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ON A CONJECTURE OF GEZMIS AND PELLARIN

KHAC NHUAN LE AND KIEN HUU NGUYEN

ABSTRACT. In 2022, Gezmis and Pellarin introduced and studied the concept
of trivial multiple zeta values, along with a map from the vector space spanned
by these values to the vector space spanned by Thakur’s multiple zeta values.
Their construction allows us to generate some linear relations among the latter
values using the former. In our work, we determine the structure of the kernel of
the aforementioned map. As a consequence, we give an answer to a conjecture
proposed by Gezmis and Pellarin regarding the injectivity of this specific map.

INTRODUCTION

0.1. Classical multiple zeta values.

Multiple zeta values (MZVs) are real numbers defined as the convergent series

1
(0.1) ((s1,v80) = > e
ny>o>np>0 1 "

where s; are positive integers and the first component s; is strictly greater than
1. These values were first considered by Euler in the 18th century and have been
studied in various contexts in number theory, knot theory and the theory of mixed
Tate motives. One fundamental problem in the study of MZVs is the identification
of all linear relations among them, which remains a challenging open question.

One of the important properties of MZVs is their representation in terms of
iterated integral as follows:

0.2) (51, 50) = / wr(ty) -+ wn(te),
1>t1>- >t >0

where k = s1 + -+ + sp, wi(t;) =dt; /(1 —t;),if i € {s1,81 + S2,...,81+ -+ S},
and w;(t;) = dt;/t;, otherwise. The series representation (0.1) and the integral rep-
resentation (0.2) provide two different ways of expanding the product of two MZVs
as linear combinations of MZVs, resulting in two distinct combinatorial interpre-
tations. The equality of the products then allows us to generate a large family of
relations among MZVs called double shuffle relations. Nevertheless, these relations
are not sufficient to capture all linear relations, for instance, the well-known iden-
tity ¢(2,1) = ¢(3) due to Euler cannot be derived from them. In order to remedy
this, Thara, Kaneko, and Zagier extended the double shuffle relations by allowing
divergent series and integrals, and introduced the so-called extended double shuffie
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2 KHAC NHUAN LE AND KIEN HUU NGUYEN

relations, which are widely believed to determine all linear relations among MZVs
(see [9, Conjecture 1]).

0.2. Thakur’s multiple zeta values.

Let us now consider the function field case. We let N denote the set of natural
numbers, i.e., non-negative integers. The set of positive integers will be denoted
by N*. Let F; be a finite field of characteristic p with ¢ elements. We denote by
A = F,[0] the polynomial ring in indeterminate  over F,. Let AT denote the set
of monic polynomials in A, and let A*(d) denote the set of monic polynomials in
A whose degree is equal to d. We let K = F,(0) denote the fraction field of A, and
endow on K a valuation v given by v (a/b) = degb—dega for a/b € K, with the
convention that deg0 = —oo. Let Ko, = F,((1/0)) denote the completion of K for
this valuation, and let C, denote the completion of an algebraic closure of K.

In [3], Carlitz studied a specific series known as the Carlitz zeta values, defined
by

1
CA(S) = Z E S Kooa

a€AT

where s is a positive integer. By grouping the terms according to the degree d € N,
one can express a Carlitz zeta value as a series of power sums given by

1
Sals)= Y =
acA+(d)

More generally, for a tuple of positive integers s = (s1, ..., s,), Thakur introduced
the concept of multiple zeta values in the function field setting, as follows:

1

Cals)= Y Su(s1):Sa(s0) = > S

di>->d.>0 a;EAT 1 "
degai;>--->dega,>0

€ Ku.

When s = (), we agree by convention that (4(@) = 1. We call w = s1 + - - - + s, the
weight of (4(s). For d € N, the power sum associated with the tuple s is defined
as

Sy(s) = Z Sa, (1) Sa, () = Z

d=dy>-->d,.>0 a;€AT
d=degay>-->dega,>0

S1

Syt
a;

ce Ay

Thakur showed in [15] that the product of two MZVs can be expressed as a F-
linear combination of MZVs, therefore, the K-vector space generated by Thakur’s
MZVs is a K-subalgebra of K. Furthermore, Chang showed in [4] that this algebra
has a graded structure with respect to weight.

0.3. Gezmis-Pellarin’s conjecture.

We now review some works of Gezmis and Pellarin in [6]. Let {t;};en~ and
{X;}ien+ be two sequences of independent indeterminates. For any finite subset ¥
of N*, we define the character x,, by setting x. (a) = [[;cx, a(t;) for each polynomial
a € A. Here a(t;) is obtained by substituting 6 with ¢; in the polynomial a. We also
define Xy as the product of X; for all ¢ in ¥. Gezmis and Pellarin investigated two
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series defined as

09 w(T oY) x mlele)

S1 - S

(l,;GA+
degay>--->dega,>0
deg aq deg ar
q q
Y, e %, x5 xg
(0.4) Aa = E s s )
S1 Sp all...a,’f
a; Ex4+
dega;>--->dega,>0
where X1, ..., %, are disjoint subsets of N*, and s1, ..., s, are positive integers. We

call ¥ = %5 U--- U X, the type for the above series. The series (0.3) (resp. (0.4))
converges to an element of the Tate algebra (see Subsection 1.3) in indeterminates t;
with ¢ € ¥ (resp. X; with i € X)) over C,. The first series (0.3), known as Pellarin’s
multiple zeta values, was introduced by Pellarin in [11]. The second series (0.4) can
be considered as a variant of the multiple polylogarithms. When 3 = (J, both series
coincide and reduce to Thakur’s MZVs. Gezmis and Pellarin also extended these
series for Xq,...,%,. are finite weighted subsets of N* a concept which we will
review in Subsection 1.2.

Let ¥ be a fixed finite subset of N* such that |X| < ¢q. We define Zx(K) as the
K-vector space generated by Pellarin’s MZVs of type X given by (0.3), and define
Ly (K) as the K-vector space generated by multiple polylogarithms of type ¥ given
by (0.4). When X = (§, we have Zy(K) = Ly(K), which is the K-algebra generated
by Thakur’s MZVs. Gezmis and Pellarin showed that both Zs(K) and Lx(K)
possess graded Zy(K)-module structures. They also constructed an isomorphism
of graded Zy(K)-modules Fy: Zs(K) — Lx(K), connecting these spaces (see [6,
Theorem 5.2]). Furthermore, they constructed a map €x: Zs(K) — Lx(K) that
coincides with Fy but is defined differently. We shall review the construction of
both maps Fy, and £y in Subsection 3.1.

Gezmis and Pellarin introduced the notion of trivial multiple zeta values and
considered the graded Zy(K)-module Z¥VV(K) consisting of elements in Zx(K)
that vanish at t; = ¢* with i € ¥, for all but finitely many tuples (k;)iex € NI¥I.
For k € N and 7 € N*, we define the element

wie = o (0, D) e,

We note that the polynomial 7, (¢;) used in our work is denoted by gx(¢;) in [6].
Gezmis and Pellarin established a result that characterizes the structure of Zy(K)-
module Z¥V(K) using generators (see [6, Theorem 6.10]). More precisely, the ele-
ments HieZ Nk, (t;) with k; € N for all i € ¥ form a generating set of the Zy(K)-
module Z¥V(K).

We define a map Gy, as the composition of the following maps:
. Is v
2 () =23 LK) —= Zg(K),
b

where the first map, Fy, = €y, is restricted on Z¥V(K), and the second map ev is
the evaluation map at X; = 1 for all ¢ € X. Using ¥y, and €y, a trivial multiple
zeta value can be mapped to linear combinations of multiple polylogarithms in two
distinct combinatorial ways. The equality of the two maps generates a family of
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relations among multiple polylogarithms. Evaluating at X; = 1 for all ¢ € X yields
a family of relations among Thakur’s MZVs. This approach can be considered as
a partial alternative for the double shuffle relations. Gezmis and Pellarin used this
approach to recover some previously known linear relations among MZVs due to
Lara Rodriguez and Thakur, as well as to derive a new family of linear relations
(see [6, Subsection 7.1]). Regarding the map Gy, defined above, Gezmis and Pellarin
proposed the following conjecture (see [6, Conjecture 6.15)):

Conjecture 0.1. The map Gx: 28" (K) — Zy(K) is injective.

0.4. Results and outline.

Set Dy =1 and Dy, = Hi:ol (9qk - 9qi) for all k¥ € N*. The main result of our
work characterizes the structure of the kernel of the map Gx. More precisely, it
reads as follows:

Theorem 0.2. Let ¥ be a finite subset of N* such that |X| < q. Then we have
ker(Sx) is a free Zg(K)-module. In particular, there exists a Zg(K)-basis of ker(Gx)
consisting of elements

ki _
—Ca()Zie= T T mo(ts) + [ Do, (83)
i€y iex
with k; € N and k; are not all equal to zero for i € 3.

To prove Theorem 0.2, we use the structure of Zg(K)-module ZUV(K) (see [6,
Theorem 6.10]) to interpolate elements of ker(Sx) at points (qui)ieg with k; € N
for all ¢ € ¥. The construction of the map €y then allows us to establish the
algebraic structure of ker(Gs;). The linear independence of the basis follows from

the observation that ny(¢*) = 1, if i = k and nx(¢*) = 0, otherwise.

As a consequence of Theorem 0.2, we obtain an answer to Conjecture 0.1.

Corollary 0.3. When X # 0, the map Gx, is not injective.

On the other hand, by using Theorem 0.2, we can also compute the image of Gy;.

Theorem 0.4. Let X be a finite subset of N* such that |X| < q. Then Im(SGx) is
the ideal of Zg(K) generated by C4(1)>!.

Let us give an outline of the paper. In Section 1, we first review some basic
concepts and introduce Pellarin’s multiple zeta values. We then establish the sum-
shuffle formula for the products of two zeta values. In Section 2, we derive a formula
for power sum that corrects the original formula proposed by Gezmis and Pellarin
[6, Formula (22)]. We then verify and compare these two formulas and reprove [6,
Corollary 5.4]. In Section 3, we review the construction of the maps Fy, and €y, as
well as the concept of trivial multiple zeta values. Then we provide the proofs of
Theorem 0.2, Corollary 0.3 and Theorem 0.4.
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suggestions throughout this work. We also want to thank F. Pellarin, who shared
his insights and patiently answered all of our questions.

Two authors are supported by the Excellence Research Chair “L-functions in
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1. PELLARIN’S MULTIPLE ZETA VALUES

1.1. Notations and conventions.

Let p be a prime number and let ¢ be a power of p. In this work, we will use
constantly the following notations:

N = set of natural numbers, i.e., non-negative integers.

N™* = set of positive integers.

Z = set of integers.

F, = finite field with ¢ elements.

A = polynomial ring F,[f] in indeterminate 6 over F,.

AT = set of monic polynomials in A.

A™(d) = set of monic polynomials in A whose degree is equal to d.
A~ (d) = set of polynomials in A whose degree is strictly less than d.
K = fraction field F () of A.

Voo = valuation on K given by v (a/b) = degb — dega for a/b € K.
K, = completion F,((1/0)) of K for ve.

C, = completion of an algebraic closure of K.

d
q=J0—6") for d eN.
=1
-1 »
Dy =[](6% —67) for d € N.
=0
d-1 _
ba(t) = [J(t = 07) for d € N.
=0

As a matter of convention, we agree that an empty product is equal to 1 and an
empty sum is equal to 0.

1.2. Finite weighted subsets.

A countable set ¥ = {0, }nen+ of natural numbers is called a finite weighted
subset of N* if o, = 0 for all but finitely many n € N*. The support Supp(X) of
3 is the set of natural numbers n € N* such that o,, # 0. The cardinality of %,
denoted by |X|, is defined as the sum

2= > on.
neN*

In particular, we write {) (by abuse of notation) for the finite weighted subset of N*
whose elements are all zeros.

Remark 1.1. One can regard a usual finite subset ¥ of N* as a finite weighted
subset ¥ = {0y, }nen+ of N* with o, =1ifne X and 0, =0if n ¢ X.

Let ¥ = {0y, }nen~ be a finite weighted subset of N*. A finite weighted subset
J = {jn}nen+ of N* is called a subset of X if j,, < o, for all n € N*. If this is the
case, we write J C X.
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Let ¥ = {0, tnen+ and T = {7, }nen+ be two finite weighted subsets of N*. We
define the union of ¥ and I', denoted by X LIT, as the finite weighted subset of N*
given by

YUl = {Un + ’Yn}neN*-

1.3. Pellarin’s multiple zeta values.

Let us first review the concept of Tate algebras. We consider a finite number of
indeterminates t1, ... ,ts over Co. We endow on Ct,. .., ts] the Gauss valuation
Uso, defined for any polynomial f =3 ap,,  n, 61" -7 € Cxlt1,...,ts] by

Uoo(f) = min Uoo(an1,...,ns)~

Ni,...;Ns

Denote by T(Cs) the completion of Culty,...,ts] with respect to the Gauss
valuation. Then T,(Cs) is a Cyo-algebra, and is known as a Tate algebra over

C. in indeterminates t1,...,ts. Moreover, we can identify T(Cy) with the set of
formal power series f = apn,, . n,t1" -0 € Coo[[t1, ..., ts]] such that
lim Qn,y,...n, = 0.

ny—+-+ns—>00
We refer the reader to [2, Chapter 5] for further properties of Tate algebras.

Let {t,, }nen~ be a sequence of independent indeterminates. For any finite weighted
subset ¥ = {0y, }nen+ of N*, we let Tx(Cy) denote the Tate algebra over C in
indeterminates t, with n € Supp(X). We define the character x,, as follows: for
each polynomial a in A, we set

Xs(@) = T a(ta)™,
neN*

where a(t,,) is the polynomial obtained by substituting 6 with ¢,, in a. When ¥ = {i}
is a singleton set, we write simply x¢, (a) instead of x4 (a).

Let ¥ = {0, }nen+ be a finite weighted subset of N*, and let J = {j, }nen+ be

a subset of X. We define
)10
<J neN* Jn

The following proposition gives some key properties of the character x,,, which are
used frequently later.

Proposition 1.2. We have the following properties:
(i) xz(a+0d) = , > N (5)x: (a)x, (0).

uJ=
(11) X= (a‘b) = Xz (a)XZ (b)
(iii) For a € F,, x5 (aa) = a/®ly, (a).
(iV) Xz (a’)XF (a‘) = X=ur (a)
Proof. The properties (ii), (iii), (iv) are trivial. To prove (i), we assume that ¥ =
{on}nen~ is a finite weighted subset ¥ of N*. Then we have

wlat )= I] @) 1o = [ 3 ("”)am)”b(wn

neN* REN® iptjnmoy T

> (5o

IuJj=%
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O

Let 31,...,%, be finite weighted subsets of N*, and let s1, ..., s, be integers. An

array A = <§1 o i:r) is said to be admissible if s1,. .., s, are positive integers.
1o 8,

For such an admissible array, we call A a composition of (i) ifXu---ux,. =X

DIPENUUE

andsl—l—---—&—sT:w.LetA:(
51 ... ST

) be an admissible array which is a

composition of (i) The Pellarin’s multiple zeta value (Pellarin” MZV for short)
associated with A is defined as

Gu= Yy el g

S1 S
a ... ar

ai€A+ 1
degay>--->dega,>0

We call ¥ the type, w the weight and r the depth of A (resp. Ca(A)). It was shown
by Pellarin in [11, Proposition 4] that every Pellarin’s MZV can be considered as

an entire function CS'PP*) s C . For d € N, the power sum associated with A
is defined as

Sa(h) = Z X, (a1)--- X5, (ar) .

S1 Sr
a e Qp
a;€AT 1
d=deg ay>--->dega,>0

Moreover, for d € N, we define

saw= Yy wmlmel)

a«Sl .. aS.,.
ai€A+ L "
d>degay>--->dega,>0
Thus we have
d—1 oo
Sca(h) =D Sk(A) and Ca(h) =) Sa(h).
k=0 d=0

One verifies easily that

(1.1) Sd<® m):sd(sl,...,&‘),

81 P s”’
TR VAN Y, Yy oo N,
) e

1.4. A sum-shuffle formula for power sums of depth 1.

In this subsection, we establish an explicit sum-shuffle formula for the products
of two zeta values (see Theorem 1.7). We refer the reader to Pellarin’s paper [12]
for another approach to this formula.

Let a, b be two integers with b > 0. We recall the binomial number

(a) _a(@-1)-(a—b+1)

b b!
It should be remarked that (8) =1 and (‘;) =0 when b >a > 0.
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Lemma 1.3. Let s,t be two positive integers. The following equality of rational
function holds:

I O N
XY T e XX Y)Y Y

where the indices i,j run through all positive integers.
Proof. See [1, Lemma 1.49]. O

Let 3 be a finite weighted subset of N*, and let J be a subset of 3. Let 7, s be
two positive integers. For the convenience of writing, we define

857 = (—1)lIts (?) (i - 1)

Lemma 1.4. Let 3,1 be two finite weighted subsets of N*, and let s,t be two
positive integers. For any a,b € A such that a # b, we have

Xa (@)X (b) 5 55,’fx,(a)xJ(a—b)+ 5 579, (b)x, (b - a)

asbt B at(a — b)I bi(b — a)i ’
JCTIUJ=50UT JCSIUJ=SUr
itj=stt it j=stt

where the indices i,j run through all positive integers.

Proof. Replacing X = a and Y = —b, it follows from Lemma 1.3 that

1 Z (-1 (;2) +(_1)s(i1)1.

asbt i a*(a — b)J bi(b—a)l

Thus it follows from Proposition 1.2 that

Xz (@)xr (b)
asht
( t 1 Xz(a>Xr(b) + (_1)S(§_1)Xz(a)Xr(b)>
a*(a —b)J bi(b —a)
i+j=s+t
( (CDxs(@xe(@+b—a)  (=1)*(71)xe (b)xs b+a—b>
a*(a —b)J bi(b—
i+j=s+t

(2D xs(a o ¥ (x:(@x, (b—a)  (=1)*(22])xx (b) uZ )X (0)x, (a —b)
z+gzs+t ( a*(a —b)? ! bi(b - a)? )
(=1 ( )(t 1)X2u1( )X, (b —a) n Z (=1)° (?) (i })Xruf(b)XJ(a_b)

Iu] a’(a—b)? IUJ=% b'(b —a)?
z+j:s+t i+j=s+t
— ( )lJH_t(J)( 71)X>:u1( )XJ (a _b> (_1)|J|+S (LXI:) (Js DXFHI(b)XJ(b_a)
= MXJ;F ai(a —b)i + MZ];E bi(b—a)
i+j=s+t i+j=s+t
857X, (a)x, (a —b) 570x, (b)x, (b—a)
= > = @la—by >, = bb—ay

JCI JuJj=¥ur JCE; IuJ=¥ur
i+j=s+t i+j=s+t
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This proves the lemma. O

Let ¥ be a finite weighted subset of N*, and let J be a subset of . Let 7, s be
two positive integers. We define

AZI — {<—1>”'“‘1(§) (1), i |J[=j (mod g —1),

)s 0, otherwise.

In the following result, we adapt some techniques from Chen’s proof regarding
the sum-shuffle formula for the product of Carlitz zeta values (see [5, Theorem 3.1]).

Proposition 1.5. Let X, T be two finite weighted subsets of N*, and let s,t be two
positive integers. For all d € N, we have

b T ur I J i I
Q)5 sl e s s

JCT;IUuJ=%Ur JCE;IuJ=xur
itj=s+t itj=s+t

where the indices i,j run through all positive integers.

Proof. We have

sd< )Sd<r): T Xzaim) xrbgb)

a€A*(d) be At (d)
_ Xs (@)X, (b) Xz (@) (b)
- Z thF + Z - asth
a,becAt (d) a, b€A+
a=b a#b
b
= Xzausi(t @) + Z % (from Proposition 1.2(iv))
a€At(d) a,be AT (d)
a#
_ g (XUl X5 (a)x: ()
_Sd(s+t)+ > s
a,bc AT (d)
a#b

Note that if a, b are two polynomials in A¥(d) such that a # b, then there exists a
unique element o € F* and a unique polynomial ¢ € A™ with degc < d such that
a — b = ac. One deduces from Lemma 1.4 and Proposition 1.2(iii) that

Z X= (a)XF (b)

asbt
a,beAT(d)
a#b

_ 557X, (a)x, (a = b) 55, (b)x, (b - a)
B Z Z ai(a —b)J + Z Z bi(b—a)i
JCI;IUJ= EUFabEA"'(d) JCE;IuJ= ZUFabeA+(d)
z+] s+t a#b H‘J s+t a#b

r,j oF,
-y y  duxlnld s y (e
JEIUI=UT o eF X a,ce AT a'(ac) JCSIUJ=SUT o eF X b,ce AT b(ac)
H_] s+t d= dega>degc H_] s+t d= dEgb>degc




10 KHAC NHUAN LE AND KIEN HUU NGUYEN

_ §T [J|—3 X; (a)x, (C>
= Tt @ ©aid
JCI3 U =0T aEFy a,cEAT
i+j=s+t d=deg a>degc
2,7 |J|—3 X1 (b)XJ(C)
+ 85 a T e
s C
JCE;IuJ=3ur Q€EF bce At
i+j=s+1 d=deg b>deg ¢

T,j 1 J 5. I J
- aus( ) 2 ams(l ).
JCT;TuJ=Sur JCS;IUJ=SuT
itj=s+t itj=s+t
The last equality follows from the following identity:

Z n {1, if n=0 (mod ¢ — 1),
« =
0,

y otherwise,
a€cFy

for n € N. This proves the proposition. (I

Remark 1.6. When s =t = 1, we recover the sum-shuffle formula for power sums
of depth 1 due to Pellarin (see [12, Theorem 3.1]). When ¥ = T" = (), we recover the
sum-shuffle formula for power sums of depth 1 due to Chen (see [5, Remark 3.2]).

Let d tend to infinity, we obtain the following explicit sum-shuffle formula for
the product of two zeta values.

Theorem 1.7. Let X, T" be two finite weighted subsets of N*, and let s,t be two
positive integers. We have

Ca (?) Ca (5) =(a (? I;) +¢a (I; f) +Ca <§_|Tl_£>

T I J R I J
+ Z AJ,t CA (Z ]) + Z AJ,S CA (Z ] 5
JCI;IuJ=3ur JCS;IuJ=xur
i+j=s+t i+j=s+t
where the indices 1,7 run through all positive integers.

Proposition 1.8. Let A,B be two admissible arrays which are compositions of

(El> , (22> , respectively. The following assertions hold:
w1 w2

(i) There exist elements a; € Fy and admissible arrays C;, which are com-

positions of (il JIJF iz) , such that for all d € N,
1 2

Sd(A)Sd(B) = Z OziSd(Ci).

(ii) There exist elements o € F, and admissible arrays C;, which are com-

positions of (il _lﬁ iz> , such that for all d € N,
1 2

S<a(B)S<a(B) = ajS<a(C)).
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(iii) There exist elements of € Fy and admissible arrays C;, which are com-

positions of (il _lﬁ i2> , such that for all d € N,
1 2

[

S S<d Z O//S //

Here the elements o, o, off are independent of the degree d.

Proof. Using Proposition 1.5, the proof of Part (i) and Part (ii) is proceeded by
induction on wy + we and follows from similar arguments as in the proof of [10,
Proposition 2.1]. Part (iii) follows from Part (ii) and (1.2). O

2. A FORMULA FOR POWER SUMS OF PELLARIN’S MULTIPLE ZETA VALUES

Throughout this section, we restrict our attention to the case ¥ is a usual finite
subset of N* with |X| < ¢ (see Remark 1.1). In [6], Gezmis and Pellarin derived a
formula [6, Formula (22)] for the power sums of Pellarin’s MZVs using partial higher
divided derivatives, but their formula was found to be incorrect, which partially
affected the proof of [6, Corollary 5.4]. In this section, we provide a corrected
version of their formula using a different approach (see Proposition 2.3) and then
use this formula to reprove [6, Corollary 5.4] (see Proposition 2.5).

1. Preliminary results.
Set lo = 1 and g = 1,6 — 67") for all d € N*. Set Dy = 1 and Dy =
Hf:ol (01" — 69') for all d € N*. We set Ey(z) = z, and for d € N*,

Eqx)=D;" [ (x+a).
a€Ac(d)

Based on a result due to Carlitz (see [3, Theorem 2.1]), one deduces the following
expansion:

d
(2.1) Z

k=0 Dked k

k

In the following proposition, we recall some properties of the polynomial E4(x).
For the proof and further properties of this polynomial, we refer the reader to [8,
Section 3.5].

Proposition 2.1. For all d € N, we have the following properties:

(i) Eq4(z) is an Fy-linear polynomial.
(ii) For a € A such that dega < d, Eq4(a) = 0.
(iii) Fq(09) = 1.

From Carlitz’s work (see [3, Section 9]), we obtain the following generating function:

_ Dz
l(l—Ed ZSdH—F

n>0

(2.2)
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Set bo(t) = 1 and by(t) = [[/=q (t — 67') for all d € N*. For d € N*, we define

d—1
v) = 3 by (B (a)

Note that the polynomial Py(t,z) is Fy-linear in indeterminate = by Proposition
2.1(i). When z = 6%, one deduces from Proposition 2.1(iii) and the same argument
as in the proof of [13, Corollary 2.11] that

(2.3) a(t,07) = Zb = xt(0%) = ba(t).

The following result is deduced from a formula due to Perkins (see [13, Proposition
2.17]).

Proposition 2.2. Let J be a finite subset of N* such that |J| < q. For all d € N*,

we have 2
X, (a)laEq(x — a)
> e | R4
a€A(d) JjeJ
Proof. See [13, Corollary 2.13, Proposition 2.17]. O

Using (2.1), we may write the polynomial Py(t, z) as a polynomial in indeterminate
x as follows:

bj(t)

For the convenience of writing, we denote the coefficient Z s of 27" by
= Dkf

Qa.x(t). When k = 0, one deduces from [11, Lemma 8] that

d—1
(2.4) Quolt) = > 8 = 2l

=0

2.2. Main result.
Let X be a finite subset of N*. For the convenience of writing, we define
E) = H bd(tz)
=)
Proposition 2.3. Let ¥ be a finite subset of N* such that |X| < q, and let n be a
natural number. For all d € N, we have

% (nf1)25d<n+1>bd<2>+ S > Sl Tierd™ + 1) 1T Qu(t)ba()).

JC  0<k;<d—1, i€l i€l
IuJj=x "_Zielqm +1>0

Proof. The case d = 0 is trivial. For the case d > 0, we claim that

(2.5) 3 % _ ;)Sd (n i 1) "

a€A+(d)
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Indeed, expanding the geometric series, we have

Y oEs S RSS2 ¥ )T, ])

a€AT(d) a€A*(d) n>0 n>0 \a€A*(d)

On the other hand, it follows from Proposition 1.2(i) that

> X (0%)x, (a)

Z Xs(a) _ X (0 +a) _ Z IUj=%
a—z Pl +aq—zx 0l +aq—zx
a€A*(d) a€AL(d) a€A-(d)
_ d X, (a)
= > N0 Y
1UJ=% a€A_(d)

Replacing x by = — #? in Proposition 2.2 and using Proposition 2.1, one deduces

that
_ d
Z gd 1*Ed HPdt z—0")
a€A ]EJ

Thus we have

eo > M S ) [ Rattye - 0)

acat(d) s L
- m [T xe (6% + Patti, = — 6%))
ey
e [I(Patti,z) + balts)).

(a1~ Eq(w) 11

The last equality follows from (2.3). Combining (2.5), (2.6), and (2.2), we obtain

gsd(nil)x" ;Sd(nJrl)z” H(ZQM Nz 4 byt ))

i€X \k=0

The result then follows from equating the coefficient of z™ on both sides of the
above identity. O

2.3. Verification and comparison.

In this subsection, we verify and compare two formulas for power sums of Pel-
larin’s MZVs: one originally proposed by Gezmis and Pellarin in [6, Equation (22)],
and our formula given in Proposition 2.3. We will show that Proposition 2.3 provides
the correct result.

For the convenience of the reader, we recall the formula of Gezmis and Pellarin
as follows. Let 3 be a finite subset of N* such that |3| < ¢, and let n be a natural
number. For all d € N, we have

E .
o (n + 1) Sa(n +1)ba(Z) + 3 _ (=) > Sa(n — ;e " +1) T Qari (t:)-
Icx k€N, i€l el
n— ;e i+1>0

We note that the polynomial Qg x(t) used in our work is denoted by H,E,d) (t) in [6].
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We consider the case ¥ = {1,2},n =1 and ¢ = 3, so that |X| = 2 < 3. From the
formula of Gezmis and Pellarin, we have

en (1) = supattbalee) - 550)Quolt) - 5:()Qualt)
_ ba(t)ba(t2) ba(t1) _ ba(t2)
T lala1(th—0)  Taly1(ta—6)

The last equality follows from (2.4) and the fact that Sg(s) = 1/15 for all positive
integers s < ¢ (see [14, Section 3.3]). From Proposition 2.3 and the above arguments,
we have

(2.8) Sq <{1722}) = S4(2)ba(t1)ba(t2) + Sa(1)Qa,0(t1)ba(t2) + Sa(1)Qa,0(t2)ba(t1)

_ ba(ty)ba(t2) . ba(t1)ba(tz) ba(t1)ba(tz)
- lala1(t—6) " Taly 1(ta—6)

For the verification of the results (2.7) and (2.8), we now give an alternative
method to compute Sy <{1’22}> From Proposition 1.5 (see also [12, Theorem 3.1]),

" ha;: <{1,22}) _ s, <{1}> S, <{%}> + Sq <{?} {1}) + 54 ({i} {3}> '

Based on a result due to Pellarin (see [12, Lemma 5.1]), one deduces that Sy ({}}) =

@ and Sy <{§}> = @. Moreover, it follows from (1.2) and [11, Lemma §]
d d
that

- edfd_1(t1 - 9)’

()= (V) s (V) it

Sy <{f} {1}) _s, <{§}> S, <{1}>  balta)ba(ts)

This proves that

{1,2}\ _ ba(t1)ba(ta) | ba(ti)ba(tz) ba(t1)ba(tz)
5d< 2 )‘ z st =8 T Talas o — 0’

which differs from (2.7) and leads to the same result as in (2.8).

2.4. Dagger multiple zeta values.

In this subsection, we will reprove a result due to Gezmis and Pellarin [6, Corol-
lary 5.4] using Proposition 2.3. To do so, we first review some notions introduced
by Gezmis and Pellarin.

Let ¥ be a finite subset of N* such that |X| < ¢. We denote by Ex the Coo-
subalgebra of T (Cs) consisting of all entire functions in variables ¢; with i € 3.

o ZT) of type X, we define

For any admissible array A = <
81 ... S’I‘

¢y =¢h (fll N Er>: > S (51)ba, (Z1) - S, (sr)ba, (5r).

Sr
dy>-->d.>0
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One verifies at once that the above series converges to an entire function in Ex. It
should be remarked that this series does not converge when |X| > ¢. For d € N, we
define

Sl = D Sa(s0)ba(B1) - Sa(50)ba, (),
d=dy>-->d.>0
stawy = > S (s1)bay (1) Sa, (51)ba, (Sr).

d>dy>->d.>0

Using similar arguments as for the power sums of Pellarin’s MZVs, one may
verify that S; and ST< 4 satisfy the properties outlined as in Proposition 1.8. In
particular, we obtain the following result:

Proposition 2.4. Let A,B be two admissible arrays which are compositions of
(El> , (22> , respectively, such that |S1 U Xs| < q. There exist elements a; € Fy
2

wy
PIREDIN

and admissible arrays C;, which are compositions of (
w1 + we

deN,

>, such that for all

SHR)SLy(B) = ai}(Co).
i
Here the elements «; are independent of the degree d.

We denote by ZL)E the F,-vector subspace of Es; generated by CI‘ (A), where A
ranges over all admissible arrays of weight w and type X. We let Z,, 5. denote the
F,-vector subspace of Ex. generated by Pellarin’s MZVs of weight w and type 3.
We are now ready to reprove [6, Corollary 5.4] stated as follows:

Proposition 2.5. Let X be a finite subset of N* such that |X| < q. For all positive
integers w, we have Zy, 5 = Z’L,E'
The following lemma due to Gezmis and Pellarin will be useful. For the proof,

we refer the reader to [6, Lemma 5.5].
Lemma 2.6. Let I be a finite subset of N* such that |I| < q. For all d € N, we
can write

[T Qax.(t:) = a;8<a(cy),

i€l J
where «; are elements in ¥y, which are independent of the degree d, and C; are

1
admissible arrays, which are compositions of <Z qki)'
il

Proposition 2.7. Let ¥ be a finite subset of N* such that |X| < q, and let w be a
positive integer. Let A be an admissible array which is a composition of i . The
following statements hold:

(i) There ezist elements a; € Fy and admissible arrays B;, which are com-

positions of (i) , such that for all d € N,

Sd(A) = Z 0415;(81)
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(ii) There exist elements o € F, and admissible arrays B}, which are com-

positions of (i) , such that for all d € N,
Sh(8) =D aiSa(B)).
Here the elements o; and o are independent of the degree d.

Proof. We proceed the proof by induction on w. For the case w =1, i.e., A= <?>,

it follows from Proposition 2.3 that

()23

which proves the base step. Assume that Proposition 2.7 holds for w < n with
n € N and n > 2. We need to show that Proposition 2.7 holds for w = n. We
consider two cases:

Case 1: The admissible array A has depth 1, i.e., A = (i) Proposition 2.3 shows
that

(2.9) Sy (2) =S (2) + > > s (n B ZJiEqui) 11 Qax. ().

JCS 0<k;<d-1, i€l iel
IuJj=x k;
”_Eiqu >0

Since ), ]qki < n, the induction hypothesis and Lemma 2.6 shows that there exist
elements y; € F,; and admissible arrays C;, which are compositions of (Z qki>’
iel

such that for all d € N, [[,c; Qax, (t:) = >, fijLd(Cj). Thus Part (i) follows from

(2.9) and Proposition 2.4. Since n — Zielqki < n, the induction hypothesis shows
that there exist elements v, € F, and admissible arrays C;, which are compositions

s ; J 3
of , such that for alld € N, S ) =>,7:54(C}). Thus Part (ii

follows from (2.9), Lemma 2.6 and Proposition 1.8(iii).

Case 2: The admissible array A has depth > 1. We may assume that A =
)V o .
(51 57)’ so that s +---+ s, = n. Since s;1 < n and s5 + -+ + 5, < n,
1o s,
the induction hypothesis shows that there exist elements 7;,v; € F, and admissible

. . P . .
arrays C;, which are compositions of (s , and admissible arrays Cj, which are com-
1

Yol US,

) atrm
82+-'-+sr>’ such that for all d € N, Sy <31> = zij%sd(cl) and

positions of <

S<d 22 f’i = Z’yéSLd(Cg). Thus Part (i) follows from (1.2) and Propo-
2 T i

sition 2.4. From similar arguments as above, one may verify that Part (ii) holds in

this case. 0

Proof of Proposition 2.5. The result follows immediately from Proposition 2.7 by
letting d tend to infinity. O
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3. STRUCTURE OF ker(Gx;)

3.1. Some constructions.

Let ¥ be a fixed finite subset of N* such that |X| < ¢. In this subsection, we
briefly review the constructions of the maps Fy, and €y, introduced by Gezmis and
Pellarin in [6].

Let {X,, }nen+ be a sequence of indeterminates. For each finite subset U of N*,

. - by by
we write Xy = HieU X;. For any admissible array A = < ! ST) of type 3,
1 r
we define the multiple polylogarithm associated with the array A as

deg aq deg ar

Xq ... X4
Aa(h) = > Ty (C
A( ) - asl "'G/ST € E( OO)
ai€A+ 1 "
dega;>--->dega,>0

Recall that Ey is the C.-subalgebra of Tx(Cs) consisting of all entire func-
tions in variables ¢; with i € . We let Zx(K) (resp. Lx(K)) denote the K-vector
subspace of Ex, generated by elements (4(A) (resp. Aa(A)), where A ranges over all
admissible arrays of type . When 3 = (), one verifies at once that Zy(K) = Ly(K),
which is the K-algebra generated by Thakur’s MZVs. Let Z,, (K (resp. £, »(K))
denote the K-vector subspace of Ey generated by elements (4(4) (resp. Aa(4)),
where A ranges over all admissible arrays of weight n and type 3. Gezmis and Pel-
larin showed in [6] that both Zx(K) and Lx(K) are graded Zy(K)-module with
grading given by the weight, so that

=P 2usK) and LK) =P Las(K).
n=0 n=0

We recall the construction of the morphisms Fy, €y : Zn(K) — Lx(K) from [6].

Theorem 3.1 (Theorem 5.2 [6]). Let ¥ be a finite subset of N* such that |X| < q.
Let f € Zn(K) then

-y oy L

ZEN‘Z|]<z€N\E‘ D] i—j

€ Ly (K),

where i— 7 is the difference of i and j in the additive group Z>l, X% =Il,ex Xq
ge* (Hq”)reg, Dﬁ = HrEZ Dj. and E = ]—Lez i . Moreover, Fs, : Zs(K) —
Lx(K) is an isomorphism of graded Z@( )-modules.

Theorem 3.2 (Corollary 6.9 [6]). Let 3 be a finite subset of N* such that |Z| < q.
Let f € Zn(K) then

= > 167) H A4 ({{}Y” € Lx(K)

FENITI Di jes

and 82 :ffg,
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3.2. Trivial multiple zeta values.
We continue with the same notation as in the preceding sections. We let ZtE“TVL(K )

denote the set of all elements f € Zs ,(K) satisfies f(@qﬁ) = 0 for all but finitely
many tuples k € NI*|. One verifies easily that th’“?‘;(K ) is a K-vector subspace of
Zs n(K). Moreover, we have
28(K) = Q)2 (K)
n=0

is a Zg(K)-submodule of Zyx(K).

Definition 3.3. Let ev: Lx(K) — Zg(K) be the evaluation map sending X; to 1
for all 7 € ¥. Then, we denote by Gs the map ev o Fx[yuv (k).

We recall the following result due to Gezmis and Pellarin.

Lemma 3.4. For all natural numbers k, we have

(—=1)*bi(t)Ca (qtk> b0 . 0
=qa ( > :

Dy, 1L g—=1 - (¢g—1)g"!
Proof. See [6, Lemma 6.12]. O

Lemma 3.5. For all natural numbers k, we set

(0 ()

n(t) = Dr
Then
s J1 o ifi=k
e (6 ){0 ifi k.

Proof. We first note that
t
Ca ( qk>

T i — k, then by(69") = Dy and Ca <qtk>

0)4 )
= Z agql = Z aqkl,qi, :CA(qk_qz)'

t=0a’ acAt acAt

= €4(0) = 1, hence 7,(67") = 1.
. 7 lt=64"
If i < k, then by(09) = 0, hence 7,(09) = 0. If i > k, then ¢* — ¢* is a negative

integer satisfies (¢ — 1)|(¢* — ¢°), hence C4 (qtk)

= Calg® — ¢') = 0 (See [7,
v t=97*
Theorem 5.3]), showing that 7, (87 ) = 0. This proves the lemma. O

Corollary 3.6. For each tuples k € NI*I we set
JEX
Then ny, is an element in th’“%: v, (K). Moreover, 28V (K) is equal to its Zy(K)-

2.5en 4

submodule generated by {ng|k € NI=I}.
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Proof. 1t follows from Lemma 3.4 that for each j € X,

N1k tj 1] 1}
me=cea( 0
Note that 1+ (¢ — 1) +---+ (¢ — 1)¢*~1 = ¢*i. Thus from Theorem 1.7, we have
N sk tj (Z) (Z)
e = (—1) JEEJI;IZCA<1 g—1 - (g—1)gh? GZZ,Zjequj(K)'
J

Moreover, one deduces from Lemma 3.5 that

i 1 if 4 =
(07) = { fi=k,

0 otherwise.

This shows that 7 is an element in Zgi"z o (K). The second part of this corol-
lajeR

lary was shown in [6, Theorem 6.10]. O

3.3. The structure of ker(Sy).

In this subsection, we study the structure of Gy; for a finite subset ¥ of N* with
X[ <g.

Note that ev(A4 <{{}>) = (a(1). Therefore, Theorem 3.2 implies that

D;

(3.) 55(f) = Y ca(nZrese 000

Now we will describe ker(9x). In order to do this, let M be the Zy(K)-submodule
of Zy(K)[T;]ies generated by {I],cs T 7o £ j = (Gi)ies € NI®I}. We consider
the morphism ® : M — Z¥V(K) of Zy(K)-modules given by
([T ") = —Ca(n)Zee=@ Dy + Dy
€D

for all Q 7é l = (]1)162

Theorem 3.7. The map ® is an injection whose image is ker(Sx).

J7_1

Proof. Let a =370 (;).cx % [Lies T/ € M with a; = 0 for all but finitely
many j. Suppose that a; # 0 for some j. Lemma 3.5 and the definition of ® imply

that ®(a)(07") = Dja; # 0. Therefore @ is injective.

It remains to show that Im(®) = ker(Gx). First of all, we will show that Im(®) C
ker(Sx). In other words, we need to prove that Gx(®(a)) = 0 for all a € M. Let
Ji 1

a= ZQ#i:(ji)ieE a5 HiEZ Tiq
Because of Equality (3.1), Lemma 3.5, and the definition of ®, one has

— Z Ca(1)Xres e %

J

€ M, where a; = 0 for all but finitely many j.

= (a(l )|Z|(I> -I-ZCA rezq”%

= 0#j J
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i
= —(a(1)” Z a;Ca(1)Zien@ 1) +Z<A(1)Zrezq”%
0#j=(ji)iex - 0#j. il
ji i ®(a) (07
= — Z GJCA iex @ +Z<A 2rend (l))(])
0#j=(ji)ies [ =
=— Z a;jCa(l Tiend +ZCA 7@'1”%
0#j=(ji)iex 0#j

=0.

Thus Im(®) C ker(Sx). Inversely, if f € ker(Gx) then f(69") = 0 for all but finitely
many j, thus the element

oS O [

Jj#0 l €D
belongs to M. We will prove that f = ®(a). Indeed, as in the proof of [6, Theorem
6.10], it suffices to show that
F(07) = 2(a)(0)

for all j. Since the definition of ® and Lemma 3.5, this fact is trivial if j # 0. If
J = 0, we use the definition of ® and Lemma 3.5 again to have that

o F07)
=Y T a(1)Zienta D I

= —Cal IZ\ZC Siex d’ @
370 Py

On the other hand, since Gx(f) = 0 and Equality (3.1), one has
Ji oql 0
—Ca(1 \EIZ§ 2iexd f(Dj) :f(gqo)_
370 =
Thus f(Hqg) = @(a)(@qg) and Im(®) D ker(SGx). Therefore we can conclude that
Im(®) = ker(9y). O

Proof of Theorem 0.2. This follows immediately from Theorem 3.7 and the defini-
tion of the map ® : M — Z¥V(K). O

Proof of Corollary 0.3. The claim is trivial by Theorem 3.7 and the fact that M #
0. O

Proof of Theorem 0.4. Because of Corollary 3.6 and Theorem 0.2, Im(Gyx) is the
ideal of Zy(K) generated by Gx(no). Since Equality (3.1) and Lemma 3.5, one has

Gx(ng) = Ca(1)®l.
This finishes our proof. O
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Example 3.8. Suppose that ¢ > |S| > 1, let j # j/ € NI®l such that j is a
permutation of j'. We set

“= Di HTiqjiil o DL HTiqul € M\ {0}.

1 jexn 1 jexm

Then 0 # f =n; —n; = ®(a) € ker(Gx).

Suppose that |3 = 1. Let a = T1 € M\ {0} then 0 # f = —C4(1)7 " o+ D1y =

®(a) € ker(Gx).

(1]
(2]
(3]
(4]
(5]
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