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Sum-Frequency Generation at interfaces: a Fresnel story

I. Designing high contrast in two interface systems

Bertrand Busson

Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000,

91405 ORSAY, Francea)

(Dated: 1 June 2023)

When a homogeneous film of finite thickness is optically probed, interference due

to multiple reflections modulates in amplitude the electric field of light. For opti-

cal processes located only at the interfaces between two media, as is common for

Sum-Frequency Generation (SFG), interference also modulates the contrast between

signals generated at the entrance and exit planes of the film. We introduce a universal

formalism for the Fresnel factors, which bear all the information about interference,

valid at any point in a three-layer system and for the three beams involved in the SFG

process. Their analysis provides general rules for obtaining a high contrast. In par-

ticular, we define four configurations leading to the cancellation of the SFG response

from the entrance side of the film when its thickness or the angles of incidence are

tuned. Cancellation conditions depend on the polarization of light and follow simple

analytical rules, leading to a straightforward experimental implementation. Such a

selective cancellation makes it possible to independently measure single components

of the nonlinear susceptibility, for example in a ppp experiment, and to separate

surface from bulk response, by combining a few measurements.

a)Electronic mail: bertrand.busson@universite-paris-saclay.fr
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I. INTRODUCTION

Second-order nonlinear optical tools, among which Sum-Frequency Generation (SFG)

spectroscopy plays a leading role, are by essence sensitive to interfaces because of their

symmetry properties: processes at the electric dipole level (i.e. their leading order) vanish

in a centrosymmetric bulk but contribute to measurable signals at the interface between two

such bulks, where the symmetry is locally broken. This sensitivity has been demonstrated

in solid, liquid, gaseous and vacuum environments, at organic and mineral interfaces, and

extensively applied to heterogeneous catalysis,1 electrocatalysis,2 and reactivity at water

interfaces,3 to name a few. Most examples deal with monolayers or ultrathin layers, for

which SFG has become a specialized tool.4 However, some other studies focus on thicker

films, for fundamental purposes5 or driven by applications.6 As recalled in Ref. 7, ”all films

thicker than a monolayer have two interfaces”. This introduces a fundamental difference

between ultrathin and thick films, as they possess in principle one and two sources for SFG

signals, respectively. For the thick films, interference between both sources is an essential

parameter to take into account, generating new effects as a function of the film thickness

and angles of incidence.5

The basic equation governing all second order nonlinear processes at the dipolar level,

relating the electric fields of the sources to the nonlinear polarization, is very simple and

does not depend at all on the nature or structure of the probed material, nor on experi-

mental geometry. A dedicated formalism has been elaborated to transform in a second step

this equation into formulas relating the measurable quantities, i.e. intensities of emitted

light and of incoming beams, in the bulk8 and at plane homogeneous interfaces.9,10 At this

stage, it must be accounted for that the nonlinear process actually happens in a medium or

at an interface belonging to a system comprising several media. This is properly done by

introducting the effective nonlinear surface susceptibility and the associated Fresnel factors,

which are thus specific of the definition of the whole system and of the experimental geome-

tries. For example, they differ between reflected and transmitted geometries, and depend

in which medium or at which interface the nonlinear process is supposed to happen. In

practice, for a system involving up to three media, ”monolayer” people pick up their factors

among a few models: two-layer, three-layer or L/K model, as detailed below. For thicker

layers, a consensus has arisen to a common ”thin film” formalism11–13, defining distinct Fres-
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nel factors for the first and second interface, whereas alternate formulations exist,14 e.g. the

Abelès15 and transfer matrix16,17 formalisms. These will be discussed in details in the next

paper18 but have been shown to lead to the same results as the thin film model in the three

layer case.15 The thin film model of the literature has some limitations: Fresnel factors for

emitted and incident beams differ as for their phases, the link between factors evaluated at

the first and second interface does not appear straightforward (the alternate formalisms may

solve some of these issues), and there is no generic formula for a nonlinear process happening

at neither of the two interfaces but at arbitrary depth somewhere in between (even if some

attempts exist19).

Considering the existence of two interfaces in a thick film, generating SFG light beams

which eventually interfere to produce the experimental signals, one may wonder whether

it is possible to suppress one of these emitted beams and probe only the other interface,

in other words tune the experimental contrast between both interfaces towards extreme

values. In this way, one would be able to build systems with two interfaces, thus two SFG

sources, while probing only one and making the other silent. From the models above, this

has been shown possible using various experimental configurations and systems.15,20–24 The

underlying reasons are sometimes difficult to understand, even if it is known that they are

due to the interference process in the film.

In this article, we first review the essential, but necessary, features and properties of

Fresnel factors in systems with one and two interfaces. These steps allow to understand

on which grounds the various models found in the literature differ; why the Fresnel factors

for the reflected SFG beam are necessary equal to those of the incoming beams; how these

factors in a thin film model may be universally defined for an arbitrary depth inside the film,

including both interfaces, using a single set of equations; and why they encompass all alone

the complexity of the interface (number of interfaces, thicknesses, interference) wherever

the nonlinear process is considered, while the definitions of emitted intensities and effective

nonlinear susceptibility don’t change. Rules for enhanced contrast in the thin film model are

then established in the general case from the relative values of Fresnel factors at the first and

second interface. In particular, we show that it is possible to minimize and even cancel the

SFG response from the first interface in four distinct configurations by adjusting the angles

of incidence and the film thickness, the latter taking periodic or single values depending on

the phenomenon giving birth to the minimum (i.e. propagation or absorption). We also

3



illustrate how specific choices of the experimental parameters lead to cancellation (or to a

minimum) for several components of the effective hyperpolarizability at the same time.

II. SYSTEMS WITH ONE INTERFACE

A. Foreword about conventions

In the following, we treat the Sum-Frequency Generation (SFG) process, i.e. nonlinear

three-wave mixing, at an interface defined as a succession of parallel planes of homogeneous

and isotropic material, all beams being supposed to travel in a common plane of incidence.

In the literature, the conventions for the definitions of (s,p) polarization vectors and the

laboratory (x,y,z) frame attached to the interface may vary. Following the usual choice,

plane of incidence is defined as (x,z). The orientation of z axis is perpendicular to the

interface, but its direction usually points ”up” [i.e. towards the incoming light beams, see

Fig. 1(A)] for SFG produced in a reflection geometry for simple systems composed of one or

two interfaces;5,12,25,26 and ”down” (i.e. towards the forward direction of beam propagation)

for multilayer systems15,27 or when bulk contributions are considered,28,29 with exceptions

in either case.8,10,17,30 This has consequences on the signs of the propagation phases along z

(from Part. III onwards) and of the mutual projections of unit vectors between bases (s,p)

and (x,y,z). Reversing the orientation of z axis also changes the signs of the nonlinear

susceptibility components involving an odd number of z terms, i.e. all components when the

interface is isotropic, this sign ambiguity being resolved when molecular hyperpolarizability

components are introduced and projected onto the laboratory frame.31,32 In order to adopt

a common convention for the whole article, we define [Fig. 1(A)] the z vector pointing

”up”, all p vectors having a positive component along z, with a positive (resp. negative)

x-component for the incoming (resp. reflected) p vectors in co-propagating geometry. This

fixes the sign of the reflection coefficient rp for p polarized light (see Eq. 5 below, while

opposite conventions exist17). Finally, using s = n× p where n is the unit wavevector, we

find s = −y for the transverse polarization, which is not a universal convention either. As

long as a constant choice for either y or s as the transverse coordinate is assumed, this has

no influence on the results.

As for notations, we index quantities (refractive indices n, angles of incidence θ, electric
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FIG. 1. Sketch of the interface and the SFG process (A) in the two-layer model and (B) in the

film model. Only a few reflected, refracted and transmitted rays are shown for clarity. (C) Scheme

showing the equal phase delays of incoming and emitted beams. Phase delay calculation (D)

according to Ref. 33 and (E) in the present work.

field amplitudes E, wavevectors k) in the following way: subscripts incorporate s/p polariza-

tions, beam number (i = 1, 2, 3) and component (αi = x, y, z), whereas superscripts focus on

the medium k = {1 · · ·N} where the quantity is evaluated. For reflection and transmission

coefficients, superscript (ij) means that beam travels from i towards j. The beam number

subscript will be skipped every time it is possible without ambiguity.

B. The two-layer model

The simplest system to be considered, involving a plane interface, is composed of two

semi-infinite bulk media sharing an interface plane, as in Fig. 1(A). Reviewing this simple
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system allows to introduce the key notions and smoothly shift to the film case afterwards.

We set at z = 0 the (x, y) plane defining the interface between the two media numbered

[1] (z > 0, refractive index n[1]) and [3] (z < 0, n[3]). Two plane wave monochromatic beams

with angular frequencies ω1 and ω2, defined by their electric far fields E0(ω1) and E0(ω2)

and propagating in (x,z) plane from medium [1] with wavevectors k
[1]
1− and k

[1]
2−, overlap on

the interface with angles of incidence θ
[1]
1 and θ

[1]
2 . The incident electric fields are naturally

decomposed along the (s,p
[1]
− ) bases as defined on Fig. 1(A), with far field amplitudes E0

s (ωi)

and E0
p(ωi), respectively. We consider the surface polarization source P [1] located at the

interface in medium [1] (i.e. at z = 0+), produced by second-order nonlinear interaction

and oscillating at angular frequency ω3 = ω1 + ω2. ”Surface” polarization means that it

derives from a bulk polarization P
[1]
bulk and is defined as P

[1]
bulk(ω3, x, y, z) = P [1](ω3, x, y)δ(z).

In practical applications, molecules located at z = 0+ or z = 0− may act as the source

of this nonlinear polarization and P [1](ω3, x, y) ≡ P [1](ω3) is a uniform polarization sheet

in the (x,y) plane. We summarize here the results detailed in Ref. 25, reduced to this

simplified frame. At this stage, we skip the propagation phases e−iωt+ik·r to deal only with

amplitudes of the vector fields. The incoming fields E[1](ωi) at the interface are the sum of

the downward incident (k
[1]
− , s, p

[1]
− ) and upward reflected (k

[1]
+ , s, p

[1]
+ ) fields, so that the s

and p amplitudes are

E[1]
s (ωi) = [1 + r13s (ωi)]s ·E0(ωi) (1)

E[1]
p (ωi) = [p

[1]
i− + r13p (ωi)p

[1]
i+] ·E0(ωi) (2)

leading, for the components along (x, y, z), to

E[1]
x (ωi) = E0

p(ωi)[1− r13p (ωi)] cos θ
[1]
i

E[1]
y (ωi) = −E0

s (ωi)[1 + r13s (ωi)]

E[1]
z (ωi) = E0

p(ωi)[1 + r13p (ωi)] sin θ
[1]
i (3)

In these formulas, reflection coefficients r13p and r13s modulate the electric field amplitude of

a p-polarized and s-polarized, respectively, electromagnetic wave travelling from [1] to [3]

and reflected by the interface.

r13s (ωi) =
n
[1]
i cos θ

[1]
i − n

[3]
i cos θ

[3]
i

n
[1]
i cos θ

[1]
i + n

[3]
i cos θ

[3]
i

(4)

r13p (ωi) =
n
[3]
i cos θ

[1]
i − n

[1]
i cos θ

[3]
i

n
[3]
i cos θ

[1]
i + n

[1]
i cos θ

[3]
i

(5)
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where θ
[3]
i follows from Snell’s law n

[1]
i sin θ

[1]
i = n

[3]
i sin θ

[3]
i . In a compact form, assuming

that incoming electric fields are polarized along a unit vector e[1](ωi) in their (s, p
[1]
i−) plane,

Eq. 3 transforms into:

E[1]
α (ωi) = F 2L

α (ωi)E
0(ωi)

[
e[1](ωi) ·α

]
= F 2L

α (ωi)e
[1]
α (ωi)E

0(ωi) (6)

where the coefficients linking the local field at the interface E[1] and the far field E0 are the

two layer Fresnel factors:

F 2L
x (ωi) = [1− r13p (ωi)] =

2n
[1]
i cos θ

[3]
i

n
[1]
i cos θ

[3]
i + n

[3]
i cos θ

[1]
i

F 2L
y (ωi) = [1 + r13s (ωi)] =

2n
[1]
i cos θ

[1]
i

n
[1]
i cos θ

[1]
i + n

[3]
i cos θ

[3]
i

F 2L
z (ωi) = [1 + r13p (ωi)] =

2n
[3]
i cos θ

[1]
i

n
[1]
i cos θ

[3]
i + n

[3]
i cos θ

[1]
i

(7)

The electric field emitted by an arbitrary surface polarization source P [1] is obtained by

solving the Maxwell equations at the interface.9,10,25 The result is remarkably simple10 as

one obtains, when the surface polarization is first simply placed in medium [1] without

account of the interface:

E0(ω3) =
2iπ(ω3)

2

c2k
[1]
3,z

P
[1]
T (8)

where subscript T refers to the transverse component of the nonlinear polarization, that is

its projection onto the plane perpendicular to the wavevector, and k
[1]
3,z =

ω3

c
n
[1]
3 cos θ

[1]
3 is the

component of the SFG wavevector perpendicular to the interface. Here, angle θ
[1]
3 follows

from the phase matching condition, i.e. conservation of the wavevector components parallel

to the interface:

n
[1]
1 ω1 sin θ

[1]
1 + n

[1]
2 ω2 sin θ

[1]
2 = n

[1]
3 ω3 sin θ

[1]
3 (9)

With explicit addition of the interface, the total field emitted towards medium [1] (k
[1]
3+, s,

p
[1]
3+) sums up a wave emitted upwards (k

[1]
3+) and one downwards reflected by the interface

(k
[1]
3−), with amplitudes for the s and p components:10,25

E0
s (ω3) =

2iπω2
3

c2k
[1]
3,z

[1 + r13s (ω3)]s.P
[1] (10)

E0
p(ω3) =

2iπω2
3

c2k
[1]
3,z

[p
[1]
3+ + r13p (ω3)p

[1]
3−].P

[1] (11)
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The s and p components of the emitted electric field appear proportional to the corre-

sponding components of the nonlinear polarization source. Apart from the sign change in x

component, the nonlinear polarization behaves like the incoming electric far fields as far as

Fresnel factors are concerned, as

E0
s (ω3) = − 2iπω3

cn
[1]
3 cos θ

[1]
3

P [1]
y [1 + r13s (ω3)]

E0
p(ω3) =

2iπω3

cn
[1]
3 cos θ

[1]
3

(
−P [1]

x [1− r13p (ω3)] cos θ
[1]
3 + P [1]

z [1 + r13p (ω3)] sin θ
[1]
3

)
(12)

or, for an emitted field aligned along an arbitrary vector e[1](ω3) in the (s, p
[1]
3+) plane:

E0(ω3) =
2iπω3

cn
[1]
3 cos θ

[1]
3

∑
α

F 2L
α (ω3)e

[1]
α (ω3)P

[1]
α (ω3) (13)

Introducing the surface second order nonlinear susceptibility tensor χ(2) in the (x, y, z)

basis as P
[1]
α (ω3) =

∑
βγ

χ
(2)
αβγE

[1]
β (ω1)E

[1]
γ (ω2) and using

I(ωi) =
cn

[1]
i

2π
∥E0(ωi)∥2 (14)

we finally recover the classical formula for the SFG intensity emitted in the reflection

geometry:26

IR(ω3) =
8π3(ω3)

2

c3n
[1]
3 n

[1]
1 n

[1]
2 (cos θ

[1]
3 )2

|χ(2)
eff |

2I(ω1)I(ω2) (15)

with the definition of the effective surface susceptibility:

χ
(2)
eff =

∑
αβγ

F 2L
α (ω3)e

[1]
α (ω3)F

2L
β (ω1)e

[1]
β (ω1)F

2L
γ (ω2)e

[1]
γ (ω2)χ

(2)
αβγ (16)

The 2L-model applies of course when the system is strictly speaking composed of only

two media (e.g. surface SFG contribution at the air-water or air-metal interfaces) with no

change of the bulk optical properties close to the interface. It also applies when a third

intermediate layer is added to the system, with vanishing thickness, as long as its optical

properties (essentially its refractive index) do not differ from those of one of the bulk media.

This is seldom the case in practice because a large proportion of SFG literature deals with

the in situ analysis of molecular monolayers at interfaces. Of course, one may as a first

approximation neglect the molecular refractive index, but in most situations this remains

an oversimplification.
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III. SYSTEMS WITH TWO INTERFACES

We now introduce an intermediate layer [2] in the system, as in Fig. 1(B), defined between

z = 0 and z = −D, with its own refractive index n
[2]
i . We first list all the changes to

implement to the previous results in order to account for the presence of this layer for an

arbitrary thickness D, then turn to two special cases, namely negligible thickness (leading

to the three-layer model) and macroscopic thickness. The nonlinear process now takes place

at an arbitrary depth z = −z0 in layer [2], where we place the nonlinear polarization sheet,

defined as

P
[2]
bulk(ω3, x, y, z) = P [2](ω3)δ(z + z0) (17)

Consequently, the nonlinear susceptibility is now defined as a function of electric fields

and polarization evaluated in layer [2]:

P [2]
α (ω3) =

∑
βγ

χ
(2)
αβγE

[2]
β (ω1, z0)E

[2]
γ (ω2, z0) (18)

In parallel, the phases arising from wave propagation cannot be neglected, and the elec-

tric fields traveling in medium [2] carry a position-dependent phase term e−iωit+ik
[2]
i ·r. The

amplitudes don’t add up in phase anymore, leading to interference effects. The amplitude

of the SFG response now depends on film thickness D and on depth z = −z0 through phase

factors for which the origin is taken at z = 0. The incoming fields, as well as the reflected

field emitted towards medium [1], are the sum of a downward field (wavevector k
[2]
i−) and an

upward field (wavevector k
[2]
i+) reflected by the {23} interface. In addition, all beams exper-

iment multiple reflections and transmissions on the boundaries of layer [2], oscillating as in

the cavity of a Fabry-Pérot etalon. The process being phase-matched as for the wavevector

components parallel to the interface,8 only dephasing along z matters. We define for beam

i the amplitude k
[2]
i,z of the perpendicular wavevector in medium [2] as k

[2]
i,z =

ωi

c
n
[2]
i cos θ

[2]
i ,

and βi = k
[2]
i,zD the phase acquired after traveling from z0 = 0 to z0 = D. The derivation in

Ref. 25 accounts for all these effects.

A. Reflection geometry

The following changes apply to the three fields fields inside layer [2], modifying Eq. 3 and

12 (see Ref. 25 for more details): (i) incoming fields cross the {12} interface (factor t12s/p);
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(ii) reflected SFG field crosses the {21} interface (factor t21s/p); (iii) in Eq. 12, the emission

coefficient becomes
2iπω3

cn
[2]
3 cos θ

[2]
3

; (iv) projections onto the (x, y, z) basis rely on angles θ
[2]
i

(resp. θ
[1]
i ), depending on the medium in which the projected quantities are evaluated; (v)

phase factors are introduced: eik
[2]
i,zz0 for the downward contribution and e2iβie−ik

[2]
i,zz0 for the

upward one (corresponding to the phase delay needed by each beam to reach the reference

z = 0 plane); (vi) the Fabry-Pérot effect involves interferences between identical beams

phase-shifted by 2k
[2]
i,zD, leading to an overall multiplicative factor 1/(1− r21s/pr

23
s/pe

2iβi).

For the incoming fields, Eq. 3 becomes:

E[2]
x (ωi, z0) = E0

p(ωi)
t12p (ωi)[e

ik
[2]
i,zz0 − r23p (ωi)e

2iβie−ik
[2]
i,zz0 ]

1− r21p (ωi)r23p (ωi)e2iβi
cos θ

[2]
i

E[2]
y (ωi, z0) = −E0

s (ωi)
t12s (ωi)[e

ik
[2]
i,zz0 + r23s (ωi)e

2iβie−ik
[2]
i,zz0 ]

1− r21s (ωi)r23s (ωi)e2iβi

E[2]
z (ωi, z0) = E0

p(ωi)
t12p (ωi)[e

ik
[2]
i,zz0 + r23p (ωi)e

2iβie−ik
[2]
i,zz0 ]

1− r21p (ωi)r23p (ωi)e2iβi
sin θ

[2]
i (19)

The definition of the Fresnel factors to use in Eq. 18 is adapted from Eq. 6 as E
[2]
α (ωi, z0) =

F film
α (ωi)e

[1]
α (ωi)E

0(ωi) and we get

F film
x (ωi) =

t12p (ωi)[e
ik

[2]
i,zz0 − r23p (ωi)e

2iβie−ik
[2]
i,zz0 ]

1− r21p (ωi)r23p (ωi)e2iβi

cos θ
[2]
i

cos θ
[1]
i

(20)

F film
y (ωi) =

t12s (ωi)[e
ik

[2]
i,zz0 + r23s (ωi)]e

2iβie−ik
[2]
i,zz0 ]

1− r21s (ωi)r23s (ωi)e2iβi
(21)

F film
z (ωi) =

t12p (ωi)[e
ik

[2]
i,zz0 + r23p (ωi)e

2iβie−ik
[2]
i,zz0 ]

1− r21p (ωi)r23p (ωi)e2iβi

sin θ
[2]
i

sin θ
[1]
i

(22)

To recover a more usual form, we transform these expressions using

t12p (ωi) cos θ
[2]
i =

[
1− r12p (ωi)

]
cos θ

[1]
i

t12s (ωi) =
[
1 + r12s (ωi)

]
t12p (ωi) sin θ

[2]
i =

[
1 + r12p (ωi)

](n
[1]
i

n
[2]
i

)2

sin θ
[1]
i , (23)

leading to:

F film
x (ωi) = eik

[2]
i,zz0

[
1− r12p (ωi)

] 1− r23p (ωi)e
2i(βi−k

[2]
i,zz0)

1 + r12p (ωi)r23p (ωi)e2iβi
(24)
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F film
y (ωi) = eik

[2]
i,zz0

[
1 + r12s (ωi)

] 1 + r23s (ωi)e
2i(βi−k

[2]
i,zz0)

1 + r12s (ωi)r23s (ωi)e2iβi
(25)

F film
z (ωi) = eik

[2]
i,zz0

[
1 + r12p (ωi)

] 1 + r23p (ωi)e
2i(βi−k

[2]
i,zz0)

1 + r12p (ωi)r23p (ωi)e2iβi

(
n
[1]
i

n
[2]
i

)2

(26)

We recognize in these expressions the four contributions to Fresnel factors in the film

model: (i) a global phase factor, common to all polarizations, accounting for beam propaga-

tion into the film from the first interface to z0; (ii) a usual reflectivity coefficient at the {12}

interface; (iii) a Fabry-Pérot term describing the multiple beam reflections and interferences

inside medium [2], resulting in the sum of a downward wave and an upward wave; (iv) the

continuity conditions of the parallel electric and perpendicular displacement fields (see below

Part. IIID 1 for a discussion).

For the emitted SFG field, Eq. 12 transforms into:

E0
s (ω3) = − 2iπω3

cn
[2]
3 cos θ

[2]
3

t21s (ω3)[e
ik

[2]
3,zz0 + r23s (ω3)e

2iβ3e−ik
[2]
3,zz0 ]

1− r21s (ω3)r23s (ω3)e2iβ3
P [2]
y (27)

E0
p(ω3) =

2iπω3t
21
p (ω3)

cn
[2]
3 cos θ

[2]
3

(
−P [2]

x

eik
[2]
3,zz0 − r23p (ω3)e

2iβ3e−ik
[2]
3,zz0

1− r21p (ω3)r23p (ω3)e2iβ3
cos θ

[2]
3

+P [2]
z

eik
[2]
3,zz0 + r23p (ω3)e

2iβ3e−ik
[2]
3,zz0

1− r21p (ω3)r23p (ω3)e2iβ3
sin θ

[2]
3

)
(28)

These expressions simplify using Eq. 23, together with:

1

n
[2]
3 cos θ

[2]
3

t21s/p(ω3) =
1

n
[1]
3 cos θ

[1]
3

t12s/p(ω3) (29)

to recover the same factors as in Eqs. 19 and get

E0(ω3) =
2iπω3

cn
[1]
3 cos θ

[1]
3

∑
α

F film
α (ω3)e

[1]
α (ω3)P

[2]
α (ω3) (30)

using for F film
α (ω3) the same formulas as for i = 1, 2 (Eqs. 24-26). In the end, we see that

Eq. 15 is still valid while Eq. 16 is only modified by simply changing superscripts ”2L” to

”film”:

χ
(2)
eff =

∑
αβγ

F film
α (ω3)e

[1]
α (ω3)F

film
β (ω1)e

[1]
β (ω1)F

film
γ (ω2)e

[1]
γ (ω2)χ

(2)
αβγ (31)

Switching from two-layer model to thin film model involving interferences thus entirely rests

on the modification of the Fresnel factors. Still, we find that these remain identical for the
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three beams even in this configuration for arbitrary depth z0. This result is in fact very

general as will be discussed in details in Part IIID 2 below.

Most applications encountered in the literature focus on the particular cases z0 = 0 and

z0 = D (an example of a general description for arbitrary z0 may be found in Ref. 19). For

the sake of completeness, we explicit the expressions of the Fresnel factors in these situations.

F film
x (z0 = 0) =

[
1− r12p (ωi)

] 1− r23p (ωi)e
2iβi

1 + r12p (ωi)r23p (ωi)e2iβi
(32)

F film
y (z0 = 0) =

[
1 + r12s (ωi)

] 1 + r23s (ωi)e
2iβi

1 + r12s (ωi)r23s (ωi)e2iβi
(33)

F film
z (z0 = 0) =

[
1 + r12p (ωi)

] 1 + r23p (ωi)e
2iβi

1 + r12p (ωi)r23p (ωi)e2iβi

(
n
[1]
i

n
[2]
i

)2

(34)

Here all the activity happens at the upper interface, where the phase shift between downward

and upward bouncing beams is maximal. The presence of the film is equivalent to a mere

modification of the total reflectivity of the system. Hence, we can write:

F film
x (z0 = 0) = 1− r123p (ωi) = 1−

r12p (ωi) + r23p (ωi)e
2iβi

1 + r12p (ωi)r23p (ωi)e2iβi
(35)

F film
y (z0 = 0) = 1 + r123s (ωi) = 1 +

r12s (ωi) + r23s (ωi)e
2iβi

1 + r12s (ωi)r23s (ωi)e2iβi
(36)

F film
z (z0 = 0) =

[
1 + r123p (ωi)

](n
[1]
i

n
[2]
i

)2

=

[
1 +

r12p (ωi) + r23p (ωi)e
2iβi

1 + r12p (ωi)r23p (ωi)e2iβi

](
n
[1]
i

n
[2]
i

)2

(37)

where r123s/p(ωi) is the reflectivity of the complete three-layer system14,34, which converges to

r13s/p(ωi) when D → 0.

For z0 = D, i.e. βi − k
[2]
i,zz0 = 0:

F film
x (z0 = D) = eiβi

[
1− r12p (ωi)

] 1− r23p (ωi)

1 + r12p (ωi)r23p (ωi)e2iβi
(38)

F film
y (z0 = D) = eiβi

[
1 + r12s (ωi)

] 1 + r23s (ωi)

1 + r12s (ωi)r23s (ωi)e2iβi
(39)

F film
z (z0 = D) = eiβi

[
1 + r12p (ωi)

] 1 + r23p (ωi)

1 + r12p (ωi)r23p (ωi)e2iβi

(
n
[1]
i

n
[2]
i

)2

(40)

Here, on the contrary, there is no phase shift between downward and upward beams, as can

be seen on Figure 1(B), leading to a common global phase βi. In this particular case, the
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result is easily extended to the situation where the nonlinear source at z0 = D is placed

into medium [3] rather than medium [2] (for example originating from the buried substrate):

only F film
z must be further multiplied by (n

[2]
i /n

[3]
i )2 in order to account for the continuity

of the displacement field at the {23} interface.12

In our formalism, universality of the Fresnel factors for the three beams in equations

(24)-(26) is enforced, whatever the location z = −z0 of the nonlinear sheet. Universality is

surprisingly not always implemented in the literature dealing with thick films.5,11–13,19,33,35

In particular, when SFG produced at z0 = D is analyzed, the phase shifts called ∆i take

different forms for the three beams, introducing an unnecessary complication. This is easily

understood when considering these original phase calculations as sketched on Figure 1(D).

The phases are calculated by evaluating the differences in path lengths between the ”direct”

process at z0 = 0 (point X), and the ”buried” process at z0 = D (point Y). These phases

encompass a superfluous contribution parallel to the interface because the two interacting

points don’t share a common x coordinate. In fact, the phases alone for each Fresnel factor

don’t have an absolute meaning, as only the overall phase ∆1 +∆2 +∆3 is meaningful. It

can be checked that this overall phase simplifies from the extra terms when plugging in the

phase matching condition k
[1]
1,|| + k

[1]
2,|| = k

[1]
3,|| (Eq. 9). In our formalism (Figure 1(E)), the

two interacting points are aligned on a vertical line, which allows to restore the symmetry

between incoming and emitted beams, and introduces no extra parallel term. In these

conditions, it is easy to show that the three phase delays between direct and buried processes

all have the same value for the three beams ∆i =
ωiD

c
(n

[2]
i / cos θ

[2]
i − n

[1]
i tan θ

[2]
i sin θ

[1]
i ) =

ωiD

c
n
[2]
i cos θ

[2]
i = βi.

Interestingly, the global phase ∆R due to beam propagation at arbitrary location z = −z0

is equal to

∆R(z = −z0) = [k
[2]
1,z + k

[2]
2,z + k

[2]
3,z] z0, (41)

in other words we recover for ∆R the (positive) phase mismatch of the SFG process at depth

−z0 between the three beams in reflection geometry ∆R = (∆k
[2]
z,R) z0.

B. Transmission geometry

Using again Ref. 25 as a guide, we may list the transformations to implement into the

previous equations in order to calculate the Fresnel factors at arbitrary depth z = −z0 for
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SFG emitted in the transmission geometry (i.e. into medium [3]). The SFG factors F (ω3)

may not this time remain equal to the incoming ones F (ω1,2), as F (ω3) now accounts for the

transfer from the far field in medium [3] to medium [2]. It may be inferred that equations

(20)-(22) transform by : i) replacing t12s,p(ωi) by t23s,p(ωi); ii) inverting the roles of r21s,p(ωi)

and r23s,p(ωi); iii) changing sine and cosine projections from medium [1] to medium [3]; iv)

modifying the phase factors by calculating the positive phase from z = −z0 to z = −D

and subtracting the phase advance of plane z = −D, equal to k
[2]
3,zD, with respect to the

phase reference plane z = 0. This leads to phase factors equal to e−ik
[2]
3,zz0 and eik

[2]
3,zz0 for the

downward and upward beams, respectively. Accordingly, we modify Eq. (31) into

χ
(2)
eff,T =

∑
αβγ

F film,T
α (ω3)e

[3]
α (ω3)F

film
β (ω1)e

[1]
β (ω1)F

film
γ (ω2)e

[1]
γ (ω2)χ

(2)
αβγ (42)

and the emission coefficient in Eq. (30) into
2iπω3

cn
[3]
3 cos θ

[3]
3

, leading to a transmitted intensity

IT (ω3) =
8π3(ω3)

2

c3n
[3]
3 n

[1]
1 n

[1]
2 (cos θ

[3]
3 )2

|χ(2)
eff,T |

2I(ω1)I(ω2). (43)

As a result, the transmission Fresnel coefficients are:

F film,T
x (ω3) = e−ik

[2]
3,zz0

[
1− r32p (ω3)

] 1− r21p (ω3)e
2i(k

[2]
3,zz0)

1 + r32p (ω3)r21p (ω3)e2iβ3
(44)

F film,T
y (ω3) = e−ik

[2]
3,zz0

[
1 + r32s (ω3)

] 1 + r21s (ω3)e
2i(k

[2]
3,zz0)

1 + r32s (ω3)r21s (ω3)e2iβ3
(45)

F film,T
z (ω3) = e−ik

[2]
3,zz0

[
1 + r32p (ω3)

] 1 + r21p (ω3)e
2i(k

[2]
3,zz0)

1 + r32p (ω3)r21p (ω3)e2iβ3

(
n
[3]
3

n
[2]
3

)2

(46)

For arbitrary depth z = −z0, the global phase becomes

∆T (z = −z0) = [k
[2]
1,z + k

[2]
2,z − k

[2]
3,z] z0, (47)

and we recover for ∆T the SFG phase mismatch between the three beams in transmission

geometry ∆T = (∆k
[2]
z,T ) z0.

For completeness, the coefficients at the boundaries become:

F film,T
x (z0 = 0) =

[
1− r32p (ω3)

] 1− r21p (ω3)

1 + r32p (ω3)r21p (ω3)e2iβ3
(48)

F film,T
y (z0 = 0) =

[
1 + r32s (ω3)

] 1 + r21s (ω3)

1 + r32s (ω3)r21s (ω3)e2iβ3
(49)
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F film,T
z (z0 = 0) =

[
1 + r32p (ω3)

] 1 + r21p (ω3)

1 + r32p (ω3)r21p (ω3)e2iβ3

(
n
[3]
3

n
[2]
3

)2

(50)

and

F film,T
x (z0 = D) = e−iβ3

[
1− r32p (ω3)

] 1− r21p (ω3)e
2iβ3

1 + r32p (ω3)r21p (ω3)e2iβ3

= e−iβ3
[
1− r321p (ω3)

]
(51)

F film,T
y (z0 = D) = e−iβ3

[
1 + r32s (ω3)

] 1 + r21s (ω3)e
2iβ3

1 + r32s (ω3)r21s (ω3)e2iβ3

= e−iβ3
[
1 + r321s (ω3)

]
(52)

F film,T
z (z0 = D) = e−iβ3

[
1 + r32p (ω3)

] 1 + r21p (ω3)e
2iβ3

1 + r32p (ω3)r21p (ω3)e2iβ3

(
n
[3]
3

n
[2]
3

)2

= e−iβ3
[
1 + r321p (ω3)

](n
[3]
3

n
[2]
3

)2

(53)

The behavior is fully symmetric to the reflection case upon exchanging z0 = 0 and z0 = D,

i.e. the entrance and exit interfaces. The only difference lies in the global phase factor, for

which symmetry is broken as a consequence of the choice of plane z = 0 as the common

phase reference.

C. Particular cases

The film model above is in principle valid for any thickness, from ultrathin to macroscopic

films. However, we may put forward two extreme configurations for which the previous

results simplify. For ultrathin layers (including monolayers), all phase differences disappear,

leading to the well-known three-layer (3L) model. For macroscopic layers on the other side,

phases still play a big role but the existence of the Fabry-Pérot effect becomes questionable.

1. The three-layer model

The three-layer model, widely used to describe molecular monolayers sandwiched between

two semi-infinite bulks,26 follows from the above when quantities D and z0 converge towards

0. However, it also remains valid for thicker layers when all phase factors may be neglected,
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which is achieved when the biggest phase is considered very small, in other words |k[2]
3,zD| ≪ 1,

or even D ≪ λSFG/2π for a usual dielectric medium [2].

The link with the 2L-model does not straightforwardly appear by removing the phase

factors in Eqs. 24-26, but is revealed using the following equalities:

[1− r12p (ωi)][1− r23p (ωi)]

1 + r12p (ωi)r23p (ωi)
=

2n
[1]
i cos θ

[3]
i

n
[1]
i cos θ

[3]
i + n

[3]
i cos θ

[1]
i

= 1− r13p (ωi) (54)

[1 + r12s (ωi)][1 + r23s (ωi)]

1 + r12s (ωi)r23s (ωi)
=

2n
[1]
i cos θ

[1]
i

n
[1]
i cos θ

[1]
i + n

[3]
i cos θ

[3]
i

= 1 + r13s (ωi) (55)

[1 + r12p (ωi)][1 + r23p (ωi)]

1 + r12p (ωi)r23p (ωi)
=

2n
[3]
i cos θ

[1]
i

n
[1]
i cos θ

[3]
i + n

[3]
i cos θ

[1]
i

= 1 + r13p (ωi) (56)

Hence, Eqs. 16 transforms into

χ
(2)
eff =

∑
αβγ

F 3L
α (ω3)e

[1]
α (ω3)F

3L
β (ω1)e

[1]
β (ω1)F

3L
γ (ω2)e

[1]
γ (ω2)χ

(2)
αβγ (57)

with

F 3L
x (ωi) = F 2L

x (ωi)

F 3L
y (ωi) = F 2L

y (ωi)

F 3L
z (ωi) = F 2L

z (ωi)

(
n
[1]
i

n
[2]
i

)2

(58)

We recover the well-known result that Fresnel factors in the 2L and 3L models are equal, to

the exception of the boundary conditions for z-component at interface {12}.

Finally, the 2L and 3L-models with vanishing thickness in transmission geometry follow

from Eq. (51)-(53) by setting β3 = 0 and recalling that r321s/p(ω3) = r31s/p(ω3) in this situation.

2. Macroscopic layers

The analysis of Parts IIIA and III B apply as soon as the thickness of the intermediate

layers may not be neglected. However, even in this situation, some differences may occur

between microscopic (thin) and macroscopic (thick) layers. The equations in those Parts

take full account of the Fabry-Pérot (F-P) effect due to interferences between all the beams

propagating and bouncing inside layer [2] after multiple reflections at the {23} and {21}

boundaries. This analysis is correct as long as the system allows long range propagation and
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overlap of the multiple reflected beams. When layer [2] becomes thick, or even macroscopic,

these hypotheses suffer from several restrictions. In practical SFG experiments, these thick

layers are in general made of wafers, plates or windows not originally designed for perfect F-P

effect, or in any case too thick to perfectly achieve it. It is known that even manufactured F-

P resonators may suffer from imperfections, due to non-parallel plane surfaces or non-planar

boundaries, either slightly spherical or roughened.36,37 Quantitatively, the upper bound of the

misalignment of two adjacent plane interfaces in the system (i.e. non-parallelism) leading to

an incomplete F-P effect is a fraction of the wavelength.38 It is therefore more easily reached

for thick layers, whereas it may be neglected when the thickness of the interfering layer is

roughly up to the order of magnitude of the wavelength. In addition, contrary to optical set-

ups designed for F-P analysis, SFG experiments usually make use of small and focused beams

at high angles of incidence. In these kinds of geometries, it is easy to see that the multiple

beams inside a thick layer [2] experiment a drift in position which quickly leads to loss of

spatial overlap, all the more as beam overlap is usually experimentally optimized at one of

the interfaces, not at the middle of the thick layer. When ultrashort pulses are involved, we

may also expect that the pulses, originally overlapped in time, acquire a progressive time

delay as a consequence of their different propagation speeds (i.e. group velocities), leading to

a decreasing efficiency when multiple reflections are involved. Finally, for gaussian beams,

the nonlinear phenomenon essentially takes place close to the overlapping beam centers

where the intensities of the input beams are maximal, and the multiple reflected beams

quickly shift away from this small optimal zone.

As a consequence, when the film thickness becomes macroscopic (typically for D ≫ λIR),

it seems reasonable to treat macroscopic films in a specific way by adapting the implemen-

tation and magnitude of the F-P effect to the experimental geometry and sample properties.

In particular, it is conceivable to completely neglect the multiple reflections,38 still consid-

ering a superposition of a downward and an upward beam, with their respective phases. In

this case, the applicable Fresnel factors transform from Eq. 24-26 and 44-46 by removing

the denominators.
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D. Fresnel factors: a central role in surface SFG

Fresnel factor may sometimes be seen as a burden, a mandatory step complicating ex-

perimental data analysis. Their relative weights and phases when beam polarizations are

tuned, their dispersions in the infrared or visible ranges, the uncertainty on the value of

n
[2]
i of a monolayer for the evaluation of Fz (sometimes referred to as the n′ problem26,39,40),

even the choice among the various available formulas in the literature, all these traps have

a great impact on the transformation of raw SFG data into scientific results, which are not

easily appreciated at the time of data recording. However, the inescapable nuisance they

introduce in the post-processing should not lead to forget their essential role, their link to

the choice of the model for the interface, and their relation to the grounds of SFG emission

at the interface. In this part, we review these properties.

1. Transfer factors, boundary conditions and choice of the model

The three fields involved in data analysis (Eq. 15) are experimentally known in the far

field in medium [1], whereas the nonlinear susceptibility links the fields and nonlinear po-

larization (Pα = χ
(2)
αβγEβEγ) evaluated at the interface, where the nonlinear process actually

takes place. As the Fresnel factors link the amplitudes of the local fields to those of the

corresponding far fields, they are transfer factors from the far fields to the local fields. The

2L-model is the one where all the nonlinear process is defined in medium [1], identically in

the film and 3L-models, all quantities are evaluated in medium [2]. For that respect, Eq. 57

plugged into Eq. 15 is somehow misleading because all expressions are written in terms of

quantities expressed in media [1] and [3] only (n
[2]
i in Fz is the only sign that the nonlinear

process is located in medium [2]). Comparing 2L to 3L-model allows understanding the re-

lationship between F 2L and F 3L: their difference simply expresses the boundary conditions

for electric field components between media [1] and [2] (Eq. 54-56). We recover the continu-

ity equation of the parallel components (hence F 2L
x/y = F 3L

x/y) and that of the perpendicular

components of the displacement vector (hence ε[1]F 2L
z = ε[2]F 3L

z ).12

We point out that the choice of the optical model to describe the interface, which essen-

tially comes down to applying a particular set of Fresnel coefficients, has major consequences

on the nature of the SFG process itself, and should be made in full knowledge. In fact, for
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a film with negligible thickness, it is in principle possible to freely choose in which medium

([1], [2] or [3]) to evaluate the incoming fields and to place the nonlinear polarization. The

formulas for Fresnel factors follow accordingly. For that respect, the 3L model allows total

flexibility in the choice of evaluation media by simply setting appropriate refractive indices

in Fz factors (i.e. adjusting boundary conditions). For example, transforming n
[2]
i into n

[1]
i

in Eq. 58 allows defining the ωi field in medium [1] and transforms the 3L-model into the

2L-model. Conversely, using n
[3]
i instead of n

[2]
i places the fields and nonlinear source into

substrate [3], allowing to measure its nonlinear response.41 This situation being equivalent

to a 2L model where the nonlinear process all happens in medium [3], Fresnel factors in this

case can be noted F 2L−.

It is also possible to consider hybrid models for which incoming fields and nonlinear po-

larization are placed in different layers. The SHG community working on the nonlinear

response of solid substrates like metals is used to playing with the definitions of χ(2) in

different media. The appropriate correcting factors are easily included in the microscopic to

macroscopic transformations of metal properties.42,43 This results in substantial differences

between numerical values of χ(2),44 and sometimes to discrepancies between various publica-

tions, but leads to a unique definition of χ
(2)
eff as far as the comparison to experimental results

is concerned. The SFG community on the other hand is most of the times interested in the

molecular layer [2] rather than the substrate itself (with a few exceptions41,45–47), therefore

concentrating on 2L and 3L models. In some publications, incoming fields are evaluated in

medium [2], where the nonlinear process happens, and the nonlinear polarization placed in

medium [1], where it is eventually measured.12,48–50 Finally, the L/K model30,51 is a hybrid

description of the interface where the incoming beams are evaluated in medium [1], and

the nonlinear polarization in medium [2]. This peculiar choice does not appear supported

by logical grounds. Considering that it has consequences on the definition of the nonlinear

susceptibility tensor χ(2), as we explain here below, it would be advisable to use this model

with great care in order to avoid erroneous interpretations.

Turning back to equality Pα = χ
(2)
αβγEβEγ and considering that the amplitudes of Pα, Eβ

and Eγ vary with the choice of the medium in which they are evaluated, we see that the value

of χ
(2)
αβγ also depends on this choice for the media, thus on the model. The surface nonlinear

susceptibility tensor is thus not a universal quantity.44 Only the far field SFG intensity, and

the effective susceptibility in Eq. 15, becomes independent on the models after correction
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from Fresnel factors. This may have consequences when the values of χ(2) components are

determined from molecular vibrational properties by ab initio methods, for example density

functional theory (DFT), or bond additivity model52–54 and projected onto a local frame in

order to deduce molecular orientation from experiments.

In the Supplementary Information of Ref. 55, the authors point out two main differences

between the various expressions of the Fresnel factors found in the literature (according to

the L/K model and the 3L model, respectively). The first one is the (n
[1]
i /n

[2]
i )2 factor in

Fz, and we have seen that it is linked to the choice of the medium ([1] or [2]) to evaluate

the fields and the induced polarization. This point is thus attributable to different choices

for the definition of χ(2). The second discrepancy is a missing factor in the L/K model

expression of the SFG s-factor. It is explainable by the difference between the 3L model,

for which the emission factor
2iπ(ω3)

2

c2k
[1]
3,z

is introduced as in Eq. 8, and the L/K model, which

explicitly includes this factor in the Fresnel coefficient for ω3, leading to a simplification of

the excess n
[1]
3 cos θ

[1]
3 . When all mandatory factors are included to recover the expression of

the far field (or intensity), taking into account that intensities are also sometimes defined as

just the squared field amplitudes, this difference between both models disappears.

2. Universality

Universality of the three Fresnel factors at arbitrary depth z0 in the film model is an

originality of this work. However, it has also long been wondered why, in the 2L and 3L-

models, the Fresnel factors for the emitted beam at ω3 are identical to those for incoming

beams at ω1 and ω2. In the way they are calculated above, it may look like a fortuitous

coincidence in Eq. 23, 29 and 54-56. In particular, it is not obvious why the Fresnel factor

for the outgoing beam should be the same as for the incoming ones as (i) the former relates

to the nonlinear polarization and the latter to the incoming electric fields; (ii) they relate to

beams which don’t cross the {12} interface in the same direction. The fact is that Fresnel

factors are indeed always universal, i.e. identical for the three beams, in the reflection

geometry whatever the number of layers (N) of the interface, their thicknesses, the layer [k]

and depth where the nonlinear polarization lies, under a few conditions listed below.

There are two ways, internal and external, to understand this. In the internal description,

the SFG electric field is calculated as emitted in layer [k] and transferred to the far field in
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medium [1], then universality is checked from the result. For the 2L, 3L and film models,

the explicit calculation as performed above for x, y and z components allows to recover the

universality.

In a finer analysis of this calculation, we may split the SFG emitted field (Eq. 28) in four

contributions: (i) emission factor in medium [2], (ii) interface crossing from medium [2] to

medium [1], (iii) Fabry-Pérot effect in medium [2], (iv) sum of upward and downward beams.

Comparing Eq. 19 and 28 shows that the Fabry-Pérot effect is the same for incoming and

outgoing fields. This can be understood by tracing the various rays bouncing inside layer [2],

which experiment the same reflection factors whatever the incoming or outgoing nature of

the beam. From Fig. 1(C), we also see that the two incoming beams, propagating downwards

and upwards, involved in SFG production at the interaction point (black square) have indeed

the same phases as the two SFG beams (propagating upwards and downwards, respectively)

produced from this point. As for the emission factor and interface crossing, Eq. 29 shows that

they are coupled, i.e. the SFG beam emitted in medium [2] and transmitted into medium

[1] is equivalent to a beam emitted in medium [1] and transmitted into medium [2]. The

emission coefficient is not part of the Fresnel factors, but it has to be explicitly taken into

account in the final formulas for the effective susceptibility in order to ensure the coherence

of the model and recover the universality in the product of the four contributions. The

problem with this internal description is that it requires a calculation of all fields evaluated

at the local position of the nonlinear polarization sheet, from which the universality can be

checked. For more complex interfaces beyond the film model, this postpones such a proof

of universality until the corresponding model is available.

A more general way to show universality is the external point of view.10 The interface is

this time considered as a global object, whatever the number of layers and whatever the layer

[k] we place the nonlinear polarization P [k] in. All the elementary entities (e.g. dipoles)

composing the interface are located and emit light in medium [1] as in the Ewald-Oseen

theorem.56–59 SFG emission from the nonlinear sheet thus follows the simple rule adapted

from Eq. 8:

E0(ω3) = E0(ω3) · e[1] =
2iπ(ω3)

2

c2k
[1]
3,z

P [k] · e[k] (59)

The transversality of the emission, translated by the projection onto a transverse vector

e[k], means this time that we have to consider all the possible vectors, transverse to a
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propagation direction in medium [k], which eventually transform into transverse vector e[1]

after traveling across the boundaries from medium [k] to medium [1]. Such vectors are

known because they reversely correspond to all the transverse vectors traveling in medium

[k] and originating from a single incoming beam with electric far field aligned along unit

vector e[1]. Calling F
[k]
α the transfer factor of the α component from far field to local field

in [k], in other words the α component of Fresnel factor F [k], we have

E[k]
α (ωi) = F [k]

α (ωi)E
0(ωi)

[
e[1](ωi) ·α

]
= F [k]

α (ωi)e
[1]
α (ωi)E

0(ωi) (60)

whereas field E[k] is also transverse, along vector e[k] defined as

E[k]
α (ωi) = E0(ωi)

[
e[k](ωi) ·α

]
(61)

leading to

e[k](ωi) ·α = F [k]
α (ωi)

[
e[1](ωi) ·α

]
. (62)

e[k](ωi) is not unitary, but defines the transverse propagation of the electric field in medium

[k], taking into account all the reflection and refraction processes in-between, in direct rela-

tion to its transverse vector e[1](ωi) in the far field. Gathering Eq. 59-62, we finally get

E0(ω3) =
2iπ(ω3)

2

c2k
[1]
3,z

∑
α

P [k]
α F [k]

α (ω3)e
[1]
α (63)

This external formulation show that Fresnel factors are not only transfer factors from the

far field to the local field: from the optical point of view, they integrate all the linear optical

phenomena happening inside the interface, in other words they ”are” the interface.

The uniqueness of the Fresnel factors F (ω3) = F (ω1/2) is thus a universal property of SFG

emission reflected from any interface. From the proofs above, we see that it relies on several

hypotheses: (i) all electric fields are transverse; (ii) the SFG emitted field is proportional

to the transverse part of the nonlinear polarization (Eq. 8); (iii) a plane wave description is

assumed, ensuring the previous transversality condition; (iv) all fields coupled to tensor χ(2)

must belong to the same medium, hence the natural choice of the 3L-model; (v) the correct

emission factor must be factored out in Eq. 8 and 15, as it conditions the value of F (ω3).

3. Origin and consequences of transversality

Equation 8, obtained from solving the Maxwell equations at an interface in the presence

of an arbitrary polarization source, is at the heart of the modeling of second-order nonlinear
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properties at interfaces.9,10 This important result may be recovered directly by considering

the surface nonlinear polarization as a uniform surface density of oscillating dipoles emitting

an electric field at ω3. Considering in a first step a single dipole D at the interface, the

emitted field is easily calculated56 and constitutes the basis of antenna emission. It sums

up three terms involving the time-derivatives of the dipoles evaluated at retarded times.

In the long distance approximation, the amplitude of dominant contribution only keeps a

transverse component and becomes, at distance r from the source:

E(ω3) = −∂2D

∂t2
sin θ

[1]
3

rc2
p3+ =

(ω3)
2

rc2
DT (64)

We recover that, for emission at long distance, only the transverse component DT of the

dipole emits the electric field. When dipoles are uniformly distributed in a plane with

surface density η, they create a surface polarization P = ηD and the total emitted field

integrates the dipole elementary fields over the plane. This is in fact a classical calculation,60

generalized to an arbitrary oriented P . Integration over 2πrdr removes the proportionality

to the inverse distance and retains only the normal wavevector dependence,60 yielding an

additional 2iπη/k
[1]
3,z factor which, coupled to Eq. 64, gives back Eq. 8. The form of the SFG

field radiated from a plane interface is thus analogous to classical antenna emission spread

over an infinitely thin plane.

It may be worried that SFG experiments miss some information because only the trans-

verse component of the nonlinear polarization creates a measurable signal in the far field.

As a matter of fact, the polarization is sometimes purely transverse (e.g. mixing s and p

incoming polarization on an isotropic interface generates only s-polarized SFG) but often

mixes both transverse and longitudinal components, and far field SFG intensity extracts no

information from the longitudinal part indeed. Firstly, all the nonvanishing tensor compo-

nents of χ(2) participate to the transverse response, so they all contribute to the measured

SFG signal. The (x, y, z) frame nicely integrates the reflectivity effects through the Fres-

nel coefficients, but it also sticks to the symmetry elements of the interface.61 Expressing

tensor χ(2) in this referential ensures that, for oblique incidences, all tensor components will

appear in one of the eight polarization combinations expressed in terms of s and p for inci-

dent and SFG beams. Secondly, being experimentally limited to the transverse part of the

nonlinear polarization makes it difficult to disentangle the various χ(2) components from a

single intensity measurement. This is well-known for example in the ppp polarization scheme
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on an isotropic interface,26 although incidence angle tuning62,63 or polarization mapping64

may help. We propose another way for this disentangling in Part V. Experimentally mea-

suring the longitudinal polarization contribution would provide additional constraints and

relationships between the χ(2) components, and help their separation. Such a measurement

requires to extract or enhance the near fields at the interface, because, contrary to Eq. 64,

they mix both longitudinal and transverse polarization components. It has been shown for

example how the coupling of the SFG process to the local excitation of surface plasmon

resonances from nanoparticles modifies the selection rules for molecular hyperpolarizability

components,65 either in the functionnalized66 or SHINE-SFG65,67 geometries. In a different

approach, longitudinal polarization components may also be probed by in situ near field

measurement,68,69 using for example an STM70 or NSOM71 tip to extract the signals.

4. Dispersion

Each individual Fresnel factor at an interface, related to one of the three beams, varies

with the wavelength of light. Energy dispersion impacts on Fresnel factors through the

indices of refraction and, consequently, the refracted angles. In the thin film model, the

wavelength of light also tunes the interference term βi. As SFG is essentially used as a

spectroscopic tool, one must pay attention to the influence of Fresnel dispersion, which may

distort the spectra. Spectral distortion has limited consequences and may be handled out

when Fresnel dispersion remains featureless, only introducing a slope and a phase shift in the

spectra. Still, this may cause some nuisance for accurate curve fitting and correct account of

the nonresonant background. On the contrary, factors showing uneven dispersion and dis-

playing marked maxima (or minima) introduce in experimental data a spectral modulation

which may look like artifactual resonances or conversely mask actual resonant processes in

the spectra.

The high energy beams of the SFG process (i.e. in the visible and near-infrared ranges) are

sometimes experimentally tuneable or broadband, for example at two-colour (2C-)SFG72,73

and electronic SFG set-ups.23,74 When it is the case, the probed range is usually wide and the

interfaces under study are designed to have strong resonant processes in the visible range, so

the corresponding Fresnel factors are expected to vary when tuning the visible wavelength.

Examples in the literature show that 2C-SFG users usually include Fresnel dispersion in
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their data analysis, either when doubly resonant SFG processes,23,75–80 electronic resonances

at metal surfaces46,47 or in nanostructures66,81 are involved. Still, in the light of the examples

below focusing on the infrared beam, one may consider that special care must be taken when

one of the layers in the system consists of molecules with visible activity (e.g. chromophores)

as a film with nonvanishing thickness (medium [2]) or as medium [3].

As for the infrared beam, Fresnel dispersion is usually less taken into account. This is not

a problem when studying a molecular monolayer on a substrate, because the Fresnel factors

in Eq. 58 do not depend on the monolayer properties, except for the squared refractive index

of medium [2] in the z-factor. Even for an absorbing molecule, dispersion of this term re-

mains limited and may be easily modeled. As shown in some examples,12,13,82 problems occur

for molecular layers involved as thin films (medium [2]) or semi-infinite bulks (medium [3])

if their molecular resonances in the infrared range (i.e. vibrations) are not correctly taken

into account. This is due to the fact that, this time, the molecular optical properties fully

take part in the Fresnel factors through reflection coefficients and β(ωIR). In addition, the

molecular resonances at the origin of the linear Fresnel dispersion and nonlinear SFG reso-

nances are the same. We briefly detail below the reasons underlying the peculiar behaviors

of these systems, which are intrinsic to the Fresnel equations.

In Ref. 13, the authors show that ”the Fresnel factor strongly influences the line shape of

VSFG spectra when both the extinction coefficient of the detected species and the nonres-

onant amplitude in VSFG spectra are substantial”. The system under study is the surface

of propylene carbonate (PC), a molecular liquid, in the C=O stretching region. In order

to quantify this effect, we model the complex dielectric function of the molecules by the

sum of a constant real part (ε[3])∞ and a complex Lorentzian correction as a function of

the infrared wavenumber, supposed small with respect to the constant contribution. In the

Supplementary Material, we show why, for a purely vibrationally resonant nonlinear suscep-

tibility χ(2), taking into account the linear resonant properties of the molecules only slightly

distorts the measured SFG intensity. On the contrary, for a constant nonresonant χ(2), the

molecular Lorentzian resonance modulates the SFG intensity in the same way as it mod-

ulates the dielectric function. This gives the false impression that χ(2) involves a resonant

part, which amplitude may in addition be attributed an incorrect sign. In this first example,

the behavior of the Fresnel factor is regular, i.e. it follows from the dispersion properties

of the PC refractive index. As explained in the Supplementary Material, the dispersion of
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(cos θ[3])2 in such a dispersive (Lorentzian) three-layer system is indeed regular, summing

up a constant [(cos θ[3])2]∞ with a Lorentzian correction. On the contrary, the dispersion of

cos θ[3] depends on the sign of [(cos θ[3])2]∞ and its amplitude with regard to the Lorentzian

correction. For high positive [(cos θ[3])2]∞, cos θ[3] has a usual Lorentzian dispersion and

we recover the simple conclusions recalled above for the air/PC interface. For high nega-

tive [(cos θ[3])2]∞, the IR beam experiences (or becomes close to) total internal reflection at

the {13} interface, whereas for low values of [(cos θ[3])2]∞ the situation is intermediate and

becomes very sensitive to small changes to [(cos θ[3])2]∞. This is illustrated by the second

example (sapphire/gold/water interface), studied in Ref. 12. The calculated dispersion of

the Fx Fresnel factor has nothing to do with the refractive index of water, even if it is shown

that the latter is the main source of Fresnel dispersion. In that example indeed, parameter

[(cos θ[3])2]∞ remains small, and varies with the growing external angle of incidence from

positive to negative values. This leads to dramatic changes in the dispersion lineshapes of

cos θ[3] which, as shown in the Supplementary Material, account for the rather unpredictable

shapes of the Fx factor.

In a broader perspective, these examples show how a dispersive refractive index in medium

[3], even of molecular origin, may induce strong distortion of the Fresnel factors. In addition

to the infrared, this identically applies to Fresnel factors in the visible range for systems

involving chromophores, when the visible color is tuned. The situation is analogous, either

for infrared or visible factors, in a dispersive medium [2] with a finite thickness, the critical

parameter becoming cos θ[2] instead of cos θ[3]. This case is in fact even more complex

because cos θ[2] is involved in r12s/p, r
23
s/p and βi, making predictions rather impossible without

a complete Fresnel analysis.

IV. INTERFERENCE AND CONTRAST: PRINCIPLES

Up to now, a single nonlinear sheet has been assumed, located at arbitrary depth z0

inside the film in a two interface system. However, the thin film model is also useful when

several nonlinear sources are considered, usually at depths z0 = 0 and z0 = D, because

the interference patterns due to the different Fresnel coefficients modulate the experimental

response of both interfaces.7,11,15 We examine here the consequences of these interferences,

with a focus on the conditions leading to the cancelling of the SFG signals produced at
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one of the interfaces.23 It is rather simple to analyze the oscillations of the electric field

amplitude for one beam i inside the film from Eq. 24-26, giving rise to Airy profiles with

period π/Re(k[2]
i,z). The full SFG response, however, is modulated by the product of three

of these Fresnel coefficients, and the general incommensurability of the three periods makes

it impossible to draw universal conclusions on the dependence of the measured SFG signals

as a function of z0 or D, making the analysis of each specific situation necessary.5,15,33

When dealing with two SFG-active interfaces, one of the goals is to enhance the contrast,

i.e. selectively probe one of them while keeping the other as silent as possible. From the

equations above, it is indeed possible to establish the analytic laws concerning the selectivity

of SFG spectroscopy on one of the two interfaces involved, to the detriment of the other,

because the SFG process vanishes as soon as one of three fields involved in the frequency

mixing cancels. In reflection, we may fruitfully compare the Fresnel activities at depths

z0 = 0 and z0 = D in order to understand in which conditions one of them overwhelms the

other. Specifically, with the notations of Part III, we define the contrast ratios:

Rx =
F film
x (z0 = 0)

F film
x (z0 = D)

=
1− r23p (ωi)e

2iβi

[1− r23p (ωi)]eiβi
(65)

Ry =
F film
y (z0 = 0)

F film
y (z0 = D)

=
1 + r23s (ωi)e

2iβi

[1 + r23s (ωi)]eiβi
(66)

Rz =
F film
z (z0 = 0)

F film
z (z0 = D)

=
1 + r23p (ωi)e

2iβi

[1 + r23p (ωi)]eiβi
(67)

Enhancing the contrast in favor of interface z0 = 0 requires to minimize, or cancel, the

Fresnel factor at z0 = D. We remind that 1±r23s/p = 0 is usually not achieved, especially with

usual dielectrics, because it would require one of the conditions n[2], n[3] = 0 or θ[2], θ[3] = 90◦.

The first condition is never fulfilled in usual materials83 and the second one only for total

internal reflection (TIR) at the critical angle.56 The electric field amplitudes at z0 = D

therefore do not exactly vanish, but one may still reduce them to favour the z0 = 0 interface

by bringing the values of rs/p close to ±1. This is done by working at angles of incidence θ[1]

close to 90°, as has been checked experimentally.15 Other possibilities include working close

to critical TIR angle or designing |n[2| ≫ (or ≪) |n[3]|, for example at a dielectric-metal

interface, in particular in the infrared. These conditions do not depend on thickness D,

which, together with the angles of incidence (and for some respect the wavelengths), is the

parameter that one would like to use to modulate the contrast. Another possibility, for
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an absorbing medium [2], is to increase thickness D until eiβi becomes so small, through

e− Im(βi), that no field reaches interface z0 = D, but this makes the design of the three-layer

system pointless as it reduces the Fresnel factors to those of a simple two-layer system.

Enhancing the contrast in favor of interface z0 = D, i.e. minimizing |Rx/y/z|, is in fact

more interesting because it allows to extract the SFG response of the buried interface with

no, or little, perturbation from the first interface. The amplitudes of the ratios Rx/y/z above

depend on D, essentially through the Fresnel factor at z0 = 0. It is therefore conceivable

to minimize the contribution from that interface by an appropriate choice of D, linked to

the values of the angle of incidence θ
[1]
i and the indices of refraction of the three media.

A complete analysis of this minimization problem is given in the Appendix, for generic

values of indices n[2] and n[3] in the complex plane. It shows that it is possible to find

periodic minima for the Fresnel factors at z0 = 0 (or for the contrast ratios) as a function

of D as long as the magnitude of the reflection coefficient |r23s/p| is not too far from 1 and

absorption in medium [2] not too prohibitive. The first condition is usually difficult to fulfill

in transparent, low absorbing dielectrics because the indices in media [2] and [3] remain

close to each other. However, involvement of total internal reflection (TIR) configuration,

or of media with a high absorption coefficient (i.e. high imaginary part of the refractive

index), makes it possible to determine ranges of thicknesses leading to minimizing one of

the Fresnel factor at z0 = 0, hence the SFG process at this interface. Other non-periodic

(i.e. single) minima occur, for p-polarization only, provided that, paradoxically, absorption

strongly dominates over propagation in media [2] and [3].

Here below we focus more precisely on the conditions on thickness D leading to the exact

cancellation of one of the contrast ratios above. In these situations, the SFG experimental

signals solely originate from the z0 = D layer. Experimentally, D value can be adjusted to

favor this exact cancellation, or approximate it, at one or several angles of incidence. Of

course, when the exact conditions below are not strictly, but only approximately, fulfilled

(either because the experimental D does not correspond to the predicted one or because the

refractive indices are not perfectly real or imaginary), the corresponding Fresnel factor still

shows a marked minimum and a clear contrast between the two interfaces is expected.

The conditions, depending on D, are: r23p (ωi) = e−2iβi for x, r23s (ωi) = −e−2iβi for y and
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r23p (ωi) = −e−2iβi for z. From the expressions of r23s/p in Eq. 4 and 5, this leads for beam i to:

tan βi =
n
[2]
i cos θ

[3]
i

i n
[3]
i cos θ

[2]
i

for x (68)

tan βi =
n
[2]
i cos θ

[2]
i

i n
[3]
i cos θ

[3]
i

for y (69)

tan βi =
n
[3]
i cos θ

[2]
i

i n
[2]
i cos θ

[3]
i

for z (70)

The results in the Appendix show that exact vanishing of Eq. 65-67 is only possible when

the refractive indices in media [2] and [3] are either purely real or imaginary, which restrains

the possible scenarios. In order to fulfill equalities in Eq. 68-70, at least one of the quantities

n
[2]
i cos θ

[2]
i and n

[3]
i cos θ

[3]
i must be an imaginary number. Inserting βi =

ωiD

c
n
[2]
i cos θ

[2]
i , it

is easy to show by examination of the various possibilities that n
[3]
i cos θ

[3]
i is in fact always

imaginary, as was also determined in the Appendix. There are two ways to achieve this:

(i) in the total internal reflection (TIR) regime at the {23} interface (cos θ[3] is imaginary)

and (ii) for imaginary refractive index n[3]. Condition (ii) is fulfilled for example for a

perfect free electron metal below the interband transition threshold, in the wavelength regime

where damping may be neglected, leading to Re(n[3]) ≪ Im(n[3]). This is fairly the case in

the visible and near-infrared ranges for Ag, Au (threshold ∼600nm), Cu (∼650nm), Pt

(∼500nm), and for some other transition metals in the infrared only. This means that field

cancellation at z0 = 0 cannot happen when layer 3 is a dielectric medium in which the beam

freely propagates (i.e. no TIR).15

We may have a closer look at each situation:

• (i)-a: TIR propagation in medium [3], not in medium [2]. We recall that TIR at the

{23} interface happens when sin θ
[3]
i becomes bigger than 1. We have n

[2]
i , n

[3]
i , cos θ

[2]
i

and βi real and positive, whereas cos θ
[3]
i = i

√
sin2 θ

[3]
i − 1 with θ

[1]
i bigger than the

TIR critical angle for the {13} interface. For given values of the angle of incidence and

of the refractive indices in media [2] and [3], the periodicity of the tangent function

implies that several valuesDi lead to the cancellation of the Fresnel factor at the z0 = 0

interface, following a periodic series with period T (ωi) =
λi

2n
[2]
i cos θ

[2]
i

independent on

the polarization, namely, for k ⩾ 0:

Di,x =
λi

2πn
[2]
i cos θ

[2]
i

arctan
n

[2]
i

√
sin2 θ

[3]
i − 1

n
[3]
i cos θ

[2]
i

+ kπ

 for x (71)
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Di,y =
λi

2πn
[2]
i cos θ

[2]
i

arctan
n

[3]
i

√
sin2 θ

[3]
i − 1

n
[2]
i cos θ

[2]
i

+
π

2
+ kπ

 for y (72)

Di,z =
λi

2πn
[2]
i cos θ

[2]
i

arctan
n

[2]
i

√
sin2 θ

[3]
i − 1

n
[3]
i cos θ

[2]
i

+
π

2
+ kπ

 for z (73)

where we have used arctan x+arctan(1/x) = sgn(x)
π

2
. We note that the cancellation

thicknesses are proportional to the wavelength of light λi and differ for the three

orientations of the electric fields. The firstDi,x lies between 0 and
λi

4n
[2]
i cos θ

[2]
i

(tan βi >

0), whereas the firstDi,y andDi,z lie between
λi

4n
[2]
i cos θ

[2]
i

and
λi

2n
[2]
i cos θ

[2]
i

(tan βi < 0).

As Di,z − Di,x = T (ωi)/2, there is also no cancellation thickness common to x and

z components involved in p-polarization. Finally, as media [2] and [3] are dielectric,

their refractive indices are not too far apart and thicknesses Di,y and Di,z have nearby

values.

• (i)-b: TIR propagation in medium [3] and in medium [2]. We have n[2], n[3] real

and positive, whereas cos θ
[2]
i = i

√
sin2 θ

[2]
i − 1 and cos θ

[3]
i = i

√
sin2 θ

[3]
i − 1. βi is a

positive imaginary number for positive D, and so is tan βi. However, from Eq. 68-70,

tan βi has to be a negative imaginary number and, consequently, there is no positive

thickness making these equalities possible: the Fresnel factors at the {12} interface

cannot vanish whatever the thickness D. In this case, we have indeed |r23s,p| < 1.

• (i)-c: TIR propagation in medium [3], imaginary index in medium [2]. Here medium [2]

is for example a free electron metal, and n
[2]
i = iκ

[2]
i with κ

[2]
i > 0, n

[3]
i and cos θ

[2]
i > 1

are real and positive, whereas cos θ
[3]
i = i

√
sin2 θ

[3]
i − 1. βi is a positive imaginary

number and we have tan βi = i tanh

(
ωiκ

[2]
i cos θ

[2]
i

c
D

)
. There is no solution for y

component to Eq. 69, as its right hand side is a negative imaginary number (we have

|r23s | < 1). Considering x- and z-polarizations, there is a single thickness D leading to

cancellation of the field for only one of them, depending whether
n
[3]
i cos θ

[2]
i

κ
[2]
i

√
sin2 θ

[3]
i − 1

is

smaller (cancellation for z component) or bigger (cancellation for x component) than
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unity. For example, in the former case, we find:

Di,z =
λi

2πκ
[2]
i cos θ

[2]
i

artanh

 n
[3]
i cos θ

[2]
i

κ
[2]
i

√
sin2 θ

[3]
i − 1

 (74)

Of course here, additional effects come into play: amplitudes of the electric fields in

medium [2] decrease as a function of thickness D as a consequence of strong absorption

on the path, and may become negligible at the {23} interface if D is bigger than the

skin depth. The analysis of the Appendix explains why this should not be an issue.

The absolute values of the Fresnel factors at both interfaces also have to be monitored

(and not only their ratios) because they may become small for some coordinate as a

consequence of the optical properties of metals (i.e. r12s ≈ −1, r12p ≈ 1 and r23p ≈ −1

at the dielectric metal interfaces).

• (ii)-a: imaginary index in medium [3], normal propagation in medium [2]. Here there

is no TIR at any interface, and we have n
[2]
i , cos θ

[2]
i and βi real and positive, whereas

n
[3]
i = iκ

[3]
i with κ

[3]
i > 0, leading to cos θ

[3]
i > 1 and real. Solving Eq. 68-70 shows that

it is possible to cancel the electric field at interface z0 = 0 for a series of thicknesses

with the same period as in (i)-a, and defined for k ⩾ 0 as:

Di,x =
λi

2πn
[2]
i cos θ

[2]
i

[
arctan

(
κ
[3]
i cos θ

[2]
i

n
[2]
i cos θ

[3]
i

)
+

π

2
+ kπ

]
for x (75)

Di,y =
λi

2πn
[2]
i cos θ

[2]
i

[
arctan

(
κ
[3]
i cos θ

[3]
i

n
[2]
i cos θ

[2]
i

)
+

π

2
+ kπ

]
for y (76)

Di,z =
λi

2πn
[2]
i cos θ

[2]
i

[
arctan

(
κ
[3]
i cos θ

[2]
i

n
[2]
i cos θ

[3]
i

)
+ kπ

]
for z (77)

We recover as above the half-period difference between Di,x and Di,z, and the pre-

dictable close values between Di,x and Di,y.

• (ii)-b: imaginary index in medium [3], TIR propagation in medium [2]. We have n
[2]
i

and cos θ
[3]
i > 1 real and positive, whereas cos θ

[2]
i = i

√
sin2 θ

[2]
i − 1 and n

[3]
i = iκ

[3]
i

with κ
[3]
i > 0. βi is a positive imaginary number for positive D, and so is tan βi. From

Eq. 68-70, we deduce, as in case (i)-c, that there is no positive thickness D to fulfil

Eq. 69 (y-polarization), and that there is a single one leading to the cancellation of
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either the x- or z-component of the electric field, depending on the relative values

between
κ
[3]
i

√
sin2 θ

[2]
i − 1

n
[2]
i cos θ

[3]
i

and 1. For example, z-component cancels for

Di,z =
λi

2πn
[2]
i

√
sin2 θ

[2]
i − 1

artanh

κ
[3]
i

√
sin2 θ

[2]
i − 1

n
[2]
i cos θ

[3]
i

 (78)

when the ratio is smaller than 1. Here, it is in addition required that thickness D

remains small enough to allow the evanescent wave crossing medium [2] to reach in-

terface {23} without excessive amplitude damping, which should be the case for the

values calculated here.

• (ii)-c: imaginary index in media [3] and [2]. With n
[2]
i = iκ

[2]
i and n

[3]
i = iκ

[3]
i , βi is

a positive imaginary number for positive D, and so is tan βi. From Eq. 68-70, tan βi

has to be a negative imaginary number and, consequently, there is, as in case (i)-b,

no positive thickness D fulfilling these equalities. Accordingly, we may check that

|r23s,p| < 1.

As a conclusion, for the ideal situations listed above and summarized in Table I, it is

possible to define the relationship between thickness D and angle of incidence θ[1] leading

to the cancellation of one electric field at the z0 = 0 interface, as a result of interferences

between reflected beams oscillating in medium [2]. These results remain a fair approximation

when the dielectric indices have a small imaginary part, or the imaginary indices a small

real part, leading to the observation of a minimum, instead of an exact cancellation, in the

Fresnel factors (and field amplitudes) in actual experiments. The minima in this case are

found using Eq. A2, A6 and A7 instead of Eq. 71-78. Still, the existence and predictability of

such accurate cancellation (or minimum) conditions does not exempt to compute the three

Fresnel factors for the full SFG process using the calculated parameters, in order to check

that SFG shall indeed be produced and measured at interface z0 = D.

When SFG is measured in transmission, the conditions change (for beam 3 only) as the

role of media [1] and [3] are switched. The cancellation conditions follow from Eq. 48-53:

F film,T
x (z0 = D)

F film,T
x (z0 = 0)

=
1− r21p (ω3)e

2iβ3

[1− r21p (ω3)]eiβ3
(79)

F film,T
y (z0 = D)

F film,T
y (z0 = 0)

=
1 + r21s (ω3)e

2iβ3

[1 + r21s (ω3)]eiβ3
(80)
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TABLE I. Properties of the three-layer systems where cancellation of a Fresnel factor at interface

z0 = 0 may occur. Plain lines represent propagating light waves, dashed lines light waves in a

metal (grey color), dotted lines TIR waves in a dielectric (blue color).

F film,T
z (z0 = D)

F film,T
z (z0 = 0)

=
1 + r21p (ω3)e

2iβ3

[1 + r21p (ω3)]eiβ3
(81)

and, this time, the electric field for beam 3 may be cancelled at interface z0 = D under the

conditions, symmetric to Eq. 68-70:

tan β3 =
n[2] cos θ[1]

i n[1] cos θ[2]
for x (82)

tan β3 =
n[2] cos θ[2]

i n[1] cos θ[1]
for y (83)

tan β3 =
n[1] cos θ[2]

i n[2] cos θ[1]
for z (84)

The same analysis as above may be performed, and optimal thicknesses leading to field

cancellations at the z0 = D interface for the SFG beam may be found in case (i), i.e.

when total reflection occurs at the {21} interface. Such a TIR configuration is compatible

indeed with the propagation of the incoming beams at the {12} interface. In IR-visible

SFG experiments, considering that the angles of incidence for the visible (θ
[1]
1 ) and SFG

(θ
[1]
3 ) beams are in general close to each other, whereas IR angle θ

[1]
2 is free, a particular
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attention is required if mixing cancelling conditions for the incoming beams at z0 = 0 and

for transmitted SFG beam at z0 = D is intended (e.g. counter-propagative geometry).

On the contrary, case (ii) cannot be applied to the SFG beam in transmission because it

would suppose that medium [1] is semi-infinite and metallic, which is not suitable for the

propagation of the incident beams.

V. EXAMPLES OF HIGH CONTRAST SYSTEMS

We illustrate here the laws elaborated above and in the Appendix by calculating contrast

ratios (for the field intensities, that is |Rx/y/z|2) in various systems, leading to experimental

applications using specific configurations. In the following examples, interfaces involve poly-

mer layers because their thicknesses are easily adjusted during sample preparation. Still,

any dielectric, including for example liquid water or low absorbing solids, may replace the

polymer and lead to the same results as long as their refractive indices fall into the same

ranges.

1. Dielectric/polymer/air and dielectric/polymer/water systems

In the first example, we use the system studied in Ref. 15 and composed of a hemicylin-

drical fused silica prism, a PDMS polymer layer of variable thickness D, and a dielectric

medium [3] chosen here as air or water. It is representative of a class of systems consisting of

a high index transparent dielectric material, an intermediate and mostly transparent layer,

and a low index material (transparent or not). All refractive indices are taken identical to

the original publication, visible wavelength is 532nm and infrared wavenumber in the middle

of the experimental range (2925cm−1). In order to easily locate the minima of the contrast

ratios as a function of the incident angle θ
[1]
i and D, we plot the intensities of the inverse

contrast ratios in 2D maps in Fig. 2. For air as medium [3], the series of periodic minima

for the visible beam appear as maxima in Fig. 2(A) for x and y components, and in (B) for

z component (with both interfaces belonging to medium [2]), showing values close to y. As

all refractive indices are real, there is no attenuation as D increases for a fixed angle. This

can be checked on the insert graph in panel (A) displaying the evolution of the intensity of

the contrast ratios, extracted as a function of D for θ
[1]
1 = 50◦. Analogous curves for the
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FIG. 2. Contrast factors at the silica/PDMS/air and silica/PDMS/water systems. (A) 2D plot of

|1/Rx|2 (blue) and |1/Ry|2 (red) for air at 532nm as a function of film thickness D and visible angle

of incidence in silica. Insert shows |Rx|2 and |Ry|2 at incidence 50◦. (B) Same as (A) for |1/Rz|2

(green), with z factors evaluated in medium [2]. (C) Same as (A) for water as the last medium.

(D) Same as (A) for the infrared beam. Visible wavelength: 532nm, IR wavenumber: 2925cm−1.

Dotted lines indicate the critical angles for total internal reflection at the {silica/PDMS} and

{PDMS/air} (resp. {PDMS/water}) interfaces.

SFG beam exhibit a slightly lower period. When the inverse intensity ratios for the infrared

beam are considered (Fig. 2D), the larger period is observed, and the small imaginary part

of the PDMS refractive index induces a gradual fading of the minima due to absorption

during the journey through medium [2]. When medium [3] is taken as water, the behaviour
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is the same but the allowed range for the incident angle is reduced. As a matter of fact, we

visualize here the periodic minima in case (i)-a, which supposes a TIR configuration at the

{PDMS/air} (resp. {PDMS/water}) interface, and no TIR at the {silica/PDMS} interface.

The available range of incidence angles is therefore sandwiched between the critical angles

of the two interfaces, as marked by the dashed lines in panels (B), (C) and (D). When air

is replaced by water, the critical angle at 532nm for the {PDMS/water} interface raises in

silica from 43.2 to 66.3◦. The results in Fig. 2 match and extend those presented in Ref. 15.

Finally, we note that x-component may cancel even for very small values of the film thick-

ness close to the critical angle. One should however avoid working too close to this angle as

it will also lead to the cancellation of the x Fresnel factor at interface z0 = D.

Considering that the contrast ratios in Fig. 2 reach values better than 105:1 in the visible,

and 10000:1 in the IR, these data allow to design an experiment in terms of D and θ[1] in

order to achieve cancellation of a given component of one of the three electric fields at the

z0 = 0 interface. In practice, when the component is y and isotropy in the film is assumed,

nonlinear susceptibility components yyz, yzy and zyy (hence polarization combinations ssp,

sps and pss) can all together be made specific of the buried interface z0 = D. This may be

achieved for a fixed thickness (i.e. a single sample) by adjusting two of the three angles of

incidence, or by designing several films with a variable D using fixed experimental angles of

incidence (assuming that the interfacial response, e.g. molecular orientation or composition,

does not change with D). Such an evolution of SFG amplitudes as a function of thickness

and angles of incidence has already been experimentally evidenced84 together with interface

selectivity,15,24 sometimes relying on empirical rules.85,86 Still it must be checked that, in the

conditions chosen, the Fresnel factor at interface z0 = D does not become too small (as a

consequence of absorption in medium [2] or because r23s/p is too close to ±1) in order to be

able to measure the SFG signal from that interface. Combination ppp is more challenging

because it involves four components (xxz, xzx, zxx and zzz), so cancelling one of the

fields at z0 = 0 still leaves two components active. We have also seen previously that the

thicknesses leading to cancellation for x and z were distinct by half a period, so it is not

possible to cancel both x and z for the same beam. However, we see on Fig. 2 (A), (B) and

(D) that the curves describing the minima for the infrared and visible beams intersect for

particular values of the (D, θ[1]) couples, and accordingly for the SFG and IR beams.

In Fig. 3, we superimpose the minima for the visible and SFG beams (up to sixth order)
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FIG. 3. Location of the minima of the contrast ratios |Rx|, |Ry| and |Rz| for the silica/PDMS/air

system as a function of film thickness and angle of incidence in silica (A) for the visible and IR

beams; (B) for the SFG and IR beams. Each color represents an order of the periodic minima for

the visible and SFG beams, from 1 to 6. Only first order minima are shown in black for the IR.

to those of the IR beam (at first order), calculated using Eq. 71-73. These serve as an

abacus to design favourable experimental settings, showing that it possible to cancel several

components of the electric fields at z0 = 0 at the same time. For example, with a 1000nm

film, setting IR and visible incidences around 62° and 46° allows to cancel x-component of the

IR at the first interface, together with y or z-component of the visible. When interchanging

the values of the incidences, the cancelled components are swapped. In the first case, only

xxz combination remains in a ppp experiment, and xzx in the second case. The same angles
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applied to the IR and SFG beams lead to the cancellation of the same components for both

beams, leading to the selection of zzz and xzx, respectively. Of course, accurate angle values

must be determined from the curves and implemented. As for the IR, it is advisable to plot

the abacus for a wavenumber corresponding to the frequency of the vibration mode under

study. Alternatively, when experimental angles of incidence cannot be tuned at will, several

crossing points can still be probed by designing several films with different thicknesses. The

total ppp SFG response therefore sums up the full ppp from z0 = D interface interfering

with only one of the four components of the z0 = 0 interface. Such a configuration may give

experimental access to the individual xxz, xzx, zxx and zzz components at the first interface

as long as the interference is properly modelled, helping disentangle the ppp response. This

thick film configuration is often considered because it allows to suppress the response from

the first interface and measure only that of the buried interface. However, if an SFG-

active molecular monolayer is placed at the first interface, but none at the second interface,

the measured ppp SFG response is this time directly produced by only one of the four

nonlinear susceptibility components at z0 = 0, giving this time straightforward access to

the experimental breaking up of the ppp response into its four components. It is known

for example that polarization measurements give access to information about molecular

orientation, but this often involves molecular modelling to disentangle the four components

from the ppp response.54,87

2. Air/polymer/metal systems

In line with the previous example, we may turn to case (ii)-a by replacing medium [3]

with a free electron metal. This time, no TIR configuration is needed so medium [1] may

be simply chosen as air, and the polymer in medium [2] represents a large class of mostly

transparent materials. An example of contrast variation with film thickness may be found

in the air/PMMA/Ag system.20 When air is replaced by fused silica and thickness varied,21

contrast minima are still present whereas Fresnel contribution at the buried interface is

constant as a consequence of index matching between silica and PMMA, leading to r12s/p ≈ 0.

Fig. 4 shows the inverse contrast ratios for the visible beam (532nm) for y and z components

(x values being close to y values) in the air/PDMS/Ag and air/PDMS/Au systems. Optical

constants of the metals are taken from Ref. 88 and 89. The optical properties of both metals
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differ: silver is a nearly perfect free electron metal in the visible, which index of refraction is

close to a pure imaginary number. On the contrary, gold at this wavelength exhibits a strong

interband contribution, leading to an additional real part for its refractive index. For both

metals, a series of periodic minima at z0 = 0 are observed as a function of film thickness at

all angles of incidence, making the design of experimental applications more simple than in

the previous case. The main differences lies in the depths of the minima, reaching almost

exactly zero for silver (contrast ratios up to 5000:1 for y and 25000:1 for z) but not for gold,

especially at high angles of incidence (maximal contrast is around 100:1 for z and 45:1 for y).

Still an interesting contrast between z0 = 0 and z0 = D may be reached in the gold case at

most angles. For z-component, the first minimum is accessible for small film thickness, far

below the wavelength, still with a high contrast: at 50° incidence, a 76nm thick film produces

a contrast better than 15000:1 in intensity for silver and, for gold, contrast reaches 62:1 for

a 64nm film. We note that a much better contrast for gold (of the same order of magnitude

as for silver) can be achieved for light with frequencies outside the interband domain, that

is for wavelengths above 600nm, including in particular the infrared range. Contrary to the

previous case, the curves gathering the minima in the IR and visible ranges do not cross

(Fig. 4C and D). However, it still remains possible, by choosing a single film thickness, to

cancel at the same time several components of two of the three beams by independently

playing with the visible and IR angles of incidence. The conclusions drawn in the previous

case therefore remain valid.

3. Dielectric/polymer/metal systems

The previous system may be modified to introduce a high index dielectric material as

medium [1]. We follow Ref. 12 and choose sapphire (hence designing sapphire/PDMS/metal

systems) for its transparency in a broad infrared range. Other high refractive index, IR-

transparent materials include for example zinc sulfide, zinc selenide and diamond.13 The 2D

plots of the inverse contrast ratios |1/Rx|2 and |1/Rz|2 are displayed in Fig. 5 for a visible

beam at 532nm (A-B) and 800nm (C-D), and for the IR at 3300cm−1 (E-F), with silver and

gold as metals. We recover the periodic minima as expected on the low angle region of the

graphs (with values for y close to those for x-component). In this region, all conclusions

drawn in the previous systems remain valid, with maximal ratios for silver varying between
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FIG. 4. Left: contrast factors at the air/PDMS/metal systems at 532nm. 2D plot of |1/Ry|2 (red)

and |1/Rz|2 (green) (A) for silver and (B) for gold as a function of film thickness D and visible

angle of incidence in silica (z factors evaluated in medium [2]). Inserts show |Ry|2 and |Rz|2 at

incidence 50°. Darker zones indicate numbers above the highest values of the color scales. Right:

location of the minima of the contrast ratios |Rx|, |Ry| and |Rz| for the air/PDMS/metal system

as a function of film thickness and angle of incidence in silica for the visible and IR beams (C) for

silver and (D) for gold. Each color represents an order of the periodic visible minima (from 3 to

8), only curves sharing a common film thickness with the IR curve (order 1, black) are shown.

104:1 and 105:1, except for x in the IR with a maximum at 600:1. For gold, the ratios peak

at 700:1 and 100:1 at 532nm for x and z, respectively; 3500:1 and 18000:1 at 800nm; 300:1

and 70000:1 in the IR. As in the silica/PDMS/air system, the periodic minima disappear

above the TIR critical angle of the {sapphire/PDMS} interface, marked by the dotted lines.

However this time, other kinds of minima appear above this threshold. Looking first at the

infrared range, the x-component at z0 = 0 cancels out for very small thicknesses at high
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FIG. 5. Contrast factors at the sapphire/PDMS/metal systems. 2D plot of |1/Rx|2 (blue) and

|1/Rz|2 (green) for silver (A, C, E) and for gold (B, D, F) as a function of film thickness and visible

angle of incidence in sapphire (z factors evaluated in medium [2]). Visible wavelengths are 532nm

(A-B) and 800nm (C-D), IR wavenumber is 3300cm−1 (E-F). Insets show the |1/Rx|2 ratio in the

IR with |1/Rz|2 (E) at 532nm and (F) at the SFG wavelength for a visible at 800nm. Dotted lines

indicate the critical angle for total internal reflection at the sapphire/PDMS interface. All color

scales are equal.

angles. This is accounted for by the fact that, when crossing the TIR threshold, we switch

from case (ii)-a to another regime described by case (ii)-b, characterized by the existence of

a single minimum for either x or z. As explained in the Appendix, the mere existence of

this non periodic minimum for low values of D guarantees that absorption through medium

[2] does not hamper SFG production at z0 = D interface. In the infrared, the imaginary

parts of the refractive indices of both metals in the infrared are very high, accounting for the

selection of x component as explained in point (ii)-b. When turning to the visible range, the

refractive indices of the metals decrease. At critical angle, the ratio in Eq. 78 vanishes, then

increases with θ[1]. Minima thus first relate to the z-component close to the critical angle.

Then, with a high refractive index material in medium [3], the increasing ratio exceeds 1

with growing angle and the minimum switches to x in the high angle region, as observed
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in panels (A), (C) and (D) which pertain to almost perfect free electron metal. For gold

in the green region (Fig. 5B), the influence of interband contribution is obvious as periodic

minima become less intense. In the non periodic zone, propagation linked to the real part

of the refractive index of gold becomes so strong that the minima fade with growing angle.

For example, maximum contrast |Rz|2 at θ[1]=60° and D = 64nm reaches only 12.4:1, to

compare to the value of 75:1 at θ[1]=20° for D = 63nm.

As above, experimental conditions may be designed in the periodic regime to cancel

out the contribution from z0 = 0 interface, or some nonlinear susceptibility components in

the ppp response at that interface. In the non periodic regime, the swapping between x

and z-components also generates a crossing point between the minima in the visible and

infrared ranges. As illustrated in the insets of panel (E), it is possible to cancel at the same

time z-component of the visible (532nm) and x-component of the IR using a film thickness

around 150nm on silver and an appropriate choice of angles of incidence, leaving only xxz

contribution from z0 = 0 interface. For the sapphire/PDMS/gold system, obviously a visible

beam at 532nm is not appropriate, but at 800nm there is a nice crossing point between the

SFG z-component and the IR x-component, with contrast ratios above 100:1 and 200:1,

respectively, leaving again only xxz contribution.

4. Dielectric/metal/dielectric systems

In this last example, we turn to the system sapphire/metal/water described in Ref. 12.

From the theoretical analysis, we know that no periodic minima are expected, still a non

periodic configuration along case (i)-c is conceivable if the optical properties of the metal are

close to those of a free electron gas. This means that no contrast due to Fresnel cancellation

at z0 = 0 may be expected for the y component this time. In order to reach contrast on

ssp, sps and pss combinations, we therefore rely on z-component. As above, we check on

Fig. 6 the existence of clear minima in the contrast factors |Rx|2 and |Rz|2 above the TIR

critical angle (49°) of the sapphire/water system for silver (A) at 532nm (maximal contrast

ratios 40000:1 for x and 850:1 for z) and (C) 800nm (80000:1 and 1100:1), and for gold (D)

at 800nm (27000:1 and 300:1). For gold in the interband region (B), as in the previous case,

minima become quickly useless when the thickness increases above 20 nm, leading to a very

poorly defined transition from x to z as a function of increasing angle of incidence. Maximal
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FIG. 6. Contrast factors in the visible at the sapphire/metal/water systems. 2D plot of |1/Rx|2

(blue) and |1/Rz|2 (green) for silver (A, C) and for gold (B, D) as a function of film thickness and

visible angle of incidence in sapphire (z factors evaluated in medium [2]). Visible wavelengths are

532nm (A-B) and 800nm (C-D). Insets in panels (C) and (D) show the |1/Rz|2 ratio at 800nm

with |1/Rx|2 at the SFG wavelength (IR wavenumber 3300cm−1) for a visible at 800nm. Dotted

lines indicate the critical angle for total internal reflection at the {sapphire/PDMS} interface. In

panel (B), z contrast ratio is multiplied by 12.

contrast ratios reach 80:1 for |Rx|2 close to the critical angle but drop down to 37:1 at 20nm

thickness, whereas maximal |Rz|2 does not exceed 4:1. In the infrared, the strong absorption

of water completely damps the minima. An interesting crossing point may still be used in

the ppp configuration with a visible wavelength set to 800nm, leading to an SFG wavelength

still below the interband threshold. Minima for x and z are thus well defined, and a crossing

point may be evidenced in the insets of panels (C) and (D) between x-component for SFG

and z-component for the visible, leading to the selection of contribution zxx only at z0 = 0

interface. Still, placing a molecular monolayer at this interface does not guarantee that its
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zxx response may be experimentally measured, as the x Fresnel factor in the IR remains

very unfavourable through (1 − r12p ), with r12p ≈ 1. As a conclusion, a Fresnel analysis of

this system is relevant to analyze SFG signals produced by a molecular layer at the z0 = D

interface,12 but not much to increase the contrast between both interfaces.

The total SFG response also encompasses a bulk contribution from the metal layer [2]. If

no other SFG source is present (e.g. no molecular monolayer is implemented in the system),

then the complete response originates in the metal and is the sum of bulk and surface SFG

from both interfaces. For very thin layers, the bulk contribution may be approximated by a

surface one proportional toD.90 In the general case, its dependence onD is more complicated

but may be determined.90 Combining these results on bulk with those elaborated above for a

dielectric/metal/dielectric system, it is therefore conceivable to design experiments dedicated

to experimentally separate and independently quantify surface and bulk metal contributions

to SFG using smart choices of dielectric natures, metal thicknesses and angles of incidence.

VI. CONCLUSION

We have defined four configurations to desing three layer systems in which the SFG re-

sponse of the first interface may be minimized or even canceled. The first one, composed

of three dielectric materials, does not involve metal or highly absorbing material, but re-

lies on total internal reflection configuration and is limited in a specific range of angles of

incidence. In the second one, the last dielectric is replaced by a metal, creating a rather

classical configuration for SFG. No TIR is needed, so the full range of incidence angles is

accessible. The only limit lies in the screening of s-polarized contributions at the dielectric

metal interface, especially in the infrared. Still this configuration is easy to handle and opens

promising ways for fundamental studies at the dielectric/metal interface. Contrast enhance-

ment in these two configurations have been addressed in particular cases in the past,15,20,22

here we prove in addition their periodicity as a function of film thickness. The last two

configurations are original, but more delicate to implement as they propose only one possi-

bility to match thickness to angle of incidence. Still it should be possible to experimentally

reach such high contrast configurations by careful adjustment of incidences, and monitor the

predicted switch from x to z of the contrast cancellation in these systems. We hope that

these predictions will motivate experimenters to check their accuracy on real systems in the
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future.

With a broader perspective, these rules may be extended to interfaces comprising more

than three layers. In particular, as will be shown in the next paper,18 they act as the

elementary building block of a scenario in which, in an N-layer system, high contrast is

achieved not only between the last and next-to-last interfaces, but in general between the last

interface and all the others. This will give access to an actual specificity of SFG spectroscopy

of the most buried interface in realistic multilayer systems, an exciting perspective indeed.

Appendix A: Rules for high Fresnel contrast

1. General analysis

In this section, we look for the conditions leading to minimizing or cancelling the ratios

|Rx/y/z| in Eq. 65-67, i.e. favouring the response of the buried interface with respect to

the first one. Both interfaces exchange their roles for the SFG beam when transmitted

SFG is considered. When thickness D increases, the numerators (i.e. Fresnel factors at

z0 = 0: 1 − r23p e2iβi for x, 1 + r23s e2iβi for y and 1 + r23p e2iβi for z) vary in amplitude

and phase. The denominators (i.e. factors at z0 = D) vary essentially in phase for low

absorbing materials, still their amplitudes integrate absorption e− Im(βi) when relevant while

traveling through medium [2]. In order to keep contrast at an interesting level, one should

consider keeping absorption to a low level in this medium, either choosing a low absorbing

material or using small thicknesses. Consequently, changes in the amplitudes of the ratios

mostly depend on the numerators (with one exception, detailed below for p-polarization and

|r23p | > 1). We focus on one of the three beams (dropping indices i) and investigate the

general case, defined by the following: (i) medium [1] is supposed to be a non absorptive

dielectric where light propagates (i.e. no evanescent wave) leading to n[1] and θ[1] real

and positive. Other situations (e.g. absorptive medium [1]) may be adapted91 as long

as they verify n[1] sin θ[1] real positive, or at least fulfill the conditions below on cos θ[2]

and n[2] cos θ[2]; (ii) n[2], n[3], cos θ[2] and cos θ[3] take any allowed value in the complex

plane, except 0. This makes possible to account for all situations in media [2] and [3]:

absorptive dielectric, any metal, total internal reflection (TIR). From our notations, we have

Re(n[2/3]) and Im(n[2/3]) positive (i.e. they belong to the upper right quarter of the complex
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plane). From cos θ[2] =

√
1− (n[1])2 sin2 θ[1]

(n[2])2
and n[2] cos θ[2] =

√
(n[2])2 − (n[1])2 sin2 θ[1], it

is straightforwardly checked that cos θ[2] and n[2] cos θ[2] belong to the upper right quarter

too, as do cos θ[3] and n[3] cos θ[3]. Finally, β =
ωD

c
n[2] cos θ[2] = βR + iβI verifies βR and βI

positive.

2. s-polarization

Here we focus on minimizing or cancelling |1 + r23s e2iβ| = |1 + r23s e−2βI
e2iβ

R |. Using

r23s = (p[2] − p[3])/(p[2] + p[3]) with p[i] = n[i] cos θ[i] belonging to the upper right quarter of

the complex plane, we see (Fig. 7B) that |r23s | ⩽ 1. For nonvanishing βR and βI , function

1+ r23s e2iβ follows a decreasing spiral for increasing values of D, from 1+ r23s to 1, whatever

the phase of r23s (Fig. 7A). Rotation on the spiral is governed by 2βR, whereas the distance

to 1 decreases as e−2βI
or, equivalently, the rotation rate is

2ω

c
Re(n[2] cos θ[2]) and the

attenuation rate
2ω

c
Im(n[2] cos θ[2]) as a function of D. Consequently, there exists a series

of minima of |1 + r23s e2iβ| for the values of D = DM
s corresponding to points M1, M2,

· · · , where the spiral crosses the real axis, with a period equal to λ/2Re(n[2] cos θ[2]). At

these points, r23s e2iβ
R
is real and negative and we have |1+ r23s e2iβ| = 1−|r23s |e−2βI

. As their

distance from the origin grows when D increases, these minima are less and less marked: the

bigger Im(n[2] cos θ[2])/Re(n[2] cos θ[2]), the stronger their damping. In addition, absorption

driven by Im(n[2] cos θ[2]) also impacts Ry through the Fresnel factor at interface z0 = D.

When this phenomenon is taken into account, ratio (1 + r23s e2iβ)/e−βI
(i.e. the full D-

dependent amplitude of Ry) still follows a spiral as a function of D, which now converges

towards a point eβ
I
on the real axis, bigger than 1 and moving towards higher and higher

values. This leads to an additional damping of the minima with growing D, but does not

modify DM
s values. Conversely, many minima will clearly show up with increasing D when

attenuation
ω

c
Im(n[2] cos θ[2]) is small as compared to rotation rate

ω

c
Re(n[2] cos θ[2]). The

values of DM
s corresponding to the minima are found by solving Im(r23s e2iβ

R
) = 0, leading

to Im(r23s ) cos 2βR + Re(r23s ) sin 2βR = 0 or

tan(2βR) =
2 Im(n[3] cos θ[3] n[2] cos θ[2])

|n[3] cos θ[3]|2 − |n[2] cos θ[2]|2
, (A1)
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FIG. 7. (A) Evolution of 1 + r23s e2iβ as a function of increasing thickness D. Starting point for

D = 0 is 1+r23s , with no constraint on the phase of r23s . Plain arrow show the rotation on the spiral

(e2iβ
R
), dashed arrows the decrease in amplitude (e−2βI

). For contrast ratio Ry, convergence point

of the spiral additionally moves along the dotted arrow. (B) Graphical illustration of |r23s | ⩽ 1.

(C) The only possibilities for |r23s | = 1 with p[2] and p[3] belonging to the upper right quarter.

from which the values of DM
s follow

DM
s =

λ

4πRe(n[2] cos θ[2])

[
arctan

(
2 Im(n[3] cos θ[3] n[2] cos θ[2])

|n[3] cos θ[3]|2 − |n[2] cos θ[2]|2

)
+mπ

]
(A2)

where m = 2k when |n[2] cos θ[2]| < |n[3] cos θ[3]| and m = 2k + 1 when |n[2] cos θ[2]| >

|n[3] cos θ[3]|. When βR = 0, there is no rotation in the complex plane anymore. The values

of the Fresnel factors at z0 = 0 vary with increasing D on a segment from 1+ r23s to 1: there

is no minimum (Fig. 7A).

At points {Mi}, we have seen that the minima of |1+r23s e2iβ| take the value 1−|r23s |e−2βI
.

We see that, if βI = 0 (i.e. no absorption in medium [2]), all minima have the same value

1 − |r23s |: the spiral becomes a circle, which is indefinitely travelled when D grows, with a

period equal to λ/2n[2] cos θ[2]. In addition, absorption does not disturb this time the Fresnel

factor at z0 = D, and the contrast depends only on the value of |r23s |. Maximum contrast
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(in favor of the SFG response at the z0 = D interface) is obtained when the Fresnel factor

at z0 = 0 vanishes, that is when |r23s | = 1 and βI = 0. For the first condition, we have

|p[2] − p[3]| = |p[2] + p[3]|. It is easily graphically seen that this implies that the phases of p[2]

and p[3] differ by 90◦, leading to only two possibilities (Fig. 7C). Adding the second condition,

the only possibility left is n[2] cos θ[2] real positive and n[3] cos θ[3] imaginary positive, leading

to the two cancellation solutions detailed in the main text: cos θ[3] imaginary (i.e. TIR

propagation in dielectric medium [3], case (i)-a) or n[3] imaginary (i.e. case (ii)-a, e.g. free

electron metal). Writing Eq. A1 as

tan(2β) =

2 Im
(
n[2] cos θ[2]

n[3] cos θ[3]

)
1−

∣∣∣∣n[2] cos θ[2]

n[3] cos θ[3]

∣∣∣∣2
, (A3)

with n[3] cos θ[3] = i|n[3] cos θ[3]|, we get

tan(2β) =
2 tan β

1− tan2 β
=

2
n[2] cos θ[2]

in[3] cos θ[3]

1−
(

n[2] cos θ[2]

in[3] cos θ[3]

)2 , (A4)

leading to Eq. 66. This shows that there are no other possibilities to cancel the Fresnel

factor at z0 = 0 for s-polarization than those described in Part IV.

3. p-polarization

Minima for the Fresnel factors at z0 = 0 are obtained when |1−r23p e2iβ| (for x component)

and |1+ r23p e2iβ| (for z component) are minimal. The great difference with the previous case

lies in the expression of r23p = (q[2] − q[3])/(q[2] + q[3]) with q[i] = cos θ[i]/n[i]. This time q[i]

is only known to have a positive real part, which implies that |r23p | is not bounded by 1.

For nonvanishing βR and βI , the complex amplitudes at z0 = 0 for x and z component

follow two spirals symmetric with respect to 1, which this time may cross the imaginary axis

(Fig. 8A) depending on the value of |r23p |. Minima in this case have a value analogous to

s-polarization, i.e. 1− |r23p |e−2βI
.

When |r23p | ⩽ 1, the analysis is identical to the s-polarisation case. Minima {Mi} are all

located on the right half of the complex plane (Fig. 8A), they show up for increasing D as

long as βI is not too big as compared to βR. Their amplitudes decrease with increasing D,
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FIG. 8. (A) Evolution of 1 + r23p e2iβ as a function of increasing thickness D for |r23p | > 1. Starting

point for D = 0 is 1 + r23p , with no constraint on the phase of r23p . Number 1− r23p e2iβ follows an

analogous spiral, symmetric with respect to 1. Dashed arrows illustrate the decrease in amplitude

(e−2βI
). For contrast ratios Rx and Rz, convergence point of the spiral additionally moves along

the dotted arrow. (B) Graphical illustration that |r23p | may be smaller or bigger than 1. (C) The

two possibilities leading to |r23p | = 1 with q2 and q3 having a positive real part. (D) Particular case

βR = 0 with Re(1−r23p ) ⩽ 0. Points N indicate minima for |Rx|, points N ′ minima for 1−r23p e−2βI .

except in the circle case for vanishing βI , and they have the same period λ/2Re(n[2] cos θ[2])

as above. The symmetry between x and z spirals shows that their own minima correspond

to e2iβ
R
out of phase by a half period, hence DM

x and DM
z differ by λ/4Re(n[2] cos θ[2]). Their
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values follow from Eq. A1 by changing p[i] into q[i], leading to:

tan(2βR) =
2 Im(n[2] cos θ[3] n[3] cos θ[2])

|n[2] cos θ[3]|2 − |n[3] cos θ[2]|2
, (A5)

and

DM
x/z =

λ

4πRe(n[2] cos θ[2])

[
arctan

(
2 Im(n[2] cos θ[3] n[3] cos θ[2])

|n[2] cos θ[3]|2 − |n[3] cos θ[2]|2

)
+mπ

]
(A6)

This time, m ⩾ 0 takes all integer values, even m give DM
x and odd m give DM

z when

|n[3] cos θ[2]| > |n[2] cos θ[3]|, and vice versa when |n[3] cos θ[2]| < |n[2] cos θ[3]|. Condition on

D leading to exact cancellation at the minima is again obtained when 1 − |r23p |e−2βI
= 0,

that is βI = 0 and |r23p | = 1. With the first condition, we have n[2] cos θ[2] real, implying

both n[2] and cos θ[2] either real or imaginary positive. Only the first case being possible,

we also have cos θ[2]/n[2] real positive. The second condition translates as above into a 90°

phase difference between q2 and q3, that is cos θ
[3]/n[3] is imaginary, either positive (i.e. n[3]

real positive and cos θ[3] imaginary positive), and we recover case (i)-a; or negative (i.e. n[3]

imaginary positive and cos θ[3] real positive), and we recover case (ii)-a. Again this shows

here that there are no other possibilities for the cancellation of the Fresnel factors at z0 = 0

when |r23p | ⩽ 1.

However, the case |r23p | > 1 still has to be investigated. In this case, for nonvanishing βR

and βI , the first {Mi} points are located on the left half of the complex plane (Fig. 8A).

When D increases, they move towards the right half. This shows that the amplitudes at the

minima first increase towards a highest value, close to the origin, then decrease as in the

|r23p | ⩽ 1 case. Again, the rate of this two-step process as a function of D depends on ratio

Im(n[2] cos θ[2])/Re(n[2] cos θ[2]). It is also further modulated in Rx and Rz by the absorption

term in the z0 = D factor (eβ
I
, as above), shifting the convergence point of the spiral to

the right, and all minima further from the origin, increasing this way their damping. In

this situation, there is in general no value for D leading to exact cancellation of the Fresnel

factor at z0 = 0, as the spiral does not cross the origin, except for a numerical coincidence.

As was seen for s-polarization, when βI = 0, the spiral becomes a circle and all minima have

the same amplitude 1− |r23p |, which depends on the distance between |r23p | and 1.

When βR = 0 (i.e. n[2] cos θ[2] is imaginary positive), whatever the value of |r23p |, the

complex values vary as e−2βI
on a segment from 1 − r23p (x component) and 1 + r23p (z

component) to 1 with increasing D. For |r23p | ⩽ 1, there is again no minimum. However,
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when |r23p | > 1, one of the numbers 1 − r23p or 1 + r23p may have a negative real part (we

explicitly treat here the case 1 − r23p ). When D increases, its modulus first decreases then

increases, generating a new set of minima (N ′ points on Fig. 8D). They don’t belong to a

periodic series but are related to single D values. However, these minima are rather shallow

as a function of D when βI (i.e. |n[2] cos θ[2]|) is small, and when the segment passes far

from the origin (e.g. | Im(r23p )| > |Re(1− r23p )|). On the contrary, we expect a clear contrast

when | Im(r23p )| ≪ |Re(1 − r23p )|. However, in this situation the effect is completely due to

βI , so absorption at interface z0 = D must be taken into account in ratios Rx/z. As above,

this implies that, as D increases, the end point of the previous ”segments” also move from 1

to higher values eβ
I
, and the segments transform into curves as sketched on Fig. 8D. Points

N correspond to the minimal distances between these curves and the origin, and represent

the true minima of contrast factors Rx and Rz. As the existence of such a minimum is due

to the imaginary (i.e. absorptive) part of β, one may fear that absorption in medium [2]

leads to a very small amount of light reaching interface z0 = D, so that the minimum at

point N corresponds to conditions where no signal is produced at z0 = D. This cannot be

the case because the minimum is reached through a modulation of r23p by e−2βI
, which must

thus have a finite (i.e. nonvanishing) value, implying in turn that absorption in medium [2]

does not hamper SFG production at z0 = D interface. The corresponding values of DN
x and

DN
z may be found by minimizing function |1 ± r23p e−2βI |/e−βI

= |eβI ± r23p e−βI |, which by

differentiation with respect to βI leads to |r23p | = e2β
I
and values

DN
x = DN

z =
λ

4π Im(n[2] cos θ[2])
ln
(
|r23p |

)
(A7)

For a comparison, the minima for the Fresnel factors at z0 = 0 alone (points N ′) correspond

to Re(1/r23p ) = e−2βI
and

DN ′

x = DN ′

z =
λ

4π Im(n[2] cos θ[2])
ln

( |r23p |2

|Re(r23p )|

)
(A8)

In particular, when 1 + r23p is a negative real number, point N (overlapping with point

N ′) corresponds to the exact cancellation of the Rz contrast ratio, whereas cancellation for

Rx occurs when 1 − r23p is a negative real number. As has been seen for s polarization,

n[2] cos θ[2] imaginary positive (i.e. βR = 0) leads to two possibilities: cos θ[2] imaginary

(n[2] real, i.e. TIR propagation in medium [2]) or n[2] imaginary (cos θ[2] real, e.g. free

electron metal). In both situations, q[2] is also imaginary, respectively positive and negative.
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As r23p must be a real number with |r23p | > 1, q[3] must also be imaginary, with its sign

opposite to q[2]. Summarizing all points above, cancellation is obtained when cos θ[2] and

n[3] are imaginary [case (ii)-b], or when n[2] and cos θ[3] are imaginary [case (i)-c]. The sign

of real number r23p therefore depends on the sign of q[2] + q[3] on the imaginary axis. When

|q[2]| > |q[3]|, r23p is positive and only Rx may vanish, whereas for |q[2]| < |q[3]| only Rz

may vanish. Cancellation for x or z therefore depends whether ratio

∣∣∣∣n[3] cos θ[2]

n[2] cos θ[3]

∣∣∣∣ is bigger
(for x) or smaller (for z) than 1. The corresponding values of D follow from |r23p | = e2β

I
,

which is solved, using |q[2] − q[3]| = |q[2]| + |q[3]| and |q[2] + q[3]| = abs(|q[2]| − |q[3]|) in this

particular case, into tanh(βI) = |q[3]|/|q[2]| for x-component, and tanh(βI) = |q[2]|/|q[3]| for

z-component, with βI =
2πD Im(n[2] cos θ[2])

λ
, recovering the results of (i)-c (Eq. 74) and (ii)-

b (Eq. 78) in Part IV. Exact cancelling at the minimum requires that q[2] or q[3] is imaginary

positive (TIR) while the other is imaginary negative (imaginary index, i.e. metal). For other

situations, minima may be obtained, instead of zeroes, when both media have properties

close to the ideal ones above, that is one strongly absorbing (Im(n[i]) > Re(n[i]) (metal-like),

and for the other Re(n[i]) > Im(n[i]) as long as |n[1] sin θ[1]/n[i]| > 1 (TIR-like).

This full analysis in the complex plane shows that there is no other possibility to exactly

cancel the contrast ratios Rx, Ry, Rz than those listed in Part IV. Gathering the results,

we see that cancellation occurs when |r23s/p| = 1 and Im(n[2] cos θ[2]) = 0, or for r23p real with

|r23p | > 1 and Re(n[2] cos θ[2]) = 0. By extension, the existence of a series of periodic minima

with a high contrast is linked to the conditions that absorption
ω

c
Im(n[2] cos θ[2]) is small as

compared to rotation rate
ω

c
Re(n[2] cos θ[2]), and that |r23s/p| is close to 1. Additional (single)

non-periodic minima are possible for p polarization when r23p is close to real and |r23p | > 1,

provided that
ω

c
Re(n[2] cos θ[2]) is small as compared to

ω

c
Im(n[2] cos θ[2]).

SUPPLEMENTARY MATERIAL

See Supplementary Material for details on the origins of Fresnel dispersion in the infrared

range.
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