-component, the factors for the (N+1)-layer system may be deduced

from those of the N-layer system using the following rules (established by the analysis of the

algebraic formulas):

• (i) write down denominator D
(N+1)−layer
s/p using the method exposed above;

• (ii) replace all denominators DN−layer
p in x-factors by D

(N+1)−layer
p ;

• (iii) deduce x-factor at interface {k+1} in the (N+1)-layer system from factor at

interface {k} in the N-layer system (for all 1 ⩽ k ⩽ N −1) by rewriting the numerator

14



while increasing all indices in the superscripts by 1 (e.g. r12p r23p ξ[2] → r23p r34p ξ[3]), then

multiply by eiβ
[2]
(1− r12p );

• (iv) deduce x-factor at first interface in the (N+1)-layer system by writing down de-

nominator D
(N+1)−layer
p at the numerator while replacing r12p by −1, then multiply by

(1− r12p );

• (v) deduce y-factor from x-factor by replacing rp by rs and changing all minus signs

to plus signs;

• (vi) deduce z-factor from x-factor by changing all minus signs to plus signs;

• (vii) modify the boundary condition (n[1]/n[k])2 in the z-factor to (n[1]/n[k+1])2 or

(n[1]/n[k+2])2 to evaluate the local field in medium [k+1] or [k+2].

Recurrence starts with the 2-layer case, for which we have Fx = 1− r12p , Fy = 1+ r12s and

Fz = 1+ r12p in medium 1 (the 2-layer case may even be seen as the result of the recurrence

applied to the 1-layer case, i.e. Fx = Fy = Fz = 1). Application to the 3-layer system leads

to the formulas analyzed in details in Ref. 30. The 4-layer system is explicitly detailed in

Part III C, and the 5-layer case in the Supplementary Material.

In the end, evaluating all the x-factors at the N interfaces in a (N+1)-layer system is

equivalent to evaluating the x-factors at the first interface of all systems from 2 to (N+1)

layers using rule (iv), then applying rule (iii) as many times as needed. These recurrence

methods give access to the analytical formulas for any N-layer system, but also provide a

way leading to an algorithm for the automated evaluation of their numerical values.

B. In the bulk of a medium between two interfaces

As explained in the introduction, for the analysis of SFG produced during film growth48

or in the bulk of a layer inside a multilayer system,49 it is also possible to define Fresnel

factors F (z) at any depth z located into medium [k]. We define the dephasing induced by

the propagation into this medium β[k](z) =
ω

c
n[k](z[k−1] − z) cos θ[k] ⩾ 0.
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1. In medium [2]

F [2]
x (z) =

[
eiβ

[2](z) − r2,3p ξ[2]e−iβ[2](z)
]† N−1∏

j=3

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† [
1− r12p

]
(26)

F [2]
y (z) =

[
eiβ

[2](z) + r23s ξ[2]e−iβ[2](z)
]† N−1∏

j=3

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]† [
1 + r12s

]
(27)

F [2]
z (z)=

(
n[1]

n[2]

)2[eiβ[2](z) + r23p ξ[2]e−iβ[2](z)
]† N−1∏

j=3

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† [
1 + r12p

]
(28)

2. In medium [k], with 3 ⩽ k ⩽ N − 2

F [k]
x (z) =

[
eiβ

[k](z) − rk,k+1
p ξ[k]e−iβ[k](z)

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k∏

j=2

[
1− rj−1,j

p

] k−1∏
j=2

eiβ
[j]

(29)

F [k]
y (z) =

[
eiβ

[k](z) + rk,k+1
s ξ[k]e−iβ[k](z)

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
k∏

j=2

[
1 + rj−1,j

s

] k−1∏
j=2

eiβ
[j]

(30)

F [k]
z (z)=

(
n[1]

n[k]

)2[eiβ[k](z) + rk,k+1
p ξ[k]e−iβ[k](z)

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k∏

j=2

[
1 + rj−1,j

p

] k−1∏
j=2

eiβ
[j]

(31)
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3. In medium [N-1]

F [N−1]
x (z) =

eiβ
[N−1](z) − rN−1,N

p ξ[N−1]e−iβ[N−1](z)

N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1− rj−1,j

p

]N−2∏
j=2

eiβ
[j]

(32)

F [N−1]
y (z) =

eiβ
[N−1](z) + rN−1,N

s ξ[N−1]e−iβ[N−1](z)

N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + rj−1,j

s

]N−2∏
j=2

eiβ
[j]

(33)

F [N−1]
z (z)=

(
n[1]

n[N−1]

)2
eiβ

[N−1](z) + rN−1,N
p ξ[N−1]e−iβ[N−1](z)

N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + rj−1,j

p

]N−2∏
j=2

eiβ
[j]

(34)

It may be checked that F [k](z = z[k]) is equal to F {k} as calculated from Eq. 18-20, and

that all the results in this section coincide with those in Ref. 30 for a three-layer system.

C. Application to SFG process

The equations above provide the general transformation of the far field in medium [1]

into the local field at any depth z in the multilayer system. If a nonlinear sheet is placed at

this depth, these equation may be plugged into Eq. 3 to reconstruct the effective nonlinear

susceptibility. This supposes that the Fresnel coefficient for the emitted SFG beam is identi-

cal to those for the incoming beams. This has been shown in the previous article30 using the

external point of view, but it is also possible to check it directly from the equations 29 to 31.

They are composed, in this order, of a Fabry-Pérot term, multiplied by the two products

described above: one proportional to the local field coefficients (or boundary conditions) and

a propagation dephasing term. As for the latter, incoming and outgoing beams share the

same dephasing as they travel the same distance whatever their direction of propagation. As

for the Fabry-Pérot term, ray-tracing inside the successive layers from [2] to [k-1] shows that

incoming and outgoing beams experiment the same reflections at interfaces and dephasing

upon exchanging the roles of rays going ”out” (with increasing z) and ”in” (with decreasing

z), respectively. This is also valid in layer [k], represented by the first term at numerator

in Eq. 29-31, summing up two terms travelling ”in” and ”out”, respectively.30 In fact, the
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only difference between incoming and outgoing beams lies in the boundary conditions, be-

cause they obviously don’t cross the interfaces in the same directions. In the same line,

the emission coefficient transforming the nonlinear polarization into an electric field28,30 in

medium [k], where it actually happens, is proportional to 1/n
[k]
3 cos θ

[k]
3 , to be compared to

1/n
[1]
3 cos θ

[1]
3 showing up in Eq. 2. This issue is solved by a recursive use of

1

n
[j−1]
3 cos θ

[j−1]
3

tj−1,j
s/p (ω3) =

1

n
[j]
3 cos θ

[j]
3

tj,j−1
s/p (ω3) (35)

where tj−1,j
s/p is the transmission coefficient from medium [j-1] to medium [j]. For s polariza-

tion, we use 1 + rj−1,j
s = tj−1,j

s , leading to

1

n
[1]
3 cos θ

[1]
3

k∏
j=2

[
1 + rj−1,j

s

]
=

1

n
[k]
3 cos θ

[k]
3

2∏
j=k

tj,j−1
s (36)

This equation shows that the boundary condition term for SFG emitted in medium [k] and

transmitted to medium [1] is equal to that corresponding to the SFG emission in medium

[1], coupled to transmission from medium [1] to medium [k], as for an incoming beam.

For the x-factor, we use 1− rj−1,j
p = 1 + rj,j−1

p =
n[j−1]

n[j]
tj,j−1
p to get

1

n
[1]
3 cos θ

[1]
3

k∏
j=2

[
1− rj−1,j

p

]
cos θ

[1]
3 =

1

n
[k]
3 cos θ

[k]
3

2∏
j=k

[
tj,j−1
p

]
cos θ

[k]
3 . (37)

In other words, p-polarized SFG emission in medium [k] projected onto x axis and transmit-

ted to medium [1] is equal to emission in medium [1] projected onto x axis and transmitted

to medium [k]. For the z-factor, we use 1 + rj−1,j
p =

cos θ[j−1]

cos θ[j]
tj,j−1
p ans Snell’s law to get

1

n
[1]
3 cos θ

[1]
3

(n
[1]
3 )2

(n
[k]
3 )2

k∏
j=2

[
1 + rj−1,j

p

]
sin θ

[1]
3 =

1

n
[k]
3 cos θ

[k]
3

2∏
j=k

[
tj,j−1
p

]
sin θ

[k]
3 (38)

showing that the Fresnel factor defined for an incoming beam identically applies to p-

polarized SFG emission in medium [k] projected onto z axis and transmitted to medium

[1]. The boundary conditions belonging to the straight Fresnel factors of the SFG beam

quantify p-polarized SFG emission by the nonlinear polarization located in medium [k],

then transmitted throughout (k-1) interfaces to the far field in medium [1]. Equations 36-38

show that such boundary conditions are identical to those applied to any incoming far field,

taking into account the emission factor defined in Eq. 2. The Fabry-Pérot, boundary con-

dition and dephasing terms, thus the whole Fresnel factors are equal for the SFG outgoing
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and the incoming beams. We recover in the expressions above the universality of the Fresnel

factors in the generic case of the N-layer system.

When SFG is emitted and measured in transmission, the Fresnel factors for the SFG beam

differ from the ones determined above because they now account for the propagation of a

beam generated in medium [k] and travelling towards the far field in medium [N]. However,

from the universality property, we know that, whatever the polarization, such Fresnel factors

for the transmitted SFG beam are equal to those applying to an incoming beam travelling

from layer [N] to layer [k], provided that emission factor from Eq. 4 is used. They may be

deduced from the formulas above by appropriately swapping the indices, i.e. transforming

{1, 2, · · · , k − 1, k, · · · , N − 1, N} into {N,N − 1, · · · , k, k − 1, · · · , 2, 1}. As propagation

phases are now calculated from the last interface,
N−1∑
j=2

β
[j]
3 must be subtracted from the total

phase to account for the common origin of the phases at z = 0. Explicit formulas for SFG

in transmission in the three-layer system may be found in Ref. 30.

Beyond these general equations, we show below how they must be adapted to two specific

cases, namely ultrathin and macroscopic layers, and how they apply to the four-layer case.

III. SPECIAL CASES

For practical applications, we stress on the essential differences between thin, microscopic

and macroscopic layers. The calculations above suppose that the layers are ”microscopic”,

i.e. thick enough not to neglect the Fabry-Pérot and interference effects due to beam prop-

agation. In the two parts below, we consider the transformation of these equations when

one layer becomes very thin, or instead very thick.

A. Thin layers

We examine what happens when one of the layers (medium [h], refractive index n[h])

has a thickness small when compared to the wavelengths of light, or even tending to zero

(d[h] ≪ λ/2π, leading to β[h] → 0 and ξ[h] → 1). In the three-layer system, we have in

this situation (with h = 2), whatever the polarization, r123 → r12 + r23

1 + r12r23
= r13. Layer

[2] becomes blank for linear optics55 and, as for nonlinear optics, the main consequence

is the equivalence between 2L and 3L models apart from continuity conditions for the z-
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component.30 Here we show that this result generalizes in the N-layer system: the Fresnel

factors applicable to layer [h] are equal to the Fresnel factors of the same system where

layer [h] has been removed (this new system being called {N \ h}), apart from continuity

conditions for the z-component. In order to show this, we plug ξ[h] = 1 into Eq. 19 in

order to calculate the Fresnel factor for s-polarization at any interface {k− 1} in the system

(generalization for arbitrary z is straightforward using Eq. 30). Developing the denominator

using rh−1,h+1 =
rh−1,h + rh,h+1

1 + rh−1,hrh,h+1
(valid for s and p polarizations) gives

N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
=

N−1∏
j=2

{N\h}

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]† × (1 + rh−1,h
s rh,h+1

s ) (39)

where the product for the last term is not ruled. For h ⩽ k, factors (1 + rh−1,h
s )(1 + rh,h+1

s )

appear at the numerator, which simplify using

1 + rh−1,h+1
s =

(1 + rh−1,h
s )(1 + rh,h+1

s )

1 + rh−1,h
s rh,h+1

s

(40)

and Eq. 19 becomes:

F {k−1}
y =

(1 + ξ[k]rk,k+1
s )†

N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

{N\h}

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
k−1∏
j=1

{N\h}

[
1 + rj,j+1

s

] k−1∏
j=2

{N\h}

eiβ
[j]

(41)

For h ⩾ k + 1, the same factor (1 + rh−1,h
s rh,h+1

s ) appears as a normal product both at the

numerator and denominator, and after simplification, Eq. 19 becomes:

F {k−1}
y =

(1 + ξ[k]rk,k+1
s )†

N−1∏
j=k+1
{N\h}

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

{N\h}

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
k−1∏
j=1

[
1 + rj,j+1

s

] k−1∏
j=2

eiβ
[j]

(42)

The same procedure leads to analogous results for x- and z-components. For the latter, factor

(n[1])2/(n[h])2 (Eq. 20 and 31) is the only reminder of the presence of [h] layer. Otherwise,

this layer has become blank for linear and nonlinear optics, as is layer [2] with a negligible

thickness in a three-layer system.30,55 Consequently, in a N-layer system, all layers having
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thicknesses smaller enough than the wavelengths of light may be discarded, reducing the

complexity of the system, in order to focus only on the thick layers where interferences

occur. Conversely, this means that it is possible to model a multilayer system by increasing

at will the number of layers as soon as they have a negligible thickness and their indices of

refraction are introduced to modulate the Fresnel z-factors. This option is interesting for

example when the nonlinear polarizations happen to be generated at any interface where

the refractive index differs from both bulk indices.32 Choosing the right index for such

an interface layer is a classical puzzle for SFG spectrocopy, and several options have been

proposed, based on variations on a Lorentz model,31,56,57 molecular dynamics simulations58,59

or ellipsometry measurements60 It is also possible to define the interface by several sublayers,

or even a continuous variation of the refractive index as a function of depth.61

B. Macroscopic layers

The equations in Part II take full account of the Fabry-Pérot (F-P) effect due to inter-

ferences between all the beams propagating and bouncing inside a generic layer [k] after

multiple reflections at the {k-1} and {k} boundaries. This analysis is correct as long as the

system allows long range propagation and overlap of the multiply reflected beams. When

layer [k] becomes thick, or even macroscopic, these hypotheses suffer from several restric-

tions. In practical SFG experiments, these thick layers are in general made of wafers, plates

or windows not originally designed for perfect F-P effect, or in any case too thick to perfectly

achieve it. It is known that even manufactured F-P resonators may suffer from imperfec-

tions, due to non-parallel plane surfaces or non-planar boundaries, either slightly spherical or

roughened.62,63 Quantitatively, the upper bound of the misalignment of two adjacent plane

interfaces in the system (i.e. non-parallelism) leading to an incomplete F-P effect is a frac-

tion of the wavelength.64 It is therefore more easily reached for thick layers, whereas it may

be neglected when the thickness of the interfering layer is roughly up to the order of magni-

tude of the wavelength. In addition, contrary to optical set-ups designed for F-P analysis,

SFG experiments usually make use of small and focused beams at high angles of incidence.

In these kinds of geometries, it is easy to see that the multiple beams inside a thick layer [j]

experiment a drift in position which quickly leads to loss of spatial overlap, all the more as

beam overlap is usually experimentally optimized at one of the interfaces, not in the middle
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of the thick layer. When ultrashort pulses are involved, we may also expect that the pulses,

originally overlapped in time, acquire a progressive time delay as a consequence of their

different propagation speeds (i.e. group velocities), leading to a decreasing efficiency of the

nonlinear process when multiple reflections are involved. Finally, for Gaussian beams, the

nonlinear phenomenon essentially takes place close to the overlapping beam centers where

the intensities of the input beams are maximal, and the multiply reflected beams quickly

shift away from this small optimal zone.

As a consequence, it seems reasonable to give the possibility to the user to simplify

the model by treating thick layers in a different way as for their Fresnel factors. When

the thickness becomes macroscopic (typically for d[k] ≫ λIR), it is possible to adapt the

implementation and the magnitude of the F-P effect to the experimental geometry and

sample properties. In particular, when multiple reflections are completely neglected in layer

[k], all terms specific to this phenomenon must be discarded. This means that a beam

entering macroscopic layer [k] is allowed to reflect on the next interface {k} (to ensure

consistent boundary conditions there) but not backwards on interface {k-1} and further.

As a consequence on the formulas, terms containing ξ[k]rk−1,k
s/p can be dropped from the F-P

denominator in Eq. 18-20 and 29-31, as illustrated in the examples in Part III C.22

Considering the general Fresnel factor in medium [k] from Eq. 29-31, we see that the

denominator for a macroscopic layer [k] separates as

N−1∏
j=2

[
1 + ξ[j]rj−1,j

s/p rj,j+1
s/p

]†
=

k−1∏
j=2

[
1 + ξ[j]rj−1,j

s/p rj,j+1
s/p

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

s/p rj,j+1
s/p

]†
(43)

when ξ[k]rk−1,k
s/p = 0. For the y-component (identical relationships apply to x and z compo-

nents), Eq. 30 separates into

F [k]
y (z) =

k−1∏
j=2

eiβ
[j]

k−1∏
j=1

[
1 + rj,j+1

s

]
k−1∏
j=2

[
1 + ξ[j]rj−1,j

s/p rj,j+1
s/p

]†
[
eiβ

[k](z) + rk,k+1
s ξ[k]e−iβ[k](z)

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

s/p rj,j+1
s/p

]†
(44)

This formula expresses the full factor inside layer [k] as the (regular) product between the

factor at the last interface {k-1} inside layer [k] of the {1;k} subsystem (Eq. 22) and the

factor inside the first medium (i.e. layer [k]) of the {k;N} subsystem. This second factor

has not been calculated above, but may be reconstructed from Eq. 10 by changing (1,2) into
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(k,k+1) and replacing first term [1 + rk,k+1
s ]† by the full function of β[k](z), or from Eq. 27

by changing (2,3) into (k,k+1) and discarding the terms involving rk−1,k
s . In other words,

as seen from macroscopic layer [k], the system can formally be split into two independent

subsystems {1;k} and {k;N}. If the reflection process at the k interface is moreover neglected

(i.e. rk,k+1
s/p = 0) then F

[k]
y (z) reduces, as could be anticipated, to

F [k]
y (z) =

k−1∏
j=2

eiβ
[j]

k−1∏
j=1

[
1 + rj,j+1

s

]
k−1∏
j=2

[
1 + ξ[j]rj−1,j

s/p rj,j+1
s/p

]† eiβ[k](z), (45)

and accordingly for x and z factors. In this case, the whole system is reduced to the upper

subsystem {1;k}, and the Fresnel factors combine transmission from layer [1] to layer [k]

and a mere forward propagation phase inside layer [k]. The lower subsystem {k;N} has no

influence on the value of the electric field inside layer [k].

C. Four-layer system

As a straightforward application of the general results, we list here the Fresnel factors

applicable to the SFG process at the three interfaces of a four-layer system (the five-layer

system is addressed in the Supplementary Material). Such a four-layer description is inter-

esting for example when studying molecular layers deposited on top of a substrate which

spontaneously oxidizes in air, thus inserting an additional oxide layer into the three-layer

system;26,65 when a gap layer is experimentally present between medium 1 and the interface,

for example in ATR configuration;23 when the presence of a liquid environment makes it

necessary to probe the interface through a transparent substrate;22 when the media have to

be decomposed into a surface layer and a bulk layer.24

From the results for the N-layer system, we can write the Fresnel factors linking the far

field amplitude in medium [1] to the local fields at
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interface {1}:

F interface 1
x (ωi) =

(
1− r12p

) (
1− ξ[2]r23p + ξ[3]r23p r34p − ξ[2]ξ[3]r34p

)
1 + ξ[2]r12p r23p + ξ[3]r23p r34p + ξ[2]ξ[3]r12p r34p

(46)

F interface 1
y (ωi) =

(1 + r12s )
(
1 + ξ[2]r23s + ξ[3]r23s r34s + ξ[2]ξ[3]r34s

)
1 + ξ[2]r12s r23s + ξ[3]r23s r34s + ξ[2]ξ[3]r12s r34s

(47)

F interface 1
z (ωi) =

(
1 + r12p

) (
1 + ξ[2]r23p + ξ[3]r23p r34p + ξ[2]ξ[3]r34p

)
1 + ξ[2]r12p r23p + ξ[3]r23p r34p + ξ[2]ξ[3]r12p r34p

(48)

interface {2}:

F interface 2
x (ωi) =

eiβ
[2] (

1− r12p
) (

1− r23p
) (

1− ξ[3]r34p
)

1 + ξ[2]r12p r23p + ξ[3]r23p r34p + ξ[2]ξ[3]r12p r34p
(49)

F interface 2
y (ωi) =

eiβ
[2]
(1 + r12s ) (1 + r23s )

(
1 + ξ[3]r34s

)
1 + ξ[2]r12s r23s + ξ[3]r23s r34s + ξ[2]ξ[3]r12s r34s

(50)

F interface 2
z (ωi) =

eiβ
[2] (

1 + r12p
) (

1 + r23p
) (

1 + ξ[3]r34p
)

1 + ξ[2]r12p r23p + ξ[3]r23p r34p + ξ[2]ξ[3]r12p r34p

(
n[1]

n[2]

)2

(51)

and interface {3}:

F interface 3
x (ωi) =

eiβ
[2]
eiβ

[3]
(1− r12p )(1− r23p )(1− r34p )

1 + ξ[2]r12p r23p + ξ[3]r23p r34p + ξ[2]ξ[3]r12p r34p
(52)

F interface 3
y (ωi) =

eiβ
[2]
eiβ

[3]
(1 + r12s )(1 + r23s )(1 + r34s )

1 + ξ[2]r12s r23s + ξ[3]r23s r34s + ξ[2]ξ[3]r12s r34s
(53)

F interface 3
z (ωi) =

eiβ
[2]
eiβ

[3]
(1 + r12p )(1 + r23p )(1 + r34p )

1 + ξ[2]r12p r23p + ξ[3]r23p r34p + ξ[2]ξ[3]r12p r34p

(
n[1]

n[3]

)2

(54)

with ξ[j] = e2iβ
[j]

and β[j] =
ω

c
n[j]d[j] cos θ[j]. For z-component, these Fresnel factors at

interface {k} apply in medium [k]. For the same interface in medium [k+1], the continuity

condition must be taken into account by using

(
n[1]

n[k+1]

)2

instead of

(
n[1]

n[k]

)2

.

It is interesting to compare these results to the few examples of four-layer systems in the

literature.22–24 In Ref. 22, after reordering the interface numbers, the probed interface (yyz

component) is buried between media [3] and [4] (interface {3}). Letting aside the coefficient

relating to the entrance inside the first prism, the y-component coefficient reads (Eq. A5)

(1 + r12s )(1 + r23s )(1 + r34s )

1 + ξ[3]r23s r34s
. (55)

Comparing with Eq. 53 shows several discrepancies. We understand that layer [2] (the

substrate) is considered macroscopic and that no Fabry-Pérot nor phase delays are taken into
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account in this medium. Applying the rule defined in Part III B, we drop terms containing

ξ[2]r12s and recover their formulas, except factor eiβ
[3]

which shows that the origin of the

phases is probably set at interface {3}. The z-component reads

n[1]

n[2] (1 + r12p )n
[2]

n[3] (1 + r23p )n
[3]

n[4] (1 + r34p )

1 + ξ[3]r23p r34p

(
n[4]

n[m]

)2

(56)

where n[m] is the index of refraction of the thin nonlinear sheet inside medium 4. Leaving

aside as above the ξ[2]r12s factors and the propagation phases in media [2] and [3], we should

find
(1 + r12p )(1 + r23p )(1 + r34p )

1 + ξ[3]r23p r34p

(
n[1]

n[m]

)2

. (57)

The missing n[1]/n[4] factor is more easily understood when considering also their x-

component, which surprisingly has the same amplitude as their z-component (apart from

the boundary conditions), which should not be the case. We understand that the formu-

las provide in fact, probably mistakenly, the amplitudes of the p-polarized local field in

medium [4], rather than its x- and z-components. Reintroducing factors cos θ[4]/ cos θ[1] and

sin θ[4]/ sin θ[1] = n[1]/n[4] in the formulas for x and z, respectively, allows to recover the

expected Fresnel factors. This example illustrates how the calculation of Fresnel factors is

very dependent of the approximations made during the definition of the system, and, as

already pointed out, the specificity of macroscopic layers.

Another interfacial system is described as composed of four layers with one vanishing

thickness23 or five layers with two vanishing thicknesses.24 In the former, the nonlinear sheet

is located in medium [3] at the interface with medium [4]. The coefficient for the y-component

is expected to follow from Eq. 53. The thickness of layer [3] is then considered negligible,

leading to β[3] = 0 and ξ[3] = 1. Eq. 53 becomes

F interface 3
y (ω1) =

eiβ
[2]
(1 + r12s )(1 + r23s )(1 + r34s )

1 + r23s r34s + ξ[2]r12s (r23s + r34s )
(58)

We illustrate the mechanism used in Part IIIA and divide numerator and denominator by

1+r23s r34s . Using
r23s + r34s
1 + r23s r34s

= r24s , leading to 1+r24s =
(1 + r23s )(1 + r34s )

1 + r23s r34s
, we get as expected

the y Fresnel factor of the three layer system where layer 3 has been removed:

F interface 3
y (ω1) =

eiβ
[2]
(1 + r12s )(1 + r24s )

1 + ξ[2]r12s r24s
(59)

Simple manipulations of the original equation for L
(4)
1 in Ref. 23, essentially introducing the

explicit values of rs/p, allows retrieving an identical expression. The same manipulations
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lead as expected for the z-component L
(4)
2 to

F interface 3
z (ω2) =

eiβ
[2]
(1 + r12p )(1 + r24p )

1 + ξ[2]r12p r24p

(
n[1]

n[3]

)2

(60)

For the SFG y-component, we note that the emission factor turns down toG(4) =
2iπω3

cn[1] cos θ[1]
L
(4)
1 ,

in accordance with the usual factors in Eq. 2. In Ref. 24, the full system is composed of five

layers, in which two are nonlinear media with vanishing thicknesses. The same procedure for

manipulating the equations leads to recover the same Fresnel factors as with our formulas,

provided that the vanishing thicknesses are taken into account.

As illustrated here, our general formulas allow to recover those of the literature. However,

for most published SFG analysis of four-layer systems, one of the layers has a vanishing

thickness, leading to final equations converging towards a three layer system. It is possible

to find some examples where explicitly non-vanishing thicknesses have been studied.40,66 In

these cases, the use of the transfer matrix formalism does not allow the determination of

analytical Fresnel factors and therefore may not be directly compared to our expressions.

However, it is possible to compare the numerical results of both methods. In Fig. 3, we

tackle some of the calculations of Ref. 66 using the same definition of the four-layer system

(air/PTCDI-C8/SiO2/Si) and the same sources for the refractive indices. We note that

the plotted |F {1,2}
ijk | = |F {1,2}

i (ω3)F
{1,2}
j (ω1)F

{1,2}
k (ω2)| reproduce all the features seen on the

original |T ijk
{1,2}| transfer coefficients. The main small differences lie in the relative amplitudes

of the coefficients, which are mainly linked to the definition of the transfer coefficients versus

Fresnel factors. For example, a better agreement is obtained when our zyy component at

interface {1} is corrected by factor (n
[1]
3 /n

[2]
3 )2, suggesting that the nonlinear polarization at

this interface is set in medium [1] in the original publication, instead of medium [2] as we

do.

IV. MULTIPLE NONLINEAR SOURCES

In a multilayer film, several interfaces may give birth to a nonlinear polarization. The

SFG signals they emit sum up and interfere in the global response of the interface. From

Eq. 3, we see that such interferences have their origin in the relative values, in amplitude

and in phase, of their nonlinear susceptibility tensors and of their Fresnel factors. In order

to exploit the specificity of SFG spectroscopy towards interfaces, it becomes interesting to
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FIG. 3. Amplitude of the complex Fresnel factors (all scales identical) for the SFG process at the

four-layer {air/PTCDI-C8/SiO2/Si} interface described in Ref. 66. Tunable parameters are the

IR wavenumber and the thickness of the PTCDI-C8 layer. For zyy term at interface {1}, best

intensity match with the original publication is obtained after correction by (n
[1]
3 /n

[2]
3 )2.

look for the specific experimental conditions which lead to the decrease, ideally down to

cancellation, of the response of one (or several) interfaces while keeping the interface of

interest at a high signal level. The three-layer case has been addressed in the previous

article30 and elsewhere.32 Here we focus on the four-layer and N-layer systems.
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A. Four-layer system

The conditions leading to the cancellation of one of the electric fields at one of the three

interfaces in the four-layer system directly follows from Eq. 46-54, more precisely from their

numerators. We immediately see that the fields at the last interface {3} cannot exactly

vanish (for the reasons recalled in Part IIA). The fields at next-to-last interface {2} may

vanish under the same conditions as in the three-layer system33 (see the complete discussion

in Ref. 30) applied to the last two media, i.e. adapted from layers [2] and [3] to layers [3]

and [4]. The analysis of this previous article is thus still valid when applied to the last two

layers of the system. Finally, cancelling one of the fields at interface {1} implies to cancel

the numerator of one of Eq. 46-48. Considering first the y-component, we have to solve

1 + ξ[2]r23s + ξ[3]r23s r34s + ξ[2]ξ[3]r34s = 0. Such an equation depends on many parameters: four

indices of refraction n[1], n[2], n[3], n[4], two layer thicknesses d[2], d[3] and θ[1], making it

difficult to establish general rules. There are therefore potentially various sets of parameters

leading to the cancellation of a field at interface {1}. However, such a cancellation does not

happen in the general case, as is exemplified in Fig. 3 where points with the lowest values

represent between 6% and 11% of the maxima at interface {1}, and between 22% and 31%

at interface {2}. Of course, interesting contrast is still achievable when comparing the full

Fresnel factors at interfaces {1}, {2} and {3}.66

We may however consider a particular case interesting for its practical application: we

suppose that the parameters of layers [3] and [4] have been optimized so that the y-

component of the electric field cancels at interface {2}, i.e. ξ[3]r34s = −1.30,33 Plugging

this condition in the cancelling condition at interface {1} gives:

1 + ξ[2]r23s + ξ[3]r23s r34s + ξ[2]ξ[3]r34s = 1 + ξ[2]r23s − r23s − ξ[2] = (1− r23s )(1− ξ[2]) = 0 (61)

leading to ξ[2] = 1, which is easily achieved for a series of thicknesses d
[2]
i for layer [2], fulfilling

the condition

d
[2]
i =

mλi

2n
[2]
i cos θ

[2]
i

(62)

for m ⩾ 0, the case m = 0 being obvious. We note that the cancelling condition at interface

1 does not depend on the value of r23s . This means that, when the electric field along y

cancels at the next-to-last interface {2}, it also easily cancels out at interface {1} just by

adjusting the thickness of medium [2]. In a similar way, for the x-component, under the
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cancelling condition at interface {2}: 1 − ξ[3]r34p = 0, we may cancel the electric field at

interface {1} under the condition

1− ξ[2]r23p + ξ[3]r23p r34p − ξ[2]ξ[3]r34p = 1− ξ[2]r23p + r23p − ξ[2] = (1 + r23p )(1− ξ[2]) = 0 (63)

and the same calculation for the z-component leads to (1− r23p )(1− ξ[2]) = 0. The cancelling

conditions for the three components are therefore all identical (Eq. 62).

Beyond cancelling conditions, we also understand from this analysis that the periodicities

in ξ[2] and ξ[3] play a role in the contrast factors from layer to layer. Of course, only the

values of the full numerators of the Fresnel factors provide the exact contrast. Nevertheless, if

media [2] and [3] have refractive indices not too far apart, we may expect that the conditions

on (d[2], d[3]) leading to a maximum {2}/{1} contrast will also induce further maxima for

a series of thicknesses (d[2] + mλi/2n
[2]
i cos θ

[2]
i , d[3] + pλi/2n

[3]
i cos θ

[3]
i ). Interestingly, the

simulations in Ref. 66 (Figure 5) show indeed clear periodic fluctuations in the maxima of

the contrast factors, whatever the polarizations, with orders of magnitude for their periods

λvis,SFG/2n
[2]
vis,SFG cos θ

[2]
vis,SFG ∼ 230−260nm along d[2] and λvis,SFG/2n

[3]
vis,SFG cos θ

[3]
vis,SFG ∼

290− 330nm along d[3], respectively.

As a conclusion, if the design of layers [3] and [4] of the system (i.e. n
[3]
i , d

[3]
i , n

[4]
i ), probed

by light with wavelength λi under the angle of incidence θ
[1]
i (leading to θ

[3]
i and θ

[4]
i by Snell’s

law), leads to fulfill the condition for the cancellation of one component of the electric field

at interface {2}, then a mere adjustment of the thickness of layer [2] to a value fulfilling

Eq. 62 also leads to the simultaneous cancellation of the same component of the electric

field at interface {1}. By a careful design of the system, it is therefore possible to probe

by SFG only the last interface of a four-layer system while keeping the two other interfaces

SFG-silent. In particular, if a three-layer system is originally designed in order to probe

only the last interface (i.e. the other one is made silent), then it is possible to deposit or

add other layers on top of the sample and keep them silent as long as they fulfill Eq. 62.

B. N-layer system

As shown along the detailed proof below, we may generalize the previous result to a N-

layer system. If the system is designed in order that the SFG produced by the next-to-last

interface (interface {N-2}) cancels out (because one component of one electric field cancels
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out following the various conditions listed in Ref. 30), it is possible to achieve the cancellation

of the same component of that electric field at all other interfaces {k-1}, from k=2 to N-2,

providing that the thicknesses d[k] are adjusted according to the condition of Eq. 69, valid

for the three components of the field. In other words, in such a N-layer system, all interfaces

except the last one become SFG-silent. Conversely, it is possible to adjust the value of d[1]

in such a system (e.g. using a half integer value for m in Eq. 69) to build a N-layer system

where only the first and last interfaces coherently produce SFG radiation (interfering with

each other) while all others remain silent, in a way comparable to a conventional three-layer

system, where the SFG signals from both interfaces usually interfere.32,36

The demonstration relies on Eq. 18 to 20. Focusing on the y-component, we may cancel

the electric field at the {N-2} interface by fulfilling the equality 1 + ξ[N−1]rN−1,N
s = 0. We

recover for the last two layers of the N-layer system the same conditions as in Ref. 30 for

the three-layer system. We have for the {N-3} interface the cancellation condition:

(1 + ξ[N−2]rN−2,N−1
s )†

[
1 + ξ[N−1]rN−2,N−1

s rN−1,N
s

]†
= 0 (64)

and, by plugging in 1 + ξ[N−1]rN−1,N
s = 0, we get

(1− ξ[N−2])(1− rN−2,N−1
s ) = 0 (65)

so that condition ξ[N−2] = 1 is sufficient to extend the cancellation to interface {N-3}. Re-

cursively, we consider now interface {k-1} and suppose that the y-component of the electric

field vanishes for interfaces {k} to {N-2}, represented by the conditions 1+ξ[N−1]rN−1,N
s = 0

and ξ[j] = 1 for k+1 ⩽ j ⩽ N − 2. We rewrite the cancellation condition at interface {k-1}

as

(1 + ξ[k]rk,k+1
s )†

N−2∏
j=k+1

[
1 + rj−1,j

s rj,j+1
s

]† [
1− rN−2,N−1

s

]†
= 0 (66)

Applying the rules of the ruled product in inverse order from factors rN−2,N−1
s to rk,k+1

s , and

more precisely using recursively equalities like

[
1 + rN−3,N−2

s rN−2,N−1
s

]† [
1− rN−2,N−1

s

]†
=

[
1− rN−3,N−2

s

]† [
1− rN−2,N−1

s

]
(67)

leads to the transformation of Eq. 66 into

(1 + ξ[k]rk,k+1
s )†

[
1− rk,k+1

s

]† N−2∏
j=k+1

[
1− rj,j+1

s

]
= (1− ξ[k])

N−2∏
j=k

[
1− rj,j+1

s

]
= 0 (68)
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This shows by induction that the y-component of the electric field may also be cancelled at

interface {k-1} by constructing ξ[k] = 1, that is choosing thickness d[k] as

d
[k]
i =

mλi

2n
[k]
i cos θ

[k]
i

(69)

for m ⩾ 0. Demonstrations for x- and z-components follow the same track and lead to the

same result.

V. CONCLUSION

We believe that surface SFG spectroscopy will apply in the future to more and more

complex systems to study buried interfaces. Instead of modifying the Fresnel paradigm for

surface SFG to adapt to these new conditions, the present article proposes to extend this

simple description, made up of two simple equations involving well-defined quantities, and

adapt it to the particularities of multilayer systems. The evolution thus only applies to the

Fresnel factors, leaving the rest unchanged. We hope that this article thus establishes a link

between present and future uses of second-order nonlinear spectroscopies.

Interestingly, the Fresnel factor concept may be extended to the magnetic terms involved

in the nonlinear process, as fully described in Ref. 67. A generalization to the N-layer

system, following the same steps as here,50 seems rather straightforwardly accessible, as has

already been attempted using the (4×4)-matrix formalism.46 It would give birth to new

and simples rules for interferences between SFG processes of electric dipole and magnetic

origins, for example involving chiral molecules or magnetic nanoparticles, even when both

processes occur at two distinct interfaces separated by several media. Of course, in this

case, care should be taken to discriminate between surface and bulk origin of the signals.

In the same line, extension to bulk quadrupolar higher order terms has been proposed for

multilayers in the transfer matrix frame,42 and detailed modellings exist for the three-layer

system under the Fresnel formalism.68 As our formulas include the generic z-dependent

Fresnel factor at any point inside the N-layer system, and considering the equivalence of

magnetic and quadrupolar contributions to an effective electric dipolar description,69,70 a

generic description in the N-layer system of surface and bulk nonlinear responses induced

by electric dipole, magnetic and quadrupolar contributions appears reachable.
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Appendix A: General formalism

In the Abelès formalism, each interface {k} between layers [k] and [k+1] is represented by

a vector Q{k} gathering the two tangential components of the electromagnetic field at this

interface (i.e. continuous across the interface). Specifically, we have, for the s-polarization,

Q{k}
s =

U{k}
s

V
{k}
s

 =

E{k}
y

H
{k}
x

 (A1)

and for the p-polarization,

Q{k}
p =

U{k}
p

V
{k}
p

 =

H{k}
y

E
{k}
x

 (A2)

where E and H stand for the electric and magnetic fields, respectively. Contrary to the

T-matrix formalism, one matrix M [k], characteristic of each layer [k], gathers amplitude and

phase information for the transfer from one layer to the other. This leads to the following

relations for s polarization, with p[k] = n[k] cos θ[k]:

M [k]
s =

 cos β[k] − i

p[k]
sin β[k]

−ip[k] sin β[k] cos β[k]

 =
e−iβ[k]

2

 1 + ξ[k]
1

p[k]
(1− ξ[k])

p[k](1− ξ[k]) 1 + ξ[k]

 (A3)

and, symmetrically for p polarization, using q[k] = cos θ[k]/n[k]:

M [k]
p =

 cos β[k] − i

q[k]
sin β[k]

−iq[k] sin β[k] cos β[k]

 =
e−iβ[k]

2

 1 + ξ[k]
1

q[k]
(1− ξ[k])

q[k](1− ξ[k]) 1 + ξ[k]

 (A4)

The relations:

r12s =
p[1] − p[2]

p[1] + p[2]
; 1 + r12s =

2p[1]

p[1] + p[2]
; 1− r12s =

2p[2]

p[1] + p[2]
(A5)

and

r12p =
q[1] − q[2]

q[1] + q[2]
; 1 + r12p =

2q[1]

q[1] + q[2]
; 1− r12p =

2q[2]

q[1] + q[2]
(A6)

follow from the definitions of p[k] and q[k].

The optical properties of the system are obtained in successive steps:

1) evaluate the total matrix M of the systemU{1}

V {1}

 = M [2] · · ·M [N−1]

U{N−1}

V {N−1}

 = M

U{N−1}

V {N−1}

 (A7)
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2) calculate the global reflection r
{1,N}
s/p ≡ rNs/p and transmission t

{1,N}
s/p ≡ tNs/p coefficients

of the system for s and p incident polarisations:

rNs =
(m11 +m12p

[N ])p[1] − (m12 +m22p
[N ])

(m11 +m12p[N ])p[1] + (m12 +m22p[N ])
(A8)

tNs =
2p[1]

(m11 +m12p[N ])p[1] + (m12 +m22p[N ])
(A9)

rNp =
(m11 +m12q

[N ])q[1] − (m12 +m22q
[N ])

(m11 +m12q[N ])q[1] + (m12 +m22q[N ])
(A10)

tNp =
n[1]

n[N ]

2q[1]

(m11 +m12q[N ])q[1] + (m12 +m22q[N ])
(A11)

3) evaluate Q{1} and Q{N−1} using, for s polarized far field E0:

Q{1} =

U{1}

V {1}

 =

 1 + rNs

p[1](1− rNs )

E0
y (A12)

Q{N−1} =

U{N−1}

V {N−1}

 =

 1

p[N ]

 tNs E
0
y (A13)

and, for p polarized far field E0:

Q{1} =

U{1}

V {1}

 =

 1 + rNp

q[1](1− rNp )

n[1]E0
p (A14)

Q{N−1} =

U{N−1}

V {N−1}

 =

 1

q[N ]

n[1]tNp E
0
p (A15)

4) calculate Q{k−1} for 3 ⩽ k ⩽ N − 1 in the system, taking into account the fact that

M [k] matrices allow backward progression (from [N] to [1]) into the successive layers:

Q{k−1} =

U{k−1}

V {k−1}

 =
N−1∏
k

M [j]

U{N−1}

V {N−1}

 (A16)

With equations A12-A16, all Q vectors of the system, hence the field components at all

interfaces, are known.

5) evaluate the fields into medium [k] at an arbitrary depth zk−1 ⩾ z ⩾ zk using:

Q[k](z) = N [k](z)

U{k−1}

V {k−1}

 (A17)
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with N [k](z) accounting this time for forward progression in layer [k]. Defining β[k](z) =
ω

c
n[k](z[k−1] − z) cos θ[k] ⩾ 0 and ξ[k](z) = e2iβ

[k](z), we have, for s polarization:

N [k]
s (z) =

 cos β[k](z)
i

p[k]
sin β[k](z)

ip[k] sin β[k](z) cos β[k](z)

 =
e−iβ[k](z)

2

 1 + ξ[k](z)
1

p[k]
(
ξ[k](z)− 1

)
p[k]

(
ξ[k](z)− 1

)
1 + ξ[k](z)


(A18)

and for p polarization:

N [k]
p (z) =

 cos β[k](z)
i

q[k]
sin β[k](z)

iq[k] sin β[k](z) cos β[k](z)

 =
e−iβ[k](z)

2

 1 + ξ[k](z)
1

q[k]
(
ξ[k](z)− 1

)
q[k]

(
ξ[k](z)− 1

)
1 + ξ[k](z)


(A19)

6) Finally, the three components of the electric field at any position inside medium [k]

follow from the definitions of U and V as

E[k]
x (z) = V [k]

p (z), E[k]
y (z) = U [k]

s (z) and E[k]
z (z) = U [k]

p (z)
n[1]

(n[k])2
sin θ[1]. (A20)

The proportionality factor between the components of the electric field inside the film

and the far electric field defines the Fresnel factors:

F [k]
x (z) =

E
[k]
x (z)

E0
p cos θ

[1]
, F [k]

y (z) =
E

[k]
y (z)

E0
y

and F [k]
z (z) =

E
[k]
z (z)

E0
p sin θ

[1]
(A21)

The point is now to provide analytic expressions for these formulas.

Appendix B: Beam with s polarization

We first focus on the incident s-polarized case and define the numerators N and denom-

inators D of the reflection and transmission coefficients:

rNs =
N [N ]

s

D
[N ]
s

tNs =
2p[1]

D
[N ]
s

(B1)

We recall the definition of the ”ruled product”, marked with a dagger (†) superscript in the

following: when a product is evaluated under this rule, all factors of the form (rk−1,k
s )2 are

set to 1. From Eq. A8, we have

D[N ]
s = (m11 +m12p

[N ])p[1] + (m12 +m22p
[N ]) (B2)

with M = M [2] · · ·M [N−1] and

D[N+1]
s = (m

[+1]
11 +m

[+1]
12 p[N+1])p[1] + (m

[+1]
12 +m

[+1]
22 p[N+1]) (B3)
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with M [+1] = (M [2] · · ·M [N−1])M [N ]. Using the expression of M [N ] from Eq. A3, we have:

D[N+1]
s =

e−iβ[N ]

2

[
p[N ] + p[N+1]

p[N ]
D[N ]

s + ξ[N ]p
[N ] − p[N+1]

p[N ]
D[N ]

s (−p[N ])

]
=

e−iβ[N ]

1 + rN,N+1
s

[
D[N ]

s + ξ[N ]rN,N+1
s D[N ]

s (−p[N ])
]

(B4)

where the second D
[N ]
s is evaluated using −p[N ], instead of p[N ] in Eq. B2. From Eq. B4, we

see that factor p[N ] in D
[N ]
s may only appear as p[N−1]− p[N ] or as p[N−1]+ p[N ], leading (after

division by p[N−1]+p[N ] = 1+ rN−1,N
s ) to rN−1,N

s and 1, respectively. Evaluating D
[N ]
s (−p[N ])

is thus equivalent to exchanging the factors of rN−1,N
s and 1 in D

[N ]
s . In other words, we

have

D[N ]
s (−p[N ]) = (rN−1,N

s )†(D[N ]
s )† (B5)

and

D[N+1]
s =

e−iβ[N ]

1 + rN,N+1
s

(D[N ]
s )†

[
1 + ξ[N ]rN−1,N

s rN,N+1
s

]†
(B6)

Having established the induction step, the value of D
[N ]
s follows:

D[N ]
s =

N−1∏
j=2

e−iβ[j]

N−1∏
j=2

[
1 + rj,j+1

s

](D[2]
s )†

N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
(B7)

Finally, Eq. B1 gives, for the two-layer system:

D[2]
s =

2p[1]

1 + r12s
(B8)

and

D[N ]
s =

2p[1]
N−1∏
j=2

e−iβ[j]

N−1∏
j=1

[
1 + rj,j+1

s

]
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
(B9)

where the last term is called DN−layer
s in the main text. Numerator N [N ]

s follows exactly

the same induction step (Eq. B6) leading to a relation analogous to Eq. B7. In this case

however, we have by definition:

N [2]
s = r12s D[2]

s = r12s
2p[1]

1 + r12s
(B10)
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leading to

N [N ]
s =

2p[1]
N−1∏
j=2

e−iβ[j]

N−1∏
j=1

[
1 + rj,j+1

s

](r12s )†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
(B11)

or, equivalently, for N ⩾ 4,

N [N ]
s =

2p[1]
N−1∏
j=2

e−iβ[j]

N−1∏
j=1

[
1 + rj,j+1

s

](r12s + ξ[2]r23s )†
N−1∏
j=3

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
(B12)

From Eq. B9 and B12, we get the quantities of interest:

tNs =
E

{N−1}
y

E0
y

= F {N−1}
y =

N−1∏
j=2

eiβ
[j]

N−1∏
j=1

[
1 + rj,j+1

s

]
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]† (B13)

rNs =

(r12s )†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]† (B14)

We note that the two products at the numerator and denominator in Eq. B14 do not simplify

because of the ruled product with r12s at the numerator. To complete Eq. A12, we also need:

1 + rNs =
E

{1}
y

E0
y

= F {1}
y =

(1 + r12s )†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]† (B15)

and

1− rNs =

(1− r12s )†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]† . (B16)

DenominatorsD
[N ]
s are common to all quantities, and only the last product in Eq. B9 remains

after simplification with N [N ]
s . A graphical help is provided in the main text to evaluate this
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ruled product. To construct N [N ]
s from the 2N−2 terms in D

[N ]
s , one only needs to remove

r12s factors in the 2N−3 terms where they appear, and multiply the 2N−3 other terms by r12s .

This symmetry accounts for the (1 + r12s ) and (1− r12s ) factorizations in 1 + rNs and 1− rNs ,

respectively.

Some aspects of the formulas above could have been anticipated: (i) one could have

expected the transmission coefficient to be proportional to the numerator of Eq. B13. The

first term accounts for the total phase acquired upon beam propagation after crossing the

whole system. The second term is simply the product of the transmission coefficients across

all the interfaces: if any of them vanishes, no beam is transmitted to layer [N]; (ii) identically,

if (1+ r12s ) is to vanish (this hypothesis is rather theoretical as it would require n[1] = 0 54 or

θ[1] = 90◦, but it is possible to get close to it when |n[2]| ≫ |n[1]|, for example at a dielectric-

metal interface), so will the total electric field at the first interface, and accordingly the

total reflected field by the N-layer system (1+ rNs ), hence the proportionality to (1+ r12s ) in

Eq. B15.

The next step is to calculate Q{k−1}, hence the electric field at each interface {k-1}, for

3 ⩽ k ⩽ N − 1, using Eq. A16. In this equation, we recognize the matrix linking input and

output Q̃ vectors of system {k-1,N} composed of the last N-k+2 layers [Figure 1(C)]. From

the above, we know how to calculate its properties, and we call r̃Ns and t̃Ns its reflection and

transmission coefficients, respectively. For this system

Q̃{k−1} =

Ũ{k−1}

Ṽ {k−1}

 =

 1 + r̃Ns

p[k−1](1− r̃Ns )

E{k−1}
s =

N−1∏
k

M [j]

Ũ{N−1}

Ṽ {N−1}

 (B17)

and

Q̃{N−1} =

Ũ{N−1}

Ṽ {N−1}

 =

 1

p[N ]

 t̃Ns E
{k−1}
s (B18)

leading to

 1 + r̃Ns

p[k−1](1− r̃Ns )

 =
N−1∏
k

M [j]

 1

p[N ]

 t̃Ns (B19)

Turning back to the full {1,N} system, we have

Q{k−1} =

U{k−1}

V {k−1}

 =
N−1∏
k

M [j]

 1

p[N ]

 tNs E
0
y (B20)
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and the electric field amplitude E
{k−1}
y = U{k−1} at the interface between layers [k-1] and

[k] follows:

E{k−1}
y =

tNs
t̃Ns

(1 + r̃Ns )E
0
y . (B21)

From the definition (Eq. 6), we may calculate the Fresnel factor at interface {k-1}: F {k−1}
y =

E
{k−1}
y /E0

y . This leads, for 3 ⩽ k ⩽ N − 1 (cases k=2 and k=N have been addressed in

Eq. B15 and B13, respectively), to

F {k−1}
y =

(1 + rk−1,k
s )†

N−1∏
j=k

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
k−1∏
j=2

[
1 + rj−1,j

s

] k−1∏
j=2

eiβ
[j]

(B22)

The last two terms on each line were predictable for the same reasons as listed above for

the analysis of Eq. B13: the deeper the fields enter the system, the bigger the propagation

phase, whereas any cancellation at an interface {j} between {1} and {k-1} (i.e. 1+rj,j+1
s = 0)

cancels the electric field E
{k−1}
y .

In a final step, the electric field inside any layer is calculated using Eq. A17 and A18,

leading to

E[k]
y (z) = U [k](z) =

e−iβ[k](z)

2

[(
ξ[k](z) + 1

)
U{k−1} +

1

p[k]
(
ξ[k](z)− 1

)
V {k−1}

]
(B23)

where

V {k−1}

E0
y

= p[k−1]

(1− rk−1,k
s )†

N−1∏
j=k

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
k−1∏
j=2

[
1 + rj−1,j

s

] k−1∏
j=2

eiβ
[j]

(B24)

This simplifies using
p[k−1]

p[k]
(1− rk−1,k

s ) = 1 + rk−1,k
s , leading to the expression of the Fresnel

factor valid for any depth z inside any layer k in the film F
[k]
y (z) = E

[k]
y (z)/E0

y . For 3 ⩽ k ⩽

N − 2, we have

F [k]
y (z) =

[
eiβ

[k](z) + rk,k+1
s ξ[k]e−iβ[k](z)

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
k∏

j=2

[
1 + rj−1,j

s

] k−1∏
j=2

eiβ
[j]

(B25)
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For k = 2, Eq. B25 holds with the last term dropped, and, for k = N − 1, Eq. B25 becomes

F [N−1]
y (z) =

eiβ
[N−1](z) + rN−1,N

s ξ[N−1]e−iβ[N−1](z)

N−1∏
j=2

[
1 + ξ[j]rj−1,j

s rj,j+1
s

]†
N−1∏
j=2

[
1 + rj−1,j

s

]N−2∏
j=2

eiβ
[j]

(B26)

It may be checked that E
[k]
y (z = z[k]) is equal to E

{k}
y as calculated from Eq. B22, and that

all the results in this section coincide with those in Ref. 30 for a three-layer system.

Appendix C: Beam with p polarizatiohn

The formalism being fully symmetric between p[k] and q[k] when switching from s to p

polarization, tNp and rNp are obtained from Eq. B13 and B14 by simply changing rs factors

into rp. From Eq. A14 and A20, we have E
{1}
x = q[1]n[1](1− rNp )E

0
p = (1− rNp )E

0
p cos θ

[1] and

E
{1}
z = (1 + rNp )E

0
p sin θ

[1] as expected. For the transmitted fields, we get

E{N}
z =

(n[N−1])2

(n[N ])2
E{N−1}

z =
(n[1])2

(n[N ])2
sin θ[1]tNp E

0
p (C1)

and the z-component Fresnel factor at interface {N-1}, evaluated in medium [N-1], is

F {N−1}
z =

(n[1])2

(n[N−1])2

N−1∏
j=2

eiβ
[j]

N−1∏
j=1

[
1 + rj,j+1

p

]
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† (C2)

proportional to the product of all (1 + rj,j+1
p ) for the same reasons as for y component.

For the x-component, we have E
{N}
x = q[N ]n[1]tNp E

0
p =

n[1]

n[N ]
cos θ[N ]tNp E

0
p . In order to recover

the expected dependence in (1− rj,j+1
p ), we note that

1 + rj,j+1
p =

n[j+1]

n[j]

cos θ[j]

cos θ[j+1]
(1− rj,j+1

p ) (C3)

leading at interface {N-1} to

F {N−1}
x =

E
{N}
x

E0
p cos θ

[1]
=

E
{N−1}
x

E0
p cos θ

[1]
=

N−1∏
j=2

eiβ
[j]

N−1∏
j=1

[
1− rj,j+1

p

]
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† (C4)
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At interface {k-1}, E{k−1}
x = V {k−1} is continuous and may be evaluated as for the y com-

ponent, using

Q{k−1} =
tNp

t̃Np

 1 + r̃Np

q[k−1](1− r̃Np )

n[1]E0
p (C5)

leading to

E{k−1}
x = E0

p

n[1]

n[k−1]
cos θ[k−1]

(1− ξ[k]rk,k+1
p )†

N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]† [
1− rk−1,k

p

] k−2∏
j=1

[
1 + rj,j+1

p

] k−1∏
j=2

eiβ
[j]

(C6)

The Fresnel factor for x-components at interface {k-1} is defined as F
{k−1}
x = E

{k−1}
x /E0

p cos θ
[1].

Introducing Eq. C3, we transform it for 3 ⩽ k ⩽ N − 2 into

F {k−1}
x =

(1− ξ[k]rk,k+1
p )†

N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k−1∏
j=1

[
1− rj,j+1

p

] k−1∏
j=2

eiβ
[j]

(C7)

For k=N − 1, as in Eq. B22, the same equation applies with the numerator replaced by

(1 − ξ[N−1]rN−1,N
p ). Finally, we recall here for k = 2 that F

{1}
x = 1 − rNp (formula follows

from Eq. B16) and refer to Eq. C4 for k = N .

The z-component is not continuous and differs on either side of interface {k-1}. In medium

[k-1], we get for the z-component F
{k−1}
z = E

{k−1}
z /E0

p sin θ
[1]

F {k−1}
z =

(n[1])2

(n[k−1])2

(1 + ξ[k]rk,k+1
p )†

N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k−1∏
j=1

[
1 + rj,j+1

p

] k−1∏
j=2

eiβ
[j]

(C8)

for 3 ⩽ k ⩽ N − 2. For k=N − 1, the same equation applies with the numerator replaced

by (1 + ξ[N−1]rN−1,N
p ); for k = 2 we have seen that F

{1}
z = 1 + rNp (to be evaluated using

Eq. B14); for k = N , Eq. C2 can be used.

Finally, the fields at an arbitrary depth z inside layer [k] follow from Eq. A17. From

E[k]
x (z) = V [k](z) =

e−iβ[k](z)

2

[(
ξ[k](z)− 1

)
q[k]U{k−1} +

(
ξ[k](z) + 1

)
V {k−1}] (C9)
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using the same procedure as for y component, and
q[k−1]

q[k]
(1− rk−1,k

p ) = 1+ rk−1,k
p , we get for

3 ⩽ k ⩽ N − 2

F [k]
x (z) =

[
eiβ

[k](z) − rk,k+1
p ξ[k]e−iβ[k](z)

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k−1∏
j=1

[
1− rj,j+1

p

] k−1∏
j=2

eiβ
[j]

(C10)

and

F [k]
z (z) =

(n[1])2

(n[k])2

[
eiβ

[k](z) + rk,k+1
p ξ[k]e−iβ[k](z)

]† N−1∏
j=k+1

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
N−1∏
j=2

[
1 + ξ[j]rj−1,j

p rj,j+1
p

]†
k−1∏
j=1

[
1 + rj,j+1

p

] k−1∏
j=2

eiβ
[j]

(C11)

Again, for k=2, the last terms in Eq. C10 and C11 are dropped. For k=N − 1, the

numerators become eiβ
[N−1](z)−rN−1,N

p ξ[N−1]e−iβ[N−1](z) and eiβ
[N−1](z)+rN−1,N

p ξ[N−1]e−iβ[N−1](z)

in Eq. C10 and Eq. C11, respectively.

SUPPLEMENTARY MATERIAL

See Supplementary Material for the details of the Fresnel factors for the five-layer system.
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