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BP-VB-EP BASED STATIC AND DYNAMIC SPARSE BAYESIAN LEARNING WITH
KRONECKER STRUCTURED DICTIONARIES

Christo Kurisummoottil Thomas, Dirk Slock

EURECOM, Sophia-Antipolis, France, Email:{kurisumm,slock } @eurecom.fr

ABSTRACT

In many applications such as massive multi-input multi-output
(MIMO) radar, massive MIMO channel estimation, speech process-
ing, image and video processing, the received signals are tensors.
In such applications, utilizing techniques from tensor algebra can
be beneficial since it retains the tensorial structure in the received
signal compared to processing on the matricized version of the same
signal. Furthermore, the underlying parameters or states to be esti-
mated are sparse in many of the above-said applications compared
to the large system dimensions. In this paper, we propose techniques
which allow handling the extension of sparse Bayesian learning
(SBL) to time-varying states. Adding the parameters of the autore-
gressive process which is used to the model the time-varyings of
the state leads to a non-linear (at least bilinear) state-space model.
Belief propagation (BP) is a promising method to compute the mini-
mum mean squared error (MMSE) or maximum a posteriori (MAP)
estimates, but at the the expense of a high computational burden.
However, inspired by a previous work on a combined BP and varia-
tional Bayes (VB) technique, we noted that using a combination of
BP, VB, and expectation propagation (EP) can help to alleviate the
computational complexity.

Index Terms— Sparse Bayesian Learning, Variational Bayes,
Tensor Decomposition, Kronecker Structured Dictionary Learning,
Belief Propagation

1. INTRODUCTION

The signal model for the recovery of a time varying sparse signal
under Kronecker structured (KS) [1,2] dictionary matrix can be for-
mulated as

Observation: y: = (A(lﬂ ® Agt)..‘. ® Ag\’}))xt + Vi,

1
State Update: x; = Fx¢—1 + Wy, M

where y; = wvec(Y:), ® represents the Kronecker product be-
tween two matrices, wvec(-) representing the vectorized version
of the tensor or matrix (), Yy € CT1*f2--XIN i5 the observa-

t. € Cl, the factor matrix A;t)

tions or data at time ¢, Aj;

AL

SRR A;t},] which is unknown and the tensor product is repre-
, \Pj

N
sented by [A{", ..., Ag\t,);xt]], x; is the M (= [] P;)-dimensional
j=1

sparse signal and w; is the additive noise. We consider Aé? =

[1 ay) T]T, justification for which can be seen in our previous

work [3]. We also define the measurement of dictionary matrix as,
N

AW = AP oAl oAl = Q@lA;t). Sparse signal x; is
=

modeled using an AR(1) process with a diagonal correlation coeffi-

cient matrix F. x; contains only K non-zero entries (or significant
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coefficients), with K << M and thus the dictionary matrix to be
learned allows a low rank representation. v; is assumed to be a
white Gaussian noise, vi ~ A(0,7 'I). The Sparse Bayesian
Learning (SBL) algorithm was first introduced by [4] in the machine
learning context and then proposed for the first time for sparse signal
recovery by [5]. The efficiency of the SBL approach revolves around
the hierarchical prior modeling and the Bayesian LASSO [6] is a
special case of SBL with Gaussian-Exponential hierarchical prior
(equivalent to Laplacian marginal for x;). Dynamic autoregressive
SBL (DAR-SBL) considered here is a case of joint Kalman filter-
ing (KF) with a linear time-invariant diagonal state-space model,
and parameter estimation, which can be considered an instance of
nonlinear filtering.

Prior work on dictionary learning (DL) [7-11] focus on either
maximum likelihood based schemes, LS or K-SVD algorithms. Due
to space limitations, we refer the readers to a more detailed discus-
sion on the state of the art in DL to our previous work [3].

1.1. Contributions of this paper

e This paper is an extension of our previous work based on KS
dictionaries [3] to the case of time varying sparse state vec-
tor. Moreover, we observed that variational Bayes (VB) at
the scalar level (for x;) and at the column level for the fac-
tor matrices A;t) is quite suboptimal [12] since the posterior
covariance computed does not converge to the true posterior.
Hence, this requires more accurate approximations like belief
propagation (BP) which we propose here.

e Building on the framework of [13], we combine BP and MF
approximations in such a way as to optimize the message
passing (MP) framework. The main focus being on getting
reduced complexity (VB accounts for the low complexity) al-
gorithms without sacrificing much on the performance (BP
for performance improvement).

2. SBL DATA MODEL
! Starting from the system model (1), diagonal matrices F (as-
sumed to be deterministic) and I' are defined with its elements,
F.i=fi,fi € (=1,1) and T7! = diag (o), @ = [a1,...an].
Here «; represents the inverse variance of x; ¢ ~ N (0, a%) Further,
wi ~ N(0,A™"), where A~ '=T(I - FF")=diag (5, ..., 5o )-

%
w; are the complex Gaussian mutually uncorrelated state inng\ffa—
tion sequences. Hence we sparsify the prediction error variance
w; also, with the same support as xo and henceforth enforces
the same support set for x, V¢. v; is independent of the w; pro-
cess. The above signal model finds numerous applications in-

cluding but not limited to 1) Bayesian adaptive filtering [14, 15],

Un this paper, boldface lower-case and upper-case characters denote vectors and ma-
trices respectively. The operators tr(-), (-)7, (-)*, (-)¥, ||| represent trace, transpose,
conjugate, conjugate transpose and Frobenius norm, respectively. A complex Gaussian
random vector with mean g and covariance matrix © is denoted as x ~ N (u, ©).
diag (-) represents the diagonal matrix created by elements of a row or column vector.
The operator < x > or E(-) represents the expectation of . Iy represents the identity
matrix with dimension N. §(-) represents the Kronecker delta function.



2) Wireless channel estimation: multipath parameter estimation
as in [16-18]. In Bayesian compressive sensing, a two-layer
hierarchical prior is assumed for the x; as in [4]. The hierar-
chical prior is chosen such that it encourages the sparsity prop-
erty of x; or of the innovation sequences v;. The state update

M
gets represented as, p(x¢/xi—1, F,T)=[] N(fizi -1, ai) For
i=1 ‘

the convenience of analysis, we reparameterize «; in terms of
Xi. Since \; o aj, 1/A\;’s are also sparse and hence we can

M
assume a Gamma prior for A, p(A) = [] Gamma(\i;a,b),
i=1

M
where, Gamma(\i;a,b) = [ T (a)b® A" e P such that
i

=1
the marginal pdf of x; (student-t distribution) becomes more spar-
sity inducing than e.g., a Laplacian prior. The inverse of noise
variance - is distributed as, Gamma(~; ¢, d). The advantage is that
the whole machinery of linear MMSE estimation can be exploited,
such as e.g., the KF. But this is embedded in other layers making
things eventually non-Gaussian. Now the likelihood distribution can

2
be written as, p(y+/X¢,7y) 'yNef'Y”y”A(t)x‘” . To make these

priors non-informative (Jeffrey’s prior), we choose them to be small
values a = ¢ = b =d = 10~°. We define the unknown parameter
vector @, ={x;, A,~, F, A®},

We also remark that the techniques proposed here (with KS DL)
are an instance of gridless compressed sensing, for e.g. [19]. To
further elucidate the application of the system model in (1), we con-
sider the wireless channel estimation in the case of millimeter wave
or massive MIMO systems. The time varying channel impulse re-
sponse H® has per path a rank one contribution in four dimen-
sions (Tx and Rx spatial multi-antenna dimensions, delay spread and
Doppler spread). In the frequency domain

vec(H®) = SN 2 1 hy (1:) © e (60) @ v (7i(8)) ® vl fi)
=A(0)Yx,

where v (.), v¢(.) are appropriate Vandermonde vectors (possibly
subsampled in the case of v¢(.)). Hence we get a sum of rank one
4D tensors. We emphasize that the presented algorithm do not ex-
ploit parametric forms, because those parametric forms are uncer-
tain. For eg., considering the massive MIMO channel estimation
problem [20], the array response at the mobile station (MS) is not
exploitable in practice. Even the array response at the base station
(BS) will typically require calibration to be exploitable or may have
mutual coupling effects which are unknown. Doppler shifts can be
clearly represented as Vandermonde vectors. Delays could be more
or less clear, if one goes to frequency domain in OFDM, and one
only takes into account the range of subcarriers for which the Tx/Rx
filters can be considered frequency-flat. Then over those subcarriers,
it’s also Vandermonde. We do limit our discussions in this paper to
the case of known A ("), However, note that here we do consider the
extension of the SAVE and BP based algorithm discussed herein to
the case of unknown A under the dynamic case (static SBL is a
special case).

3. COMBINED BP/MF APPROXIMATION USING
VARIATIONAL FREE ENERGY OPTIMIZATION

The time index ¢ is omitted here for simplicity. In this section, we
develop an MP framework combining BP and VB which are de-
rived from variational free energy (VFE) which is a fundamental
quantity in statistical physics. We refer the readers to [21] for a
detailed technical discussion on VFE and the theoretical formula-
tion behind the derivation of MP expressions. We instead brief the
results here. Assume that the posterior be factorized as, p(6) =

. e s
Crn | G n -

ot
7
Fig. 1. Factor Graph (FG) for the dynamic SBL (at time ¢). Note
that messages from the smoothing stage is not shown here.
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set of nodes belonging to the BP part and MF part, respectively.
Ngp(i) represents the number of neighbouring nodes of 4 which
belong to the BP part, similarly AVarr(4) is defined. N (z), N(a)
represent the number of neighbouring nodes of any variable node
i or factor node a, respectively. Let m,—,; represents the message
passed from any factor node a to variable node ¢ and n;_, , represents
the message passed from any variable node ¢ to factor node a. The
fixed point equations corresponding to the constrained optimization
VFE can be written as follows [13] (<>, represents the expectation
w.r.t distribution q)

f5(0s), where Agp, Ay r represent the

(0) =z I mghi0:) 1 mai6,),
a€Npp(i) a€N N F (1)

Nisa(0i) = II mp—i(0:) [ mesi(6:),

M beNBP(i)\a beEN N F (4) 2)
ma—n(el) = exp(< In fa(ea) > I nj*m(ﬁj))v

BP JEN (a)\i
mai(0) = (] II  nj—a(05)fa(0a) [T d65),

JEN (a)\i J#i

3.1. Dynamic BP-MF-EP based SBL

The figure 1 represents the FG (note that static case is a special case
with the state update nodes being not present), where it is divided
into two disjoint subsets Agp = f5, ,Vn,l,t and Apr represents
rest of the factor or variable nodes. To combine BP and MF, we intro-
duce the new variables h,, ; = AVX¢, 51+ = fiz1,+1 and the hard
constraint factor nodes, f5, , = 0(hnt — Agi);xt),Vn € [1:NJ,t,
and fa,, = 6(s1,t — fizi,e—1), V1 € [1 = M],t. We can compute
mf(;nyt*):nlyt (l‘l,t) =

ff(sn,tnhn,t‘)fén ' (h",t) H Nz =5, 4 (ml’,t) H dml'yt' For
ot s ,

notational brevity, we denote subscript (I,n) or (n,l) to rep-
resent the messages passed from [ to n or viceversa. All the
messages (beliefs or continuous pdfs) passed between them can
be shown to be Gaussian [22] and thus it suffices to represent
them by the mean and variance of the beliefs. The joint distri-
bution of all the observations and parameters can be written as,
p(ye,0:/y1:0-1) = p(yt/0:)p(6:/y1:e-1), where p(6:/y1:i-1)
denotes the predictive distribution. Similar as in KF, first we com-
pute the posterior distribution of 6;; given the observations till
(t — 1), which is called as the prediction stage.

3.1.1. Diagonal AR(1) ( DAR(1) ) Prediction Stage

Since there is no coupling between the scalars in the state update (1),
it is enough to update the prediction stage using MF. However, the
interation between x;; and f; requires Gaussian projection, using
expectation propagation (EP). For more detailed derivation, we refer
to our previous work [12] due to space limitations.

3.1.2. Measurement Update (Filtering) Stage
For the measurement update stage, the posterior for x; is inferred
using BP. Note that we represent the mean of the messages by



fg )l, I/T(]t)l The mean and variance of the beliefs computed at x; ¢

are denoted by fz,ﬂt,tfim- In the measurement stage, the prior
for x;,; gets replaced by the belief from the prediction stage. We
refer to our previous work [21] for detailed derivations and expres-

N
: ) —1\—
sions for the messages. We define d;. = () 1/7(13 Y =
n=1 ’
N &y >l Byt
die( Zl ?w t" ). Given the messages, my, -z, (1),
n=1 Yn,1

the belief g(z, t) can be obtained as (fx,(Ai) = p(Ax/a,b)),

q(zi) o fa, (M) H M5, =, XN (@145 Ty 11, 0 t|t) where
2 -1 A T
O e =AMt +d g, Ty = .
1,t|t 1t | Thds o 2, 3)

One remark here is that compared to our previous work using VB
[23], combining BP and MF gives a more accurate approximation
of the error variance as shown in (3), where aim incorporates the

effect of all o7, ,, 1 # L.

3.1.3. Lag-1 Smoothing Stage

We show in [21, Lemma 1] that KF is not enough to adapt the hy-
perparameters, instead we need at least a lag 1 smoothing (i.e. the
computation of 2y ; 1, U}%,tfl\t through BP). For the smoothing
stage, we use BP with Gaussian Markov Random Fields (GMRF)
based factorization. GMREF refers to the representation of BP [24],
when the underlying Gaussian distribution is expressed in terms of
pairwise connections between scalar variables x; ;. We skip the de-
tailed derivation and instead refer to our paper [21]. Applying the

MF rule from (2), the resulting Gaussian distribution has mean, o, il

and variance, fi‘t, the detailed derivations for which are in [21, Sec-
tion 3.2.3]. The entire algorithm (a combination of BP, MF and EP,
we call it as Combined BP-MF-EP DAR-SBL) is described in Algo-
rithm 1. Also we remark that for the estimation of \;, 7y, we follow
the same approach as in our paper [12] and we refer to it for more
details. One remark here is that another version called as Combined
Vector BP-MF-EP DAR-SBL follows immediately from the deriva-
tions for Algorithm 1, where all the components of x; are considered
jointly in the FG. Even though the performance will be higher (as ob-
served in the simulations) for the vector case, it comes at the cost of a
higher complexity due to the matrix inversion involved. Note that in
Algorithm 1, we introduce temporal averaging for certain quantities
(represented by <>>|;) in hyperparameter estimates and 3 being the
temporal weighting coefficient which is less than one, see [12] for

more details. For the KS DL, the algorithm remains same as in our
previous work [3], which is denoted as space alternating variational

estimation with Kronecker structured DL (SAVED-KS DL).

3.2. Suboptimality of SAVED-KS DL and Joint VB

First, we define the unfolding operation on an N®" order tensor

N
Y, =[AY, . AQ x]as 251 (Y™ isof size I, x [[ 1))
i=1,i#n
YW = APXMAY @AY LAY @Al oA

From the expression for the error covariance in the estimation of t&?e
1
factor aj; (tr{( @ < AFA; >) < XWTXW 11, it is
k=N, k#j
clear that it does not take into account the estimation error in the
other columns of A ;. The columns of A ; can be correlated, for e.g.
if we consider two paths (say ¢, j) with same DoA but with different
delays, the delay responses v¢(7;(t)) and v¢(7;(t)) may be corre-

Algorithm 1 Combined BP-MF-EP DAR-SBL with KS DL
= 0,074,p = 0,VI. Define

Initialization: f;0, A\jjo = %,% = $,Z10/0

¥i_11¢—1 = diag (Ul,z,t\t—l)'
fort =1:T7Tdo N
Prediction Stage: 1. From [12], fl,t‘t_l = fz|f,_15m—1\t—1: UZQ,t|t—1 =

= 2 2 2 ~ 2 2 -1
lfe—1l"07 i —1je—1 + 05 o1 (B e—1pe—1 1" + 07 i 1jem1) + X1
Filtering Stage:

=(t)

1. Compute nit Vn, l from [21, eq. (5)] and update T; [t O from (3).

Lt\t

2. Compute z/(f) 517)7 from [21, eq. (7)]. 3. Continue steps 1) to 2) until

convergence
Smoothing Stage:
Initialization: E( )1” = Et,l‘t,l,ﬁi?ut = Ry_1j¢—1. Define B —«
FTA(t)TRt 1A(t)F >4, 41, he =< FTAMT 5 ﬁflyf,-
_pt)?2
L. Pi,j:ﬁ1 wig=C(hit+ > Prifki), Vi, .
Qi reNTIN ki kKEN (i)\J
2. Uz'_.t271|t BY) + S PeiBieoap = oF vy (hee +
: keN (i)
> Pripki)
KEN (4)

Estimation of hyperparameters (Define: J;t =Tpt—frTr,e—1,C = BC—1+
2 2
(1= 8) < |Jye =AD" >) 4] = (< |t 71+

I 2 _ (a+1)
1. Compute fy ¢, Uf”t from [21,eq. (1D], 7+ = (Ct+d) and A\jy =

. ) 1
=YD «XW><c(
k=N, k#j

SAVED-KS DL: QJL = (bJ)T! bJ Ak) >)i;

1 . .
Yji=p8uL fi=u{( ® <ATA;>) <XPTXE) >},
k=N,k#j

lated. However, since it is not clear how to model this dependency,
we indeed keep it as a future work. This suboptimality in the error
covariance estimate using SAVED-KS resulting from the correlation
between the columns, can be avoided by using a joint VB [3]. The
joint VB estimates (mean and covariance) can be obtained as

_ AT _ —1nT
=Ag; =<7>Y¥; By,

1 .
® <ATA; >)XDT ),
k=N k#j

U, = (< vy >< XU ©)

1
where V; =< X9 >< (@ AT
k=N, k#j

with the first row of (Y )V7') removed. However, the joint VB in-
volves a matrix inversion and is not recommended for large system
dimensions. Nevertheless, it is possible to estimate each columns of
A ; by BP, since each column estimate can be expressed as the solu-
tion of a linear system of equation from (5), a AT = \Il_lb . by

> and Bj is defined as

represents the i** column of BY ;- The message passmg expressions
under BP (using a GMREF based FG) for the factor matrices can be
written as

Cm,n = _(‘I’j)gn,n/(gm,m + Z Ck,m)v
keN (m)\j
Cm,mEm,m)+ = Ck,m Bk, m (6)
P _ kEN (m)\j
m,n (T)m,n ’
(bj i)m _

where we initialize Crnm = (¥;)m,m, Km,m =

0, Km,n = 0. Finally the mean (x,,) and variance (ij) of the poste-
rior belief can be computed as

CmomEm,mt+ > CkomKk,m
P kEN (m)
m Cm,m+ > Ck, ’
eNmy) " (7
Cm=Cmm+ 2 Cem-

keN (m)



We remark that, the above BP based low complexity scheme for KS
DL represents a major innovation compared to our previous work
[3], apart from the extension to the dynamic SBL case.

4. OPTIMAL PARTITIONING OF THE MEASUREMENT
STAGE AND KS DL

In [3], we derived the Fisher Information Matrix (FIM) for the KS
DL where the sparse vector is static. Here, we reuse the FIM ex-
pressions to derive the optimal partitioning of the variables in the
measurement stage. We refer to our paper [26, Lemma 1], where the
main message was that if the parameter partitioning in VB is such
that the different parameter blocks are decoupled at the level of FIM,
then VB is not suboptimal in terms of (mismatched) Cramer-Rao
Bound (mCRB). More detailed overview on mCRB can be found
in [27]. If a finer partitioning granularity is used (such as up to scalar
level as in MF), then VB becomes quite suboptimal, which can be
alleviated by using BP instead.

Lemma 1. For the measurement stage, an optimal partitioning is
to apply BP for the sparse vector x; and VB (SAVED-KS) for the

; (t) ; (t)
columns of the factor matrices A ; assuming the vectors A are

independent and have zero mean. However, if the columns of A;t)

are correlated, then a joint VB, with the posteriors of the factor ma-
trices assumed independent, should be done for an optimal perfor-
mance.

Proof: Let Fy)

vec(Agt)). We observe that we can separate the contributions of

= [0r,x1;¢-1) L1; Or;x1;(p—0)]> @it

M N
AW and x; in (1) as, yt = (3. z,.F,) (Q ®,.1) +w:. We de-

r=1 j=1
F(xt) £(Py)
(pji) . d
fine, F, = @ F, 7", r= Z(pjzfl)(]j +pni,Jj = T[] Pr.
Pji Vi j=1 r=j+1

J(@t,xt) = [J(qﬁ;) (X ] ( ) [J(q)l t) ..... J(§N,t)]

)
where J( j,t ) F( ) (3] t® IIP ~~-~®¢Nt),
J(x¢) = [F1(® ®;¢); oo Fva( ® i) ]
j=1 j=1
Further, the FIM for the case of SBL can be derived as [3]

FIM =

EMI(@)TI (@) o o o
0 E()JI(eg) TI(xe) + B(C™Y) 0 o
o o aE(I~2) o
o o o (N +c—1)E(v2)

®
Here, vJ (x¢)TJ(®+) = 0, since x; is zero mean. If the all columns
of A;t) are independent and zero mean, then E(J(®4)TJ(®4)) be-
comes a diagonal matrix with no coupling between the free variables
of any two different columns of the factor matrices. However, if any
factor matrix is A;t) is correlated, it is suboptimal to factorize the

columns of AY) independently in the approximate posterior. Hence,
in this case, a joint VB method (which has higher complexity) would
be optimal to estimate the posterior distributions and this indeed jus-
tify the superior performance of joint VB approach described in Sec-
tion 3.2.

S. SIMULATION RESULTS

For the observation model, the parameters chosen are N = 256, M =
200. For the simulations, we consider a 3 — D tensor with dimen-
sions (4,8, 8) and the number of non-zero elements of x; or the
rank of the tensor (no of non-zero elements of x;) is fixed to be
K = 16. All signals are considered to be real in the simulation. All

the elements of the factor matrix A;t) (time varying) are generated

i.i.d. from a Gaussian distribution with mean O and variance 1. The
rows of A® are scaled by v/16 so that the signal part of any scalar
observation has unit variance. Taking the SNR to be 20dB, the
variance of each element of v, (Gaussian with mean 0) is computed
as 0.01.

Consider the state update, x; = Fx;_1 + w;. To generate Xy,
the first 16 elements are chosen as Gaussian (mean 0O and variance
1) and then the remaining elements of the vector x¢ are put to zero.
Then the elements of x( are randomly permuted to distribute the 30
non-zero elements across the whole vector. The diagonal elements
of F are chosen uniformly in [0.9, 1). Then the covariance of w; can
be computed as T'(I — FFT). Note that T" contains the variances of
the elements of x; (including ¢ = 0), where for the non-zero ele-
ments of x¢ the variance is 1. Following observations can be made
from the simulations. In Figure 2, which is for static SBL case with
DL, there is substantial improvement in NMSE compared to our pre-
vious work [3]. Our proposed low complexity algorithm using BP
has similar performance as that of joint VB which has higher com-
plexity. In Figure 3, we evaluate the performance of the proposed
BP-MF-EP DAR SBL and show that the parameter estimation bene-
fits from BP. “MF DAR-SBL” refers to the sub-optimal version with
no BP and only MF for filtering or smoothing of x;. Also we show
the drastic improvement in performance with lag-1 smoothing for
hyperparameter estimation compared to just using filtering.

10

BP-MF-EP with ALS for DL
—=— SAVED-KS with DL

—e— BP-MF-EP with BP for DL

- £ - BP-MF-EP with Joint VB for DL
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o
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Fig. 2. Static SBL: NMSE as a function of V.

5
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Fig. 3. DAR-SBL: NMSE as a function of time.

6. CONCLUSION

We have presented here a low complexity algorithm for KS DL us-
ing a combination of BP, VB and EP. The motivation behind the pro-
posed algorithm is to circumvent the suboptimality associated with
incorrect posterior covariance computation for the columns of the
factor matrices in a previous paper of ours which was entirely based
on MF approximations. However, we are still unclear whether the
proposed algorithm is robust enou§h to perform comparably with the
variations in the model of KS A, which is left as a future work.
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