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Abstract: The excavation of a palaeochannel at the Vistre de la Fontaine 2-2 archaeological site, 3 km
downstream from the ancient city of Nîmes (southeastern France), provided an accumulation
sequence covering the last 2,500 years. Trace metal analyses of these alluvial sediments disclosed
lead (Pb) contamination during the Early Roman Empire, with concentrations close to 1,000 ppm,
a factor of 100 above the local geochemical background. This excess of Pb shows a uniform isotopic
signature that may reflect unchanged ore sources, either from the Massif Central or from Great
Britain. The Pb peak accompanied visible waste that was transported in the sediments of the
Vistre de la Fontaine at the time of the development of the Nîmes urban water supply and drainage
network during the Early Roman Empire. This research shows the bimillennial persistence of palaeo-
contamination in a peri-urban alluvial plain and the relevance of fluvial sedimentary archives in doc-
umenting ancient waste.
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There have been many discoveries of Roman lead (Pb) palaeo-contamination in urban
sedimentary archives throughout the Mediterranean basin.1 Indeed, Pb resistance to corro-
sion, its malleability, and the low melting temperature made it the raw material of choice
during antiquity for, inter alia, piping, architecture, glassware, crockery, and paint.2 The
use of plumbum was so prevalent during Roman antiquity that Pb-Ag ore mining was
the main source of Pb contamination detected in Greenland ice cores.3 The Roman atmos-
pheric Pb peak has therefore been considered a possible chronostratigraphic marker.4

Moreover, Pb has four stable isotopes of masses 204, 206, 207, and 208, the last three of
which are the end products of the Uranium (238U and 235U) and Thorium (232Th) radio-
active decay chain. The relative quantity of 238U, 235U, and 232Th in Pb ores varies according

© The Author(s), 2023. Published by Cambridge University Press 1

1 Le Roux et al. 2003; Nin et Leguilloux, 2003; Leroux et al. 2005; Véron et al. 2006; Stanley et al.
2007; Elmaleh et al. 2012; Delile et al. 2014, 2015, 2016, 2017, 2019; Stock et al. 2016; Fagel et al.
2017; Véron et al. 2018; Salel et al. 2019.

2 Nriagu 1983.
3 Hong et al. 1994; McConnel et al. 2018.
4 Renberg et al. 2001.
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to the age of the source rock and its initial U and Th concentrations.5 As such, isotopic
imprints coupled with concentration analyses provide a marker of anthropogenic activities,
as well as of the geographical origin of the ores used in the manufacture of urban artifacts,
when compared to the Pb isotopic signature database of known deposits. In that respect,
anthropogenic lead in sediments constitutes a proxy for the expansion and contraction of
ancient urban development.6 Here we used this geochemical indicator in sediments of the
Vistre de la Fontaine palaeochannel to document the environmental footprint of Nemausus
(Nîmes, southeastern France) during antiquity.

Archaeological assessment carried out as part of a project to restore the meandering tra-
jectory of the Vistre de la Fontaine stream on the outskirts of rural Nîmes led to the exca-
vation of a palaeochannel in the watercourse and of a bridge dating back to the Early
Roman Empire (Fig. 1). The excavation area opened a 2,500-year time window on the evo-
lution of a section of the palaeo-Vistre de la Fontaine. Archaeology, stratigraphy, sedimen-
tology, and malacology of this alluvial sequence together show the migration of the minor
bed and its convex bank over an approximate length of 30 m.7 The accretion of this bank
therefore featured a sequence of sedimentary archives that was investigated following a
multiproxy approach. Granulometry, sedimentology, and analyses of major and trace ele-
ments and Pb isotopic signatures made it possible to test for the presence and origin of
metallic palaeo-pollutants recorded in the alluvial sediments during the historical period,
in connection with the development of the city located approximately 3 km upstream from
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Fig. 1. Aerial view looking northwards from the Vistre de la Fontaine 2-2 site under excavation, in the
Vistrenque plain, at the foot of the Nîmes limestone hills, northwest of the Rhône delta. The insert top-left
shows the geographical context of the Vistre de la Fontaine, a tributary of karstic origin of the Vistre coastal
river, itself a tributary of the Rhône-Sète canal. (Photo © Globdrone.)

5 Doe 1970.
6 Delile, 2014; Delile et al. 2016, 2017.
7 Flaux et al. 2022.
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the site. Additional data include anthracological, archaeozoological, and carpological
remains found within the Roman-period minor bed of the river. Originating from a sacred
karstic spring that became a central node in the development of the Nîmes agglomeration
from the end of the 6th c. BCE, the Vistre de la Fontaine River displays today physico-
chemical indications of domestic and agricultural contaminants (sewage waters and high
nitrate levels, respectively).8 This study explores for the first time the deep history of
anthropogenic contamination of this urban river.

Methods
Chronostratigraphy

The Vistre de la Fontaine is a karstic river flowing from a perennial spring which con-
stituted the heart of Nîmes from its foundation in the 6th c. BCE. The Vistre de la
Fontaine 2-2 site, located ca. 3 km downstream from the city, allowed the excavation of
a Roman bridge that used to cross the river and opened a window onto the evolution
of its palaeochannel over the last 2,500 years. A stratigraphic section of about 40 m in
length with a deep dig and three auger cores intersected the accreting palaeo-bank
over a length of about 30 m (see stratigraphic transect in Fig. 2), producing a temporal
sedimentary series that was horizontally structured. This section underwent a detailed
stratigraphic field survey and an orthorectified and georeferenced photogrammetric sur-
vey. Thirty-three samples of raw sediment were taken horizontally along the convex
bank’s lateral accretion. The granulometry of the deposits was approximated using wet
sieving and fraction quantification of gravel (> 2mm), coarse sand (> 0.5 mm), fine
sand (> 0.063 mm), and silt and clay (< 0.063 mm) (Table 1). The composition of sand
and gravel fractions were observed using binocular loupes. The chronology of this
sequence was established on the basis of stratigraphic relationships, archaeological struc-
tures in situ, and archaeological artifacts in secondary positions, as well as by three
radiocarbon dates (Table 2).

Bio-archaeology

Fluvial deposits that filled the Roman palaeochannel as a result of stable hydromorphic
conditions provided a sequence of carpological, anthracological, and zoological data from
the Roman period. The samples were prepared and studied at Mosaïques Archéologie
laboratory. Details of the bioarchaeological methods and studies employed on the Vistre
de la Fontaine 2-2 site can be found in the excavation report.9

Nine samples of approximately 10 L were selected for anthracology, from which 360
charcoals were extracted after wet sieving of bulk sediments through mesh of 4, 1, and
0.5 mm. Four samples of approximately 10 L were selected for carpology, from which
ca. 8,000 remains were extracted after wet sieving of bulk sediments through mesh of 4,
1, and 0.35 mm. One thousand and forty-nine archaeozoological fragments were collected
during the excavation and after wet sieving of bulk sediment sampled from the fluvial con-
text (both minor bed and bank) of the Roman era.

8 Maréchal et al. 2004.
9 Scrinzi et al. 2021.
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Fig. 2. General Holocene phasing of the stripped surface, map of the Early Roman Empire remains, and location
of the stratigraphic sections. Lambert 93 coordinate system. (Map by C. Flaux.)
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Geochemistry

XRF geochemical analysis was performed upon the 33 samples taken along the convex
bank’s lateral accretion. The raw sediment samples were dried in a heating cabinet at 35°C
for ten days, then ground in an agate mortar and compacted into a dish covered by a
4μm-thick polypropylene film used specifically for XRF analysis. Measurements were
taken using an InnovX Delta Premium spectrometer equipped with a silicon drift detector
(SDD) and a 4W X-ray tube with a rhodium target operating between 10 and 40 kV for a
maximum amperage of 200μA. Soil mode was selected with a long exposure time for better
accuracy.10 The raw data from the analysis are presented in Table 1.

Stable lead isotope ratios were measured using a Neptune+ MC-ICPMS (Multi-Collector
Inductively Coupled Plasma Mass Spectrometer) at CEREGE (CNRS, France), after
microwave-associated digestion of sediments and Pb extraction and purification on
AG1X8 resins.11 The isotope ratios provided in Table 3 were normalized by multiple ana-
lyses of the NBS981 standard.12 Analytical uncertainties (standard deviation) for the mea-
sured Pb isotope ratios presented in figures and tables was lower than 0.012%.

Sedimentary archives
General stratigraphy of the Vistrenque

The archaeological site is located on the lower Vistre de la Fontaine River, a tributary of
the Vistre coastal river. The alluvial plain of the Vistrenque forms a depression 5 to 7 km
wide, extending in a northeast–southwest direction and separating the Garrigues area in
the north from the Costières de Nîmes in the south (Fig. 1). The hills and plateaus of the
Garrigues region are formed of marly limestone from the Lower Cretaceous, and their
piedmont plain is commensurate with a detrital glacis formed during the Pleistocene
and Holocene.13 The Costières to the south comprise series of alluvial terraces formed
by the Rhône during the Lower and Middle Pleistocene. These terraces also form the bed-
rock of the Vistrenque, which would have subsided through synsedimentary tectonic
processes.14

The main lines of the surface formations of the Vistre plain are now well understood,
thanks to the numerous geoarchaeological and palaeoenvironmental studies carried out
in this area.15 The ante-Holocene substratum of the sedimentary sequence consists of the
detrital formation of the Costières, the roof of which lies around 3.5 m below the surface,
covered by a “loessic complex,” deposited over a thickness of 2 to 2.5 m and dated to the
recent Pleistocene, with a roof that is capped by a palaeosoil formed during the Tardiglacial
period. The Holocene is represented by a pedosedimentary sequence of fine alluvial depos-
its 0.8 to 1.25 m thick, characterized by a shelly brown palaeosoil, which, in the Vistrenque,
is generally defined by occupations from the Neolithic and the Bronze Age.

10 Kilbride et al. 2006.
11 Manhès et al. 1978.
12 Doucelance and Manhès 2001. The entire procedure for lead isotopic analysis is detailed in Gelly

et al. 2019.
13 Fabre and Monteil 2011.
14 Ménillet and Paloc 1973.
15 Chevillot et al. 2008; Chevillot et al. 2010; Jallet et al. 2017.
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The construction of the meander

The palaeochannel of the Vistre de la Fontaine was created in a silty alluvial plain. The
stripped surface of the site, cleared to about 50 cm below the present soil, reveals this
dichotomy in the form of a winding pathway nested in the shelly brown palaeosoil
(Fig. 2). Stratigraphic transect 1 (Fig. 3) intersects this formation in a north-northeast–south-
southwest direction, showing the truncation of the Neolithic brown, shelly palaeosoil16 and
the underlying loess complex in the form of a 39 m-long basin with a maximum depth of
2 m below the stripped surface. Overall, the basin contains two main sedimentary facies. At
the bottom, deposits are mostly coarse, lenticular conglomerates of rolled and joined grav-
els interspersed with more sandy or even muddy lenticular bodies, which are consistent
with the filling of an active minor bed. The upper part is much more homogeneous, com-
posed of massive and monotonous yellowish-brown to greyish-brown sandy silts over a
length of more than 30m, intersected by oxidized rhizoconcretions. The homogeneity of
this facies is also evident in its texture. Granulometry is mainly fine, with 53 to 77% of
silt and clay, 24 to 36% fine sands (Table 1). The sand fraction is invariably composed of
abundant, poorly rolled carbonate rhizoconcretions (interpreted as detrital travertines), cal-
careous and quartz minerals, and malacofaunal elements (shells, shell fragments, and oper-
culum in variable proportions). However, the apparent homogeneity of this layer is
structured in multi-metric sedimentary units with oblique interfaces with a 15 to 20° south-
ward inclination, marked by strandlines composed of charcoals or shells left by a
high-water level (Fig. 3). This geometry evokes the slope of a fluvial channel bank, and
the horizontal succession of deposits provides evidence for the southward accretion of

Table 3.
Lead isotope ratios. Preparation and analysis of samples took place at CEREGE (CNRS, UMR7730),
on a Neptune+ MC-ICPMS (Multi-Collector Inductively Coupled Plasma Mass Spectrometry). The
reproducibility of these measurements is associated with an error bar lower than 0.012% for all

reported lead isotope ratios.

Sample
number

Distance
(m)

208Pb/
204Pb

208Pb/
206Pb

208Pb/
207Pb

206Pb/
207Pb

207Pb/
204Pb

206Pb/
204Pb

2 37.55 38.659 2.07900 2.46745 1.18685 15.667 18.595
5 35 39.269 2.06947 2.50025 1.20816 15.706 18.975
7 33 38.844 2.06424 2.47685 1.19988 15.683 18.818
8 32 38.906 2.06236 2.47913 1.20209 15.693 18.865
11 29 38.729 2.07373 2.47155 1.19184 15.670 18.676
13 27 38.657 2.08493 2.46624 1.18289 15.674 18.541
15 25 38.632 2.09055 2.46551 1.17936 15.669 18.479
17 23 38.553 2.09097 2.46129 1.17710 15.664 18.438
19 21 38.576 2.09114 2.46209 1.17739 15.668 18.448
20 20 38.554 2.08899 2.46236 1.17873 15.657 18.456
21 19 38.619 2.08890 2.46396 1.17955 15.674 18.488
23 17 38.601 2.08885 2.46396 1.17958 15.666 18.479
25 15 38.553 2.08834 2.46241 1.17913 15.657 18.461
28 12 38.599 2.08951 2.46312 1.17880 15.671 18.473
30 10 38.634 2.08849 2.46403 1.17981 15.679 18.498
31 9 38.571 2.08751 2.46320 1.17997 15.659 18.477
17 23 38.542 2.08871 2.46221 1.17882 15.653 18.453

16 Chevillot et al. 2010.
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this bank, burying the deposits of the Vistre de la Fontaine palaeochannel, jointly migrating
towards the south through the erosion of the concave bank. This mechanism reflects the
construction of a meander. The malacofauna studied along this sequence shows mixed
assemblages composed of aquatic and terrestrial fauna in variable proportions, consistent
with the transitional space constituted by these alluvial palaeobanks.17 The geoarchaeolo-
gical study of the site, via analysis of anthracological, carpological, palynological, malaco-
logical, and archaeozoological alluvial assemblages, has revealed that the Vistrenque
formed a diversified mosaic landscape, an open and cultivated alluvial plain where
wooded areas nevertheless remained.18

Chronology of the meander

The stratigraphy of this homogeneous sedimentary series, structured in multi-metric
units with oblique interfaces and a southward inclination of 15 to 20°, and marked by
strandlines composed of charcoals or shells left by a high-water level, implies the chrono-
logical succession of the deposits of this bank in a southward accretion, burying the lat-
erally and jointly migrating channel deposits. It was possible to date three phases of
deposition for these successive channels (Fig. 3). The first, on the north side, is coarsely len-
ticular and yielded a series of non-rolled ceramic fragments in a good state of preservation,
favoring the hypothesis of a rubbish tip in the palaeochannel of the Vistre de la Fontaine.
The assemblage yielded hand-thrown pottery, fragments of Etruscan amphorae, and
Eastern Greek ceramics dated to the 6th c. BCE.19 The second phase of channel deposits
corresponds to the fluvial activity contemporary with the construction of the bridge and
dated to the Early Roman Empire (1st–2nd c. CE).20 The ceramic assemblage associated
with the deposit of this ancient palaeochannel reveals a wider time period, between the
2nd c. BCE and the 5th c. CE, although the overwhelming majority of the ceramics are
dated to the Early Roman Empire. Finally, the third phase corresponds to the final sealing
of the palaeochannel, traces of which are still visible on contemporary aerial images. The
final phase of the filling is anthropic, incorporating fragments of contemporary ceramics
and iron elements (nails, rods, barbed wire), providing a terminus post quem of the first
half of the 20th c., consistent with the mechanical rectification of the channel carried out
between 1945 and 1953.21

The accretion of the convex bank of the Vistre de la Fontaine palaeochannel thus took
place between the First Iron Age and the contemporary period. One of the oblique inter-
faces marking the slope of this palaeobank is highlighted in sections by walls MR2040
and, about 1 m below and 2 m farther south, MR2104 (Fig. 3). This construction of the
bank of the ancient palaeochannel is associated with the addition of the bridge during
the Early Roman Empire, consistent with a ceramic assemblage dated to the 2nd–1st
c. BCE and discovered within the bank sediments underlying these two walls.22 Finally,
three radiocarbon dates were ascertained from organic material (Table 2) taken from

17 Scrinzi et al. 2021; Flaux et al. 2022.
18 Scrinzi et al. 2021.
19 Scrinzi et al. 2021.
20 Scrinzi et al. 2021.
21 Scrinzi et al. 2021.
22 Scrinzi et al. 2021.
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oblique strandlines composed of charcoals left by a high-water level made after these two
walls. From north to south, these three charcoal-bed dates are 49 BCE–79 CE, 64–213 CE,
and 69–214 CE, respectively. These bank deposits bury the minor-bed deposits of the
ancient palaeochannel, dated by the ceramic assemblages to between the 2nd c. BCE
and the 5th c. CE, and are therefore stratigraphically subsequent. The radiocarbon dates
appear to contradict the chronological model based on the ceramic material. However, it
must be considered that in a fluvial environment, sedimentary stocks can be reformed
when transiting along the longitudinal profile of the river. For example, during the accre-
tion of the convex bank of the Vistre de la Fontaine, the sedimentary material is likely a
result of an eroding concave bank upstream. This mechanism would explain why the
radiocarbon ages of the two southernmost radiocarbon samples cover the same period
(64–213 versus 69–214 CE; Fig. 4 and Table 2): they probably derived from the same sedi-
mentary stock further upstream.

Waste deposition in the palaeochannel

The ancient palaeochannel and the way it developed allowed for the accumulation of a
fluvial sedimentary stock at a depth of 2 to 3.5 m. This remained below the water table in
apparently stable hydromorphic conditions and so enabled the good preservation of carpo-
logical and palynological material that complements the archaeozoological and anthraco-
logical assemblages.23

The archaeozoological assemblage is dominated by the remains of livestock (cattle, pigs,
sheep, and goats) as well as other domestic species (chickens, equines, and dogs). Traces of
carcass cuttings, particularly the chopping of animal legs into pieces, are suggestive of
butchery and consumption of meat. The assemblage also includes some bone remains
that show no traces of human intervention, likely from wild species (lagomorphs, murids)
and species whose domestic or wild status remains undetermined (cats, small canids,
Columbidae). Most of the fragments have been rolled and the bone surfaces are disintegrat-
ing (desquamation), indicating their displacement by the watercourse before their final
deposition. Traces of trimming indicate the intervention of detrivores on some bones.
The archaeozoological assemblage is therefore not in a primary position and demonstrates
diversified inputs via the Vistre de la Fontaine River.

The carpological assemblage is diversified, composed of cultivated taxa, crop weeds,
woodland, forest, and forest borders. The anthropic contribution can be seen in the high
proportion of fruit and seed remains that may have been of nutritional benefit (figs, grapes,
cherries/wild cherries, olives, possibly pomegranates, melons/cucumbers, gourds, parsnip,
and coriander seeds), as well as in the high level of fragmentation of some remains, indi-
cating hulling or grinding. The discovery of some 40 rolled and highly eroded remains that
resemble either shell (nuts?) or pit (olives, Prunus family?) fragments is suggestive of a con-
tribution of allochthonous material, probably from the ancient city of Nîmes.
Roman-period sites inside and outside the city walls yielded similar “economic” taxa to
those found on the Vistre de la Fontaine 2-2 site, and these are common in urban and peri-
urban settlements and in funerary environments.24 The Vistre de la Fontaine exported
some of its organic waste outside of the town. On the other hand, the discovery of pressed

23 Scrinzi et al. 2021.
24 Tillier 2019.
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grape residues (highly fragmented pips, pedicels, skin, stalk, and aborted berries) indicates
there was no displacement in the watercourse or local discharge either from the banks of
the channel or directly from the bridge that overhangs the deposition area. In an urban
or rural context, the Vistre de la Fontaine resembles a waste disposal area.

The anthracological and xylological samples collected in the Vistre de la Fontaine
palaeochannel are also very diverse, including soaked fragments from timber, charcoal
of fruit and ornamental taxa, and fuelwood. The high proportion of heather within the
anthracological spectrum, which has been shown to be a fuel of choice of the ancient
city,25 indicates that the assemblage is, at least in part, representative of the range of
waste that passed from the city of Nîmes into the riverbed. Charcoal and soaked-wood
analysis shows that the zones used for gathering firewood or for the manufacture of
shaped objects include all the wooded environments present around Nîmes: the mixed
oak forest of the Garrigues and Costières, the alluvial forest of the plain, the riparian forest,
the possible relict woodlands on nearby mountains, and also cultivated trees. This diver-
sity reflects the wider environment of Nîmes rather than just the immediate riparian setting
of the site being studied.
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Fig. 4. Synthetic stratigraphic log of the site showing chronology, Pb concentration (ppm), Pb, Cu, and Zn
enrichment factors (calculated according to Barbieri 2016), and 206Pb/207Pb isotopic ratios, raw and in excess
(Pb of anthropic origin). Lead isotope ratios are associated with an error bar lower than 0.012%. (C. Flaux.)

25 Figueiral et al. 2017.
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In antiquity, the demographic and urban expansion of Nemausus, as well as the devel-
opment of cottage industries and commercial trade, led to a proliferation of waste and vari-
ous kinds of pollution. Recent studies of ancient rubbish tips indicate a concern to preserve
the cleanliness of public areas and efforts to relocate rubbish dumps to the periphery of the
Augustan enclosure and to roadside locations.26 Bioarchaeological remains found in the
Roman channel of the Vistre de la Fontaine underline the fact that the river also transported
urban waste outside the city of Nîmes, suggesting that the river acted as a sewer.
Archaeological research in Nîmes has shown that the Vistre de la Fontaine was indeed
largely integrated into extended and complex wastewater drainage networks.27 The
Arles harbor dump in the Rhône is representative in this respect, since it gathered thou-
sands of waste items from the city’s domestic, cottage-industry, and harbor activities.28

In Nîmes, the urban river also carried invisible waste such as metals.

Chemical imprint
Lead contamination of the banks

The overall macroscopic homogeneity of the sedimentary matrix of the accretionary
sequence of the Vistre de la Fontaine’s convex palaeobank, as expressed by grain size data,
is confirmed by the weak variation of the calcium, potassium, and iron content (Fig. 3 and
Table 1) that dominate the elemental composition of the detrital load. This homogeneity con-
trasts with the variability of Pb content (Fig. 3). In the north–south direction of the lateral
accretion of the palaeo-Vistre de la Fontaine’s convex bank, the Pb profile shows an initially
low content (10–20 ppm), followed by a sharp rise to nearly 1,000 ppm, and a fall to rather
steady concentrations (100—200 ppm) that remain about ten times higher than the geochem-
ical background recorded at the beginning of the sequence, that is, the Neolithic soil. Copper
(Cu) and zinc (Zn) levels broadly follow a similar pattern (Fig. 3).

Metal enrichment factors (EFm with m = Pb, Cu, or Zn) were calculated to estimate the
metal enrichment in relation to the local geochemical background:

EFm = m/Ti
( )

sample / m/Ti
( )

local geochemical background.
29

The metal concentration is normalized to titanium (Ti), which is a conservative terrigenous
element in soils,30 that is, not prone to mobility, with a variability linked to that of the nat-
ural source from which the sediments are derived. The local geochemical background cor-
responds to the metal content measured within pre-anthropic sediments from samples 3, 4,
and 6 to 11 (Fig. 3) because these sediments have a silicoclastic and silty matrix like con-
taminated sediments. An EFm >3 is considered enough to suggest excess accumulated
metal that may be of anthropogenic origin.31 EF values above 40 are considered extremely
high.32 These enrichment factors are shown in Figure 4, where a significant enrichment is

26 Monteil et al. 2003; Le-roy et al. 2019.
27 Veyrac 2006
28 Djaoui dir. 2019.
29 Calculated according to Barbieri 2016.
30 e.g., Shotyk et al. 2002.
31 Véron et al. 2006; Delile 2014.
32 Barbieri 2016.
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evidenced during the Early Roman Empire (20–25m in the sequence) for Pb (EFPb max =
44), to a lesser extent for Cu (EFCu max = 18), and slightly above the materiality threshold
for Zn (EFZn max = 3.5). EFPb indicates a massive and sudden source of lead input into the
alluvial sedimentary system of the Vistre de la Fontaine. For comparison, an environmental
lead contamination during the Roman Empire was also observed in the Étang de Thau by
elemental and isotopic analyses of mussel shell.33

Possible source of Pb contamination

Although ceramic or wooden pipes existed during antiquity, the use of Pb pipes was
very common in Roman times,34 this material being known for its elasticity and resist-
ance to pressure.35 In Nîmes, A. Pelet described in 1863 “an infinite number of lead
pipes criss-crossing our city [Nîmes] which we discover every day buried under our
soil.”36 In particular, the sector of the Fontaine spring has yielded Pb pipes in abun-
dance, as has the Castellum sector, the sewer and distributor of water from the
Nîmes aqueduct. The geography of the lead pipe discoveries (40 in Alain Veyrac’s cata-
logue),37 the ten leakage pipes from the Castellum, each about 35 cm in diameter, and
the distribution of the thermal baths in the city provide, inter alia, evidence that almost
the entire extent of the Roman city was supplied with water by two distinct networks
independent of each other (the aqueduct of Nîmes and the conveyance of water from
the Fontaine source), composed mainly of Pb pipes. The ancient main sewers were
drained away in the main water flow, downstream of the Vistre de la Fontaine.38

Therefore, the discharge of bioarchaeological remains (partly resulting from domestic
and cottage-industry discharges from Nîmes) and Pb contaminants downstream of
the Roman city is no wonder. The Pb anomaly starts abruptly after the construction
of the bridge during the Early Roman Empire. The archaeological data from Nîmes
show that the upkeep of the Roman and public water management system declined
during the 2nd c. CE and ceased during the 4th c. CE.39 Our hypothesis is that the
Pb peak identified in the sediments of the convex bank of a meander of the Vistre de
la Fontaine evidences the installation, use, and then abandonment of Nîmes’s lead
pipe network during the Early Roman Empire. Comparing the isotopic signature of
these remains with that of the contamination generated in the river will allow the val-
idity of this hypothesis to be examined.

Origin of Pb ore

Alain Veyrac assumed that Pb pipe manufacturing workshops must have existed in
Nîmes, at least to satisfy local demand.40 This hypothesis was confirmed by the discovery
of two Pb pipes in the vicinity of Nîmes, at Balaruc-les-Bains (Hérault), each bearing an

33 Labonne et al. 1998.
34 Nriagu 1983.
35 Veyrac 2006, 162-177.
36 Veyrac 2006, 169.
37 Veyrac 2006
38 Monteil 1999; Veyrac 2006
39 Monteil 1999.
40 Veyrac 2006.
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inscription referring to the Nîmes colony.41 Likewise, in the Ambrussum way station in
Villetelle (Hérault), a stamp on a Pb pipe showed similarities to the onomastics of the
city of Nîmes, suggesting a plumbing company based in Nîmes may have been involved.42

Using stable Pb isotopes, we may infer the geographic origin of the Pb ores that contami-
nated the palaeochannel during the Roman Empire.

The excess Pb measured in the sediments of the banks of the Vistre de la Fontaine pro-
vides evidence of an anthropogenic contribution superimposed on the local geochemical
background. Both may be identified by their isotopic signatures. The horizontal profile
of the 206Pb/207Pb ratio of the alluvial sequence is characterized by two main isotopic fields,
Geo1 and Geo2 (Fig. 4). The Geo1 field, associated with relatively low Pb content
(9–25 ppm), has a variable and more radiogenic isotopic signature (206Pb/207Pb = 1.198 ±
0.017), as compared to the Geo2 field, which is characterized by higher Pb content (100–
1,000 ppm) and a more homogeneous and less radiogenic isotopic signature (206Pb/207Pb
= 1.179 ± 0.003). The most radiogenic values are consistent with those of uncontaminated
sediments deposited in the western Mediterranean basin43 ([Pb] = 13–20 ppm;
206Pb/207Pb = 1.195–1.233); in the ancient harbor of Fréjus44 ([Pb] = 14–20 ppm;
206Pb/207Pb = 1.202 ± 0.002); and in the uncontaminated sediments of the Étang de Thau,
southwest of Montpellier45 (206Pb/207Pb = 1.200 ± 0.003). Within the Geo1 field, samples 2
and 11 show a slightly less radiogenic isotope ratio (206Pb/207Pb around 1.19), which
could indicate differentiated (anthropogenic?) Pb contributions prior to the
Roman-period contamination. We believe that the Geo1 isotopic field constitutes, if not
the natural geochemical background given an unstable isotopic signature from possible
low amplitude proto-contamination sources, at least the local geochemical background
before the advent of the Roman Empire. Given the relative uniformity of the measured
206Pb/207Pb ratios from each Geo field, the mean isotopic signature of the excess Pb
in the Roman palaeo-bank can be assessed from the 206Pb/207Pb (y) vs. 1/Pb (x)
relationship (Fig. 5C). The latter shows a significant strong correlation (r2 = 0.97, p < 0.01)
with y = 1.178 + 0.3x. Therefore, one can calculate that the mean isotopic imprint of Pb in
excess into the fluvial sedimentary system of the Vistre de la Fontaine during the
Roman Empire is 206Pb/207Pb = 1.178 ± 0.002, much less radiogenic than the local geochem-
ical background (student t-test, p < 0.05). The Pb isotope imprint introduced in excess (RXs)
into the environment from this period can also be calculated by the following isotopic mix-
ing equation (with R: isotopic ratio and Pb: lead content):

Rraw
∗ Pbraw = RXs

∗ PbXs + Rlocal
∗ Pblocal.

The term “raw” is measured in the sample. The term “local” corresponds to the five
samples of the sequence with the lowest lead content (considered as carrying the local geo-
chemical background; samples 2, 5, 7, 8, and 11). PbXs (Pb in excess) = Pbraw - Pblocal. The
mean calculated isotope signature of excess Pb (1.179 ± 0.002) is similar to that determined
from Figure 5, as expected from the remarkably constant PbXs isotope imprint during the

41 Veyrac 2006, 173, fig. 95.
42 Fiches and Rebière 2010, 327.
43 Ferrand et al. 1999.
44 Véron et al. 2018.
45 Monna et al. 2000.
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Roman sequence and beyond. This isotopic composition has been compared to a compil-
ation of the isotopic signatures of lead deposits located in massifs where ancient works
have been identified. The 206Pb/204Pb and 207Pb/204Pb PbXs signatures of the Geo2 field
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Fig. 5. A- and B- 206Pb/204Pb vs. 207Pb/204Pb of known lead ores that can fit the Geo2 isotopic imprint
(Arribas and Tosdal 1994; Barnes et al. 1974; Brevart et al. 1982; Pomiès et al. 1988; Ruiz et al. 2002;
Craddock et al. 1985; Hunt-Ortiz 2003; Krahn and Baumann 1996; Le Guen and Lancelot 1989; Le Guen
et al. 1991; Leach et al. 2001; Leach et al. 2006; Marcoux 1986; Marcoux and Brill 1986; Niederschlag
et al. 2003; Rohl 1996; Rosman et al. 1997; Sangster et al. 2000; Stos-Gale et al. 1995; Stos-Gale et al.
1996; Stos-Gale and Gale 2009; Swainbank et al. 1982; Wagner et al. 1979. Calibration carried out according
to Reimer et al. 2020). Geo2 is the mean calculated isotopic signature of lead in excess during the Roman
Empire sequence (“SD” = standard deviation). C- Determination of the excess Pb isotopic imprint from the lin-
earity between Geo1 and Geo2 fields. (C. Flaux.)
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are used owing to the discrimination ability of the normalization to the non-radiogenic
204Pb isotope.46 These PbXs isotopic ratios are calculated using the mixing equation. The
different geographical provenances compose broad, sometimes scattered, and frequently
overlapping isotopic domains, indicating isotopic heterogeneity of the ores (Fig. 5A). A clo-
ser analysis of 206Pb/204Pb vs. 207Pb/204Pb ratios of excess Pb reveals two possible regional
sources within the uncertainty range of the Nîmes footprint (Fig. 5B): Great Britain
(Northumberland, Devon, Staffordshire, and Gwynedd) and the southern Massif Central
(Mont Lozère, Ségalas-Montagne Noire, southern Cévennes). The latter signature high-
lights the systematic prospecting of Cu-Pb-Ag deposits in the Montagne Noire during
antiquity47 and could confirm the southern Massif Central as a potential Pb-Ag mining
region during the Roman period,48 more firmly evidenced for the Middle Ages in metal-
lurgical works and environmental deposits.49 Alternatively, practices of salvaging and
recycling implemented by the Romans50 may have produced a mixture from several ori-
ginal sources that would be precluded from identification. Interestingly, the PbXs isotopic
imprint recorded in Vistre de la Fontaine 2-2 Roman sediments is similar to that of ancient
Roman lead pipes from Rome (Fig. 5A).51

Lead isotope analysis also makes clear that this Roman-period contamination has been
perpetuated until the modern era, most probably due to a remobilization of the “ancient
reservoir,” which would have been redistributed by the alluvial dynamics along the mean-
dering longitudinal profile of the Vistre de la Fontaine. As such, the excess Pb introduced at
a given time into a fluvial environment could remain a passive source of contamination of
local sediments for several thousand years, Pb being relatively stable in soils due to its
insolubility in clean water52 and its resistance to leaching.53 Such pervasive Roman Pb pol-
lution in modern fluvial sediments has also been identified in the Tiber delta.54

Conclusion

This study illustrates the riverine transport of diversified anthropogenic waste from the
city of Nîmes towards its rural periphery since the Early Roman Empire, at a location 3 km
downstream of the urban center, including remains from butchery, consumption of fruit,
and combustion. These results confirm the role played by watercourses in evacuation of
urban waste from ancient cities.55 The human imprint is also characterized by heavy
metal (Pb, Cu, and Zn) accumulation onto deposited sediment particles. It is likely that
the Pb peak mirrors the expansion and retraction of the Nemausus water supply system
during the Early Roman Empire. The Vistre de la Fontaine, originating from a sacred

46 Doe, 1970.
47 Mantenant 2014; Mantenant and Munoz 2017.
48 Le Roux et al. 2005; Delile et al. 2014; Delile et al. 2016; Hanel and Bode, 2016; Delile et al. 2017;

Parjanadze and Bode, 2017; Rothenhöfer et al., 2017; McConnell et al. 2018; Bode et al. 2018.
49 Baron et al. 2005; Baron et al. 2006; Baron et al. 2009.
50 Delile et al. 2017.
51 Delile et al. 2014, 2017.
52 Lovering 1976.
53 Du Laing et al. 2009.
54 Delile et al. 2014.
55 Dupré Raventós and Remolà Vallverdù 2000.
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spring dedicated to the eponymous god of the city, Nemausus, became a sewer down-
stream and a vector, from the Roman city to the countryside, of visible and invisible
waste. It has generated significant metallic palaeocontamination in the sediments of the
convex bank of a meander of the river.

The perception of lead contamination remains topical: in the Nîmes area, little is known
of the concentration of heavy metals in present-day watercourses.56 The Vistre de la
Fontaine 2-2 site shows that their presence may be a distant legacy, with local levels of long-
lasting ancient Pb higher than the values for an impact on human health
(sensitive Pb environmental impact value VCI of 400 ppm)57 and well above the WHO/
FAO permissible limit of 50 ppm.58 Stable Pb isotopes show not only the possible geo-
graphic origin of Pb ores imported into the city of Nîmes during the Roman Empire
(from the southern French Massif Central and/or Great Britain) but also the reworking
of this ancient contamination into posterior alluvial deposits. This site shows that local
present-day heavy metal anomalies may be inherited from industrial activities that date
back to Roman Antiquity.
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