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This paper presents a numerical framework for designing diffuse fields in rooms of1

any shape and size, driven at arbitrary frequencies. That is, we aim at overcoming2

the Schroeder frequency limit for generating diffuse fields in an enclosed space. We3

formulate the problem as a Tikhonov regularized inverse problem and propose a low-4

rank approximation of the spatial correlation that results in significant computational5

gains. Our approximation is applicable to arbitrary sets of target points and allows6

us to produce an optimal design at a computational cost that grows only linearly7

with the (potentially large) number of target points. We demonstrate the feasibility8

of our approach through numerical examples where we approximate diffuse fields at9

frequencies well below the Schroeder limit.10
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I. INTRODUCTION11

Many aerospace structures, satellites and internal components experience acoustic loads12

that are diffuse in nature. That is, these loads are composed of a large number of waves13

having random amplitude, propagation direction and phase. Ground-based qualification14

testing of these structures are typically performed in acoustic reverberation chambers within15

which a diffuse field arises naturally. The minimum frequency beyond which an acoustic16

field in an enclosure is (naturally) diffuse, termed the Schroeder frequency1,2, depends on17

the chamber volume V and absorption as per the relation18

fs =

√
c3 T60

4 ln(10)V
(1)

Here, c is the phase speed and T60 the reverberation time, the time required after source19

termination for the energy in the room to attenuate 60 dB. This expression provides an20

estimate of the frequency at which sufficient modal overlap first occurs. See Kuttruff3 for a21

detailed derivation of (1).22

The dimensions of a chamber determine the lowest frequency at which a diffuse field23

would naturally occur, as f 2
s is inversely proportional to the enclosure volume. Although24

there are means to improve or fully develop a diffuse field within a given chamber such as25

splayed walls, rotating panels, and moving vanes4, there are currently no known means to26

induce a diffuse field at frequencies below fs.27

Traditionally, large air horns were used to generate the necessary high amplitude acoustic28

levels within reverberation chambers. Recently, horns have been augmented or replaced29

with concert-grade loudspeakers, allowing improved closed-loop control and the potential30
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to achieve a wider range of test spectra5,6. The addition of loudspeaker sources provides31

an opportunity for optimizing the acoustic field within a chamber, as will be shown in this32

paper. Synthesizing diffuse fields below the Schroeder frequency can lead to significant33

financial and time savings. For instance, physical dimensions of new chambers could be34

relaxed and shipping of test articles across facilities could be eliminated.35

The design of diffuse acoustic fields has been explored, to some extent, in the open36

literature. Specific examples include the work of Bravo and Maury7 who designed various37

types of acoustic random fields, including diffuse fields, using direct acoustic field testing.38

To that end, they solved a quadratic optimization problem in which they found correlated39

sources that minimized the misfit between the predicted field and the spatial correlation of40

the target random field near the surface of a test body. In recent work, Alvarez-Blanco et41

al.8 presented an approach to design controls for an array of loud speakers to create diffuse42

fields in direct acoustic tests. For this, they also used a pseudo-inverse strategy to obtain43

solutions of a quadratic optimization problem that directly provided the signal inputs. For44

other relevant, recent work in this area see9–11.45

As in the aforementioned work, we are interested in designing diffuse fields. However, in46

contrast to the existing literature, we investigate the synthesis of these fields in reverberant47

rooms at arbitrary frequencies (even below the Schroeder limit). Hence, our main contribu-48

tion is the development of a numerical approach for the design of acoustic diffuse fields in49

enclosed rooms. To that end, we put forward a PDE-constrained optimization formulation50

for the control problem. Although existing work has addressed the Multiple Input Multiple51

Output (MIMO) control problem7,8, we provide further insight into Tikhonov regularization52
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for these problems. Moreover, one of the numerical challenges in designing or producing53

samples of a diffuse field in simulations is the need to capture its spatial correlation. The54

latter may require fine discretizations (e.g. using finite elements) that lead to large dense55

matrices.56

The computational challenge of factorizing the spatial correlation (in the context of diffuse57

fields) was recently addressed in12, who proposed to generate diffuse fields given by expan-58

sions on the eigenfunctions of the pressure correlation operator (i.e. using the Karhunen-59

Loève decomposition of the latter). To avoid the computational bottleneck of factorizing a60

dense correlation, they employed a low-order Taylor expansion in Cartesian components of61

the relative position vector, approximating the continuous correlation function while ensur-62

ing the vector does not exceed the operating wavelength significantly. This approximation63

reduced the correlation to a product of univariate kernels, whose eigenfunctions are recog-64

nized as spheroidal wave functions65

In contrast, our approach exploits a more-accurate low-rank approximation of the cor-66

relation function, applicable to arbitrary sets of target points. This allows us to solve the67

least-squares problem producing an optimal design at a computational cost that grows only68

linearly with the (potentially large) number of target points (instead of quadratically if us-69

ing directly the dense correlation matrix). In addition, this proposed treatment allows us to70

formulate simple and efficient regularized versions of the optimization problem, which cater71

to it being possibly ill-conditioned and remain computationally economical.72

The rest of the paper is organized as follows. We provide a summary of the plane-wave73

model for diffuse fields and the ensuing statistics. We then formulate the forward problem74
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for modeling a random acoustic field in an enclosed room. Next, we provide the optimization75

formulation for the control problem and the description of our approach for the low-rank76

approximation of the spatial correlation. We also offer two Tikhonov regularization strategies77

for the control problem. Next, we demonstrate the feasibility of our proposed strategy using78

numerical examples in an enclosed room driven at frequencies below the Schroeder limit.79

Finally, we provide some conclusions and future directions.80

II. BACKGROUND81

Here we summarize existing results on the theoretical modeling of diffuse fields. We will82

adopt the plane wave model in which a random pressure field is conceived as the interaction83

of an infinite number of plane waves with randomized direction and phase13. It is well84

known that this model leads to a Gaussian spatio-temporal pressure field, which is fully85

characterized by its mean and correlation function. In this work, for the sake of simplicity86

and without loss of generality, we will concentrate on pure-tone fields.87

A. Plane Wave Model88

Following Jacobsen14, we model a pure-tone diffuse field as a random pressure field ex-89

pressed as90

P (x, ω; θ) = lim
N→∞

1√
N

N∑
n=1

Ane
−i(κDn·x+Φn) (2)

where κ = ω/c is the wave number, c is the speed of sound, Dn are independent random91

vectors (uniformly distributed over the unit sphere) describing the direction of a plane wave,92
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An are independent random variables, and Φn are random phases. The vector θ represents93

the collection of all the random variables in the model. Notice that, as a consequence of94

the Central Limit Theorem, the random field P (x, ω; θ) is Gaussian14. Also, without loss of95

generality, we use in the sequel a constant value An := p0.96

B. First and Second Order Statistics of a Diffuse Field97

Here we summarize well-known results on the statistics of the stochastic field shown in98

(2). It is straightforward to show that99

E[P (x, ω; θ)] = 0 ∀x, ω

where E [·] denotes expectation.100

Let rqs = ∥xq − xs∥ be the distance between any two points xq and xs. Then, the

correlation can be shown to be given by15

G(rqs, ω) = E[P (xq, ω; θ)P (xs, ω; θ)]

=
p20
2

sin(κ(ω)rqs)

κ(ω)rqs
(3)

where the overbar denotes complex conjugation.101

As previously noted, the random field P (x, ω; θ) is Gaussian. Hence, we can completely102

characterize the diffuse field through its mean and correlation. Moreover, the field is weakly103

isotropic (i.e. the mean is constant and the correlation depends only on the distance between104

two points)16. A more extensive discussion on diffuse fields can be found in14,15,17,18.105
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III. DESIGN OF DIFFUSE FIELDS106

As stated before, we seek to develop a numerical framework for designing approximately107

diffuse fields for rooms of any shape and size at arbitrary frequencies. To this end, we108

first introduce the acoustic equations and numerical approximations, followed by the design109

problem, and a formal regularized treatment of the ensuing ill-posed design problem.110

As we will see later in this section, one of the key challenges in the design problem is the111

computational expense that arises from the discretization of the target correlation function.112

One of our contributions in this work is an efficient low-rank representation of the target113

correlation that renders the design problem tractable.114

A. Forward Problem115

We model a room as a bounded domain Ω ⊂ R3 with boundary (walls) Γ. The part of

the walls with impedance conditions is denoted as Γr, while that occupied by the speakers

is denoted as ΓN = ∪jΓNj
, j = 1 . . . d, where d is the number of speakers in the room and

Γ = Γr ∪ ΓN . The pressure field in the room satisfies19

∇2p+ κ2p = 0 inΩ

∇p · n+ iZ−1ωρ0p = 0 onΓr (4)

∇p · nj − ρ0sj = 0 onΓNj
for j = 1, . . . , d

where ω is the angular frequency, ρ0 is the fluid density, κ is the wavenumber, sj is the116

normal acoustic acceleration over Γj, Z is the specific acoustic impedance, and nj is a unit117

vector normal to Γj and directed out of the room. Using the Finite Element Method20 to118
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obtain a discrete representation of (4), we arrive at119

Rp = Fs

where R := K−κ2M+iωC, K is the acoustic stiffness, M is the mathematical mass matrix,120

C is the damping matrix, F ∈ RN×d is a matrix that acts on the acoustic accelerations vector121

s ∈ Rd.122

Let T :=
{
x1, . . . ,xm

}
be a finite set of m target locations where we want the field to

be diffuse. Now, let B ∈Rm×d be the Boolean matrix such that pT = Bp ∈ Cm collects the

nodal pressures at the target locations. We then have

pT = Bp

= BR−1Fs

= Ts

where we have introduced the transfer matrix T := BR−1F ∈Cm×d. Also, we point out that123

if Z ̸= 0, R is invertible for any frequency21.124

For random sources, the relationship between the cross-correlation of the target pressures

denoted as G, and the cross-correlation of the sources, denoted as S, at a given frequency

is given as

G = E
[
pT p

h
T
]

= T E
[
ssh

]
T h

= TST h (5)
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where the superscript h denotes complex conjugation and transposition. So, given S, we125

can compute G at given locations. Next, we develop a design methodology for diffuse fields126

based on the forward model presented in this section.127

B. Inverse or Design Problem128

Our design problem can be described as: given a cross-correlation at a set T of target129

nodes, determine the cross-correlation of the input sources. To this end, let xi,xj ∈ T be130

two target locations. Then, from (3), the components of the target cross-correlation matrix131

at a given frequency, Ĝij, are given as132

Ĝij =
p2o
2

sin(κrij)

κrij
(6)

We first introduce an un-regularized inverse problem for the sake of simplicity. This133

formulation leads to a decomposition of the inverse problem that strongly reduces compu-134

tational cost, as will be shown. After this, a regularized version of the problem follows135

naturally. Define an objective function as136

J(S) :=
1

2
∥G(S)− Ĝ∥2F (7)

where G(S) solves (5) and ∥G∥F is the Frobenius matrix norm, which is associated with an137

inner product: ∥G∥2F = (G,G)F =: tr
(
GhG

)
. Then, the optimal cross-correlation, So, can138

be obtained as139

So = arg min
S∈Cd×d

J(S). (8)
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While the search space for the above minimization should a priori be restricted to positive140

definite and Hermitian matrices S, it turns out that the minimum-norm solution found by141

the unconstrained minimization (8) automatically satisfies those requirements, see Remark 3.142

C. Optimality Condition and minimum-norm least-squares solution143

To simplify our derivations, define a linear operator A : Cd×d → Cm×m as144

AS := TST h (9)

Substituting this expression into the objective (7), we get145

J(S) :=
1

2
∥AS − Ĝ∥2F

The first-order optimality condition for Problem (8) is that the gradient of the objective be

zero at the minimizer. Using the inner product associated with the Frobenius norm, the

directional derivative of the objective at S ∈ Cd×d in an arbitrary direction H ∈ Cd×d is

obtained as

⟨J ′(S), H⟩ = d

dϵ
J(S + ϵH)

∣∣∣
ϵ=0

= Re
(
AS − Ĝ,AH

)
F

= Re
(
A⋆AS −A⋆Ĝ,H

)
F

where A⋆ denotes the adjoint of A, defined by (W,AV )F = (A⋆W,V )F for any W ∈ Cm×m
146

and V ∈ Cd×d. Then, from the above expression, the first-order optimality condition147

J ′(So) = 0 verified by So is obtained as148

A⋆ASo −A⋆Ĝ = 0, (10)
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which is in essence the normal equation for the least squares problem (8). Then, using (9)149

in (10) and simplifying, we get150

T hTSoT
hT = T hĜT

If T hT is not invertible (i.e. if T does not have full column rank d), the above equation fails151

to provide a solution So ∈ Cd×d that is invertible (let alone positive definite). The transfer152

matrix T is therefore assumed henceforth to have rank d.153

To solve equations (10), and also to later address regularized versions of Problem (8), it154

is convenient and computationally reasonable (under the present operating conditions) to155

introduce and use the reduced singular value decomposition (SVD) of T :156

T = XΣY h, (11)

where Σ ∈ Rd×d is a diagonal matrix holding the d nonzero singular values σ1 ≥ σ2 ≥157

. . . σd > 0 of T while X ∈Cm×d and Y ∈Cd×d hold the d left and right associated singular158

vectors (arranged columnwise), respectively. In particular, the matrices X and Y have the159

orthonormality properties XhX = Id and Y hY = Y Y h = Id, with Id the d× d identity160

matrix. On introducing the SVD (11) in (10) and using the latter properties of X and Y ,161

the minimum-norm least-squares solution So is found as162

So = Y Σ−1(XhĜX)Σ−1Y h. (12)

and is clearly Hermitian and positive definite. Moreover, for any s ∈ Cd, we have shSos =163

(XΣ−1Y hs)h Ĝ (XΣ−1Y hs) > 0 by virtue of the positive definiteness of Ĝ, showing that So164

is in fact positive definite.165
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The expression (12) of So entails the evaluation of XhĜX, whose O(dm2 + d2m/2) cost166

constitutes a potential computational bottleneck as Ĝ is a dense m × m matrix that may167

be large in realistic problems (e.g. m = O(104) to O(106)). To reduce the computational168

complexity in m of the design solution method, we now introduce a low-rank approximation169

of Ĝ.170

D. Low-rank approximation of Ĝ171

The target correlation Ĝ being symmetric and positive definite, we have Ĝ =
∑m

k=1ψkψ
h
kλk,172

where ψk, λk are the eigenpairs of Ĝ numbered so that λ1 ≥ λ2 . . .≥ λm > 0. By the Eckart-173

Young theorem, this expansion, truncated to its first P terms, yields the best rank-P174

approximation of Ĝ, denoted as ĜP , in the sense of the Frobenius norm. Specifically, the175

relative truncation error is given as176

E2(P ) :=
∥Ĝ− ĜP∥2F

∥Ĝ∥2F
=

∑m
k=P+1 λ

2
k∑m

j=1 λ
2
j

(13)

The rate of decay of the eigenvalues of a correlation matrix depends on the correlation177

length. The latter is usually high, which allows a truncation order Q≪m. However, setting178

up this approximation still entails obtaining a large enough number of eigenpairs of the179

m×m matrix Ĝ to achieve and verify a sufficiently low truncation error, and this remains180

often impractical.181

We therefore propose an alternative strategy for deriving low-rank approximations of Ĝ.182

It is based on observing that the generic entry Ĝij of Ĝ, see (6), is in fact equivalently given183
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as184

Ĝij =
p2o
2
j0(κ|rij|)

where j0 is the spherical Bessel function of first kind and order zero and rij := xi − xj is185

the position vector joining two generic target points. Now, for any z ∈ R3, the function j0186

admits the integral representation187

j0(|z|) =
1

4π

∫
Ŝ

eiz·θ̂ dS(θ̂), (14)

where Ŝ is the unit sphere (spanned by unit vectors θ̂). For instance, expressing the above188

integral using spherical angular coordinates reduces it to the one-dimensional integral repre-189

sentation formula (10.54.1) given in22. Let the above integral be approximated by a Q-point190

quadrature rule with nodes θ̂q ∈ Ŝ and positive weights wq (1≤ q≤Q), yielding191

j0(|z|) =
( 1

4π

Q∑
q=1

wqe
iz·θ̂q

)
+ εQ,

εQ being the quadrature error. Setting z= κ(xi−xj), we thus approximate Ĝij as192

Ĝij ≈
p2o
8π

Q∑
q=1

wqe
ixi·θ̂q e−ixj ·θ̂q ,

a result which in turn yields, upon application to all pairs of target points, the following193

(approximate) decomposition of the target correlation matrix Ĝ:194

Ĝ ≈ ΦΦh =

Q∑
q=1

ϕqϕ
h
q , Φ = [ϕ1, . . . ,ϕq] ∈ Cm×Q, Φjq = (ϕq)j =

√
wqe

ixi·θ̂q . (15)

The sizeQ of the quadrature rule ensuring a desired (small enough) quadrature error depends195

on the oscillatory character of the integral (14), and hence on the magnitude of the argument196

|z| of j0 there. In this study, the latter is bounded from above by the largest spatial197
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separation between target points and the operating frequency. Consequently, Q does not198

depend on the number m of target points once their maximum spatial separation is fixed.199

In the forthcoming examples, Q = O(102) whereas m = O(104), so that (15) accomplishes a200

low-rank approximation of Ĝ, whose computation is moreover economical as the m-vectors201

ϕq are given explicitly.202

The low-rank approximation (15) greatly reduces the computational load in evaluating203

So. Indeed, using (15) in (12) gives204

So = (Y Σ−1Z)(Y Σ−1Z)h, Z := XhΦ ∈ Cd×Q,

whose evaluation needs only O(m) computational work and memory, down from O(m2) if205

using the full matrix Ĝ.206

Remark 1 Unlike in the expansion Ĝ =
∑m

q=1ψqψ
T
q λq in terms of eigenpairs, the vectors207

ϕq in (15) are not orthogonal.208

E. Regularized least-squares solution209

We now address the case where T hT may be ill-conditioned (i.e. have a large condition210

number), with T still assumed to have full column rank. Let211

sq = Y Σ−1Xhϕq (16)

Then, the minimum-norm solution to (8) is given by212

So =

Q∑
q=1

sqs
h
q (17)
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We notice that sq given by (16) is (by our assumption on T ) the unique solution of the213

least-squares problem214

sq = arg min
u∈Cd

1

2

∥∥Tu− ϕk

∥∥2

2
(18)

where ∥ · ∥2 is the Euclidean norm. Therefore, to obtain So given by (17), we have to solve215

at most Q problems of the type (18). To cater for T hT being possibly ill-conditioned, we216

add a regularization term in (18) to get the problem217

sq(α) = arg min
u∈Cd

1

2

(∥∥Tu− ϕq

∥∥2

2
+ α∥u∥22

)
, (19)

(where α > 0 is a regularization parameter), whose unique minimizer is given in closed form218

as219

sq(α) = Y (Σ + α I)−1Xhϕq. (20)

The resulting input correlation matrix is then given by220

So1(α) :=

Q∑
q=1

sq(α)s
h
q (α) =

(
Y (Σ + α I)−1Z

) (
Y (Σ + α I)−1Z

)h
. (21)

We can show that So1(α) converges to the minimum-norm solution So1 of our original prob-

lem (8) as α → 0. Indeed, from (16) and (20), we have

sq(α)− sq = Y
[
(Σ + α I)−1 − Σ−1

]
Xhϕq

= Y (Σ + α I)−1
[
I − (Σ + α I)Σ−1

]
Xhϕq

= −αY (Σ + α I)−1Σ−1Xhϕq

Therefore, ∥sq(α) − sq∥ → 0 and ∥So1(α) − So∥F → 0 as α → 0 (since So1(α) and So are221

both given by finite sums of tensor products)222
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Second regularization method223

Alternatively, we can consider the regularized version224

So2(α) := arg min
S∈Cd×d

Jα(S), Jα(S) :=
1

2
∥AS − Ĝ∥2F +

α

2
∥S∥2F (22)

of the original least-squares problem (8), whose stationarity condition is225

T hTSo2(α)T
hT + αSo2(α) = TĜT h.

Invoking again the reduced SVD (11) of T , the above equation becomes226

Σ2H(α)Σ2 + αH(α) = ΣĤΣ, with H := Y hSo2(α)Y. (23)

Since Σ is diagonal, the above equation decouples into componentwise scalar equations227

whereby228

Hij(α) =
σiσj

σ2
i σ

2
j + α

(ZZh)ij 1≤ i, j ≤ d, (24)

and So2(α) = Y H(α)Y h is readily found once H(α) is evaluated using the above formula.229

Moreover, it is easy to verify that (24) with α = 0 yields So = Y H(0)Y h through (12), and230

that we have231

Hij(α)−Hij(0) = − α

σiσj(σ2
i σ

2
j + α)

(ZZh)ij 1≤ i, j ≤ d.

Consequently, this second regularization approach also verifies ∥So2(α)−So∥ → 0 as α → 0.232

Remark 2 The first regularization yields Hij(α) = (ZZh)ij/(σi+α)(σj+α) instead of (24),233

with Hij as in (23). This shows that the two regularization approaches are not identical,234

although the next remarks 3, 4 show that they are similar in several ways.235
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Remark 3 The minimum-norm solution So to problem (8), as well as its regularized ap-236

proximations So1(α) and So2(α), are Hermitian and positive definite (and hence acceptable237

as correlation matrices), without those restrictions needing to be explicitly enforced (e.g.238

through constraints). In fact, any matrix S ∈ Cd×d can be additively decomposed into its239

Hermitian and skew-Hermitian parts: S = S1+S2 with Sh
1 =S1 and Sh

2 =−S2, and we have240

∥S∥2F = ∥S1∥2F + ∥S2∥2F . Moreover, it is easy to verify that G1 := A(S1) and G2 := A(S2)241

are respectively Hermitian and skew-Hermitian. For the objective functional J(S), this gives242

(since Ĝ is Hermitian)243

2J(S) = ∥G1− Ĝ∥2F + ∥G2∥2F ,

so that optimality implies G2 = 0, hence S2 = 0 since by assumption T has full (column)244

rank. A similar line of reasoning applies to the regularized versions of problem (8).245

Remark 4 From a computational complexity standpoint, both regularizations require O(md2)+246

O(Qd2)+O(d3) complex arithmetic operations, with m ≫ Q ≥ d in the present context. The247

leading C×md2 amount of arithmetic operations (where C is a method-dependent constant)248

arises from the decomposition of the transfer matrix T . Both regularization methods may (as249

explained) use the reduced SVD of T , in which case C = 623 (Sec. 8.6). Alternatively, the250

first regularization may as easily be carried out using a thin QR factorization of [T ;
√
αI],251

resulting in C = 223 (Sec. 5.2).252
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IV. NUMERICAL RESULTS253

A. Problem Description254

In this section, we demonstrate how we can construct approximate diffuse fields in en-255

closed rooms for arbitrary frequencies (e.g. below the Schroeder frequency). That is, by256

driving the room with signals drawn from a multivariate Gaussian vector with zero mean257

and an optimal speaker correlation, we can obtain a random field in the target region whose258

spatial cross-correlation is close to (3) in the sense described by (8).259

We consider a room with dimensions 5.75 × 4.25 × 3m3. The impedance for the wall,260

roof, and floor is taken constant for all simulations and set to Z = 4.25 × 105 kg/(m2 s),261

while the speed of sound and mass density are c = 340m/s and ρ0 = 1kg/m3. The side262

walls of the room contain uniformly spaced speakers each with an area of 0.25×0.25m2. We263

consider three different speaker configurations in this study: 1) 9 speakers/wall (d = 36), 2)264

16 speakers/wall (d = 64), and 3) 25 speakers/wall (d = 100). For each case, we compute265

optimal speaker correlations for three frequencies: 150, 250, and 300 Hz. A representative266

geometry for the room with 36 speakers in shown in Figure 1. The target region, also shown,267

has dimensions 2× 2× 2m3 and is located in the center of the room.268

For each of the studied cases, we first compute a low-rank approximation of the target269

correlation Ĝ as per (15), using Q = 200. This quadrature rule results in a relative ap-270

proximation error of less than 0.1% on Ĝ for all cases studied herein. We then solve the271

least-squares problems (19) for 1 ≤ q ≤ Q. Finally, the optimal speaker cross-correlation So272

is obtained as per (21). The Tikhonov regularization parameter α is determined using an273
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L-curve approach24,25. To this end, we use the objective and regularization term in (22) for274

either of the regularization strategies described in Section III E. We point out that the com-275

putational cost of solving all the aforementioned optimization problems is negligible when276

compared to the computational cost of building the transfer matrix T .277

We use an in-house Finite Element code developed using the FEniCS library26 in conjunc-278

tion with the parallel direct solver MUMPS for all the calculations presented herein. The279

models are meshed with four-node tetrahedral elements. All the results shown are generated280

with a mesh containing approximately 130, 000 nodes and 750, 000 elements, which is fine281

enough to achieve a low discretization error in all calculations.282

The Schroeder frequency for this room is calculated from (1). The reverberation time is283

estimated using the Norris-Eyring relation27:284

T60 =
−24V ln(10)

Ac ln(1− αrand)
,

where A = 2(LxLy +LxLz +LyLz) is the room surface area and αrand the random-incidence285

absorption coefficient19286

αrand = 1−
∫ π/2

0

∣∣∣∣Z cos(θ)− ρ0c

Z cos(θ) + ρ0c

∣∣∣∣2 sin(2θ) dθ.

Using the above expressions in (1), we obtain fs = 1001 Hz. Hence, we point out the287

frequencies used in the examples (150, 250, and 300 Hz) are well below the Schroeder limit288

for this room.289
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FIG. 1. Room Geometry

B. Results290

Let’s first define the relative error in correlation (or residual) as291

ϵG :=
∥ASo − Ĝ∥F

∥Ĝ∥F

Without loss of generality, we use p2o
2

= 1 in all the examples. Hence, a useful metric to292

explore is how much the diagonal entries of Go = ASo depart from unity. To this end, we293

define the error294

ϵms :=

√∑
i |Go

ii − 1|2
m

An equivalent interpretation of this error is how much the mean square pressure (nor-295

malized to unity in our case) departs from being spatially constant. This is a widely used296

metric to judge the level of sound diffusion in laboratory experiments14,15,17 and proved to297

be very useful for assessing the quality of our numerical solutions.298

Table I contains a summary of the results along with the Tikhonov parameter (α) used in299

each case. We notice that for all frequencies both errors, ϵG and ϵms, decrease as the number300
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TABLE I. Results Summary

150 Hz 250 Hz 300 Hz

Speakers ϵms ϵG α ϵms ϵG α ϵms ϵG α

36 0.17 0.33 2× 10−3 0.35 0.51 1× 10−2 0.43 0.64 2× 10−3

64 0.09 0.17 1× 10−3 0.16 0.30 1× 10−2 0.18 0.37 2× 10−3

100 0.08 0.16 5× 10−4 0.08 0.23 1× 10−3 0.08 0.24 5× 10−4

of speakers increases, as expected. Another noticeable trend is that these errors increase as301

frequency increases.302

The increasing trend in approximation errors can be explained by studying how the303

eigenvalues of the target correlation decay as functions of frequency. First, notice that304

the rank of the approximate correlation, Go = TSoT
h, is at most d (number of speakers).305

Hence, using the best approximation error in Eq. (13), we obtain a lower bound for the306

relative residual of our inverse problem as307

∥Go(d)− Ĝ∥F
∥Ĝ∥F

≥ E(d) ≡

√∑m
k=d+1 λ

2
k∑m

j=1 λ
2
j

(25)

Hence, we see that the lower bound depends on the decay of the eigenvalue spectrum. To308

illustrate this behavior in our problem, define a participation factor as309

P 2
f (d) ≡

∑d
k=1 λ

2
k∑m

j=1 λ
2
j

and notice that E(d)2 = 1 − P 2
f (d). Now, observe in Fig. 2 how Pf (d) increases with310

decreasing frequency, in general. The latter trend indicates that the lower bound in Eq. (25)311

21



increases with increasing frequency for a fixed truncation level, which is in agreement with312

the error trend reported in Table I.313

FIG. 2. Participation factor of eigenpairs of the correlation matrix at different frequencies

314

315

To better illustrate the quality of our solutions, we plot the correlation field with respect316

to the center of the target region for different combinations of speakers and frequencies as317

shown in Figure 3. We can observe that the optimized correlation closely resembles that of318

a diffuse field. Furthermore, we compare the target and estimated fields along a diagonal319

across the target region in Figure 4. We can again observe a close match of the computed and320

target correlations for different frequency and speaker combinations. It is important to point321

out that we are showing only the target region at the center of the room in these images.322

As we will show later, the acoustic field departs from being purely diffuse at locations near323

the walls, as expected.324325

Recall that the mean square pressure (i.e. diagonal entries of the correlation) is spatially326

constant in a diffuse field (as captured by the metric ϵms shown in Table I). We now provide327
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Sinc Function: 150 Hz Optimal solution: 150 Hz, 36
speakers

Sinc Function: 250 Hz

Optimal solution: 250 Hz, 64
speakers

Sinc Function: 300 Hz] Optimal Solution: 300 Hz,
100 speakers

FIG. 3. Correlation field with respect to the center of the target region.
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FIG. 4. Correlation field along a diagonal across the target region.

more global representations of this behavior. Figure 5(a) shows the mean square pressure328

along a line through the center of the room in the X direction for all cases. We can see that329

the field is close to unity and constant in a region slightly larger than the target domain330

and departs from pure diffusion close to the walls. Furthermore, for comparison purposes,331

we show in Figure 5(b) the mean square pressure obtained using random realizations from332

uncorrelated speakers assuming a standard normal Gaussian distribution. Notice that indeed333
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uncorrelated speakers cannot produce the desired constant field at this given frequency,334

reinforcing the success of the proposed optimization approach.335
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0 1 2 3 4 5 6

36 spkr-150 Hz
64 spkr-250 Hz
100 Spkr-300 Hz

Target region

(a) Optimal design cases

0

1

2

3

4

5

0 1 2 3 4 5 6

Target region

(b) Field from 36 uncorrelated speakers at 150
Hz

FIG. 5. Mean square pressure in the entire room along X-axis. Results are normalized to be on

the same scale as the optimal case.

Lastly, Figure 6 shows the mean square pressure field for the three studied cases. Again,336

we notice that, in all cases, the field is constant over a region larger than the target one, but337

departs from diffuse behavior away from the target region, as expected.338

36 spkr-100Hz 64 spkr-250 Hz 100 spkr-300 Hz]

FIG. 6. Mean square pressure in the entire room.

339

340
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V. SUMMARY AND CONCLUSIONS341

We presented how an optimization approach can be used to produce diffuse fields in342

enclosed rooms at arbitrary frequencies (even below the Schroeder limit). To this end, we343

characterized a diffuse field solely by its mean and correlation as these are stochastic ho-344

mogeneous and isotropic Gaussian processes. Then, we postulated an optimization problem345

in which we sought the correlation structure of input speakers that minimized the distance346

between the output correlation and that of a diffuse field over a target region. We addressed347

the large computational cost that arises from the discretization of the target correlation us-348

ing a low-rank expansion based on the integral representation of spherical Bessel functions.349

Moreover, we formally showed how to regularize the ensuing ill-posed inverse problem. Our350

results demonstrated that it is possible to obtain approximate diffuse fields in enclosed rooms351

even at frequencies below the Schroeder limit by driving correlated speakers in an optimal352

way. Also, we found that there is a limitation in the quality of the approximation that353

strongly depends on the number of speakers and the frequencies of interest. As frequency354

increases a larger number of speakers is needed to maintain a given level of error in the355

diffuse field approximation. A direction for future work is to study the influence of speaker356

location on the approximation error. Furthermore, it is possible to devise optimization al-357

gorithms to find such locations. Also, incorporating uncertainty in boundary conditions,358

material properties, etc. in the optimization formulation would be highly desirable.359
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