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In many applications such as massive multi-input multi-output (MIMO) radar, massive MIMO channel estimation, speech processing, image and video processing, the received signals are tensors. In such applications, utilizing techniques from tensor algebra can be beneficial since it retains the tensorial structure in the received signal compared to processing on the matricized version of the same signal. Furthermore, the underlying parameters or states to be estimated are sparse in many of the above-said applications compared to the large system dimensions. In this paper, we propose techniques which allow handling the extension of sparse Bayesian learning (SBL) to time-varying states. Adding the parameters of the autoregressive process which is used to the model the time-varyings of the state leads to a non-linear (at least bilinear) state-space model. Belief propagation (BP) is a promising method to compute the minimum mean squared error (MMSE) or maximum a posteriori (MAP) estimates, but at the the expense of a high computational burden. However, inspired by a previous work on a combined BP and variational Bayes (VB) technique, we noted that using a combination of BP, VB, and expectation propagation (EP) can help to alleviate the computational complexity.

INTRODUCTION

The signal model for the recovery of a time varying sparse signal under Kronecker structured (KS) [START_REF] Duarte | Kronecker compressive sensing[END_REF][START_REF] Shakeri | Identifiability of Kronecker-structured dictionaries for tensor data[END_REF] dictionary matrix can be formulated as Observation: yt = (A

(t) 1 ⊗ A (t) 2 .... ⊗ A (t) N )xt + vt, State Update: xt = Fxt-1 + wt, (1) 
where yt = vec(Yt), ⊗ represents the Kronecker product between two matrices, vec(•) representing the vectorized version of the tensor or matrix (•), Yt ∈ C I 1 ×I 2 ...×I N is the observations or data at time t, A t j,i ∈ C I j , the factor matrix A (t) T j,i ] T , justification for which can be seen in our previous work [START_REF] Thomas | Space alternating variational estimation and kronecker structured dictionary learning[END_REF]. We also define the measurement of dictionary matrix as,

A (t) = A (t) 1 ⊗ A (t) 2 .... ⊗ A (t) N = N j=1 A (t)
j . Sparse signal xt is modeled using an AR [START_REF] Duarte | Kronecker compressive sensing[END_REF] process with a diagonal correlation coefficient matrix F. xt contains only K non-zero entries (or significant EURECOM's research is partially supported by its industrial members: ORANGE, BMW, Symantec, SAP, Monaco Telecom, iABG, and by the projects DUPLEX (French ANR), MASS-START (French FUI) and EU ITN project SPOTLIGHT. coefficients), with K << M and thus the dictionary matrix to be learned allows a low rank representation. vt is assumed to be a white Gaussian noise, vt ∼ N (0, γ -1 I). The Sparse Bayesian Learning (SBL) algorithm was first introduced by [START_REF] Tipping | Sparse Bayesian learning and the relevance vector machine[END_REF] in the machine learning context and then proposed for the first time for sparse signal recovery by [START_REF] Wipf | Sparse Bayesian Learning for Basis Selection[END_REF]. The efficiency of the SBL approach revolves around the hierarchical prior modeling and the Bayesian LASSO [START_REF] Park | The Bayesian Lasso[END_REF] is a special case of SBL with Gaussian-Exponential hierarchical prior (equivalent to Laplacian marginal for xt). Dynamic autoregressive SBL (DAR-SBL) considered here is a case of joint Kalman filtering (KF) with a linear time-invariant diagonal state-space model, and parameter estimation, which can be considered an instance of nonlinear filtering.

Prior work on dictionary learning (DL) [START_REF] Lewicki | Learning overcomplete respresentations[END_REF][START_REF] Skretting | Recursive least squares dictionary learning algorithm[END_REF][START_REF] Aharon | K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF][START_REF] Roemer | Tensor-based algorithms for learning multidimensional separable dictionaries[END_REF][START_REF] Ding | Joint sensing matrix and sparsifying dictionary optimization for tensor compressive sensing[END_REF] focus on either maximum likelihood based schemes, LS or K-SVD algorithms. Due to space limitations, we refer the readers to a more detailed discussion on the state of the art in DL to our previous work [START_REF] Thomas | Space alternating variational estimation and kronecker structured dictionary learning[END_REF].

Contributions of this paper

• This paper is an extension of our previous work based on KS dictionaries [START_REF] Thomas | Space alternating variational estimation and kronecker structured dictionary learning[END_REF] to the case of time varying sparse state vector. Moreover, we observed that variational Bayes (VB) at the scalar level (for xt) and at the column level for the factor matrices A (t) j is quite suboptimal [START_REF] Thomas | Gaussian variational Bayes Kalman filtering for dynamic sparse Bayesian learning[END_REF] since the posterior covariance computed does not converge to the true posterior. Hence, this requires more accurate approximations like belief propagation (BP) which we propose here.

• Building on the framework of [START_REF] Riegler | Merging belief propagation and the mean field approximation: a free energy approach[END_REF], we combine BP and MF approximations in such a way as to optimize the message passing (MP) framework. The main focus being on getting reduced complexity (VB accounts for the low complexity) algorithms without sacrificing much on the performance (BP for performance improvement).

2. SBL DATA MODEL 1 Starting from the system model (1), diagonal matrices F (assumed to be deterministic) and Γ are defined with its elements, Fi,i = fi, fi ∈ (-1, 1) and

Γ -1 = diag (α), α = [α1, ...αM ].
Here αi represents the inverse variance of xi,t ∼ N (0,

1 α i ). Further, wt ∼ N (0, Λ -1 ), where Λ -1 =Γ(I -FF T )= diag ( 1 λ 1 , ..., 1 λ 
M ). wt are the complex Gaussian mutually uncorrelated state innovation sequences. Hence we sparsify the prediction error variance wt also, with the same support as x0 and henceforth enforces the same support set for xt, ∀t. vt is independent of the wt process. The above signal model finds numerous applications including but not limited to 1) Bayesian adaptive filtering [START_REF] Sadiki | Bayesian adaptive filtering: principles and practical approaches[END_REF][START_REF] Ciochina | A family of optimized LMS-based algorithms for system identification[END_REF], 1 In this paper, boldface lower-case and upper-case characters denote vectors and matrices respectively. The operators tr(•), (•) T , (•) * , (•) H , • represent trace, transpose, conjugate, conjugate transpose and Frobenius norm, respectively. A complex Gaussian random vector with mean µ and covariance matrix Θ is denoted as x ∼ N (µ, Θ). diag (•) represents the diagonal matrix created by elements of a row or column vector. The operator < x > or E(•) represents the expectation of x. I N represents the identity matrix with dimension N . δ(•) represents the Kronecker delta function.

2) Wireless channel estimation: multipath parameter estimation as in [START_REF] Fleury | Channel Parameter Estimation in Mobile Radio Environments Using the SAGE Algorithm[END_REF][START_REF] Bajwa | Compressed channel sensing: A new approach to estimating sparse multipath channels[END_REF][START_REF] Cheng | Algebraic Channel Estimation Algorithms for FDD Massive MIMO systems[END_REF]. In Bayesian compressive sensing, a two-layer hierarchical prior is assumed for the xt as in [START_REF] Tipping | Sparse Bayesian learning and the relevance vector machine[END_REF]. The hierarchical prior is chosen such that it encourages the sparsity property of xt or of the innovation sequences vt. The state update gets represented as, p(xt/xt-1,

F, Γ)= M i=1 N (fixi,t-1, 1 α i ).
For the convenience of analysis, we reparameterize αi in terms of λi. Since λi ∝ αi, 1/λi's are also sparse and hence we can assume a Gamma prior for Λ, p(Λ) = e -bλ i , such that the marginal pdf of xt (student-t distribution) becomes more sparsity inducing than e.g., a Laplacian prior. The inverse of noise variance γ is distributed as, Gamma(γ; c, d). The advantage is that the whole machinery of linear MMSE estimation can be exploited, such as e.g., the KF. But this is embedded in other layers making things eventually non-Gaussian. Now the likelihood distribution can be written as, p(yt/xt, γ) ∝ γ N e -γ y t -A (t) x t 2 . To make these priors non-informative (Jeffrey's prior), we choose them to be small values a = c = b = d = 10 -5 . We define the unknown parameter vector θt = {xt, Λ, γ, F, A (t) }.

We also remark that the techniques proposed here (with KS DL) are an instance of gridless compressed sensing, for e.g. [START_REF] Ardah | A Gridless CS Approach for Channel Estimation in Hybrid Massive MIMO Systems[END_REF]. To further elucidate the application of the system model in (1), we consider the wireless channel estimation in the case of millimeter wave or massive MIMO systems. The time varying channel impulse response H (t) has per path a rank one contribution in four dimensions (Tx and Rx spatial multi-antenna dimensions, delay spread and Doppler spread). In the frequency domain

vec(H (t) ) = Np i=1 xi,t ht(ψi) ⊗ hr(φi) ⊗ v f (τi(t)) ⊗ vt(fi) = A(θ) (t) xt
where v f (.), vt(.) are appropriate Vandermonde vectors (possibly subsampled in the case of v f (.)). Hence we get a sum of rank one 4D tensors. We emphasize that the presented algorithm do not exploit parametric forms, because those parametric forms are uncertain. For eg., considering the massive MIMO channel estimation problem [START_REF] Thomas | Variational Bayesian learning for channel estimation and transceiver determination[END_REF], the array response at the mobile station (MS) is not exploitable in practice. Even the array response at the base station (BS) will typically require calibration to be exploitable or may have mutual coupling effects which are unknown. Doppler shifts can be clearly represented as Vandermonde vectors. Delays could be more or less clear, if one goes to frequency domain in OFDM, and one only takes into account the range of subcarriers for which the Tx/Rx filters can be considered frequency-flat. Then over those subcarriers, it's also Vandermonde. We do limit our discussions in this paper to the case of known A (t) . However, note that here we do consider the extension of the SAVE and BP based algorithm discussed herein to the case of unknown A (t) under the dynamic case (static SBL is a special case).

COMBINED BP/MF APPROXIMATION USING VARIATIONAL FREE ENERGY OPTIMIZATION

The time index t is omitted here for simplicity. In this section, we develop an MP framework combining BP and VB which are derived from variational free energy (VFE) which is a fundamental quantity in statistical physics. We refer the readers to [START_REF]Low Complexity Static and Dynamic Sparse Bayesian Learning Combining BP, VB and EP Message Passing[END_REF] for a detailed technical discussion on VFE and the theoretical formulation behind the derivation of MP expressions. We instead brief the results here. Assume that the posterior be factorized as, p(θ) = Fig. 1. Factor Graph (FG) for the dynamic SBL (at time t). Note that messages from the smoothing stage is not shown here. 

N (i), N (a)
represent the number of neighbouring nodes of any variable node i or factor node a, respectively. Let ma→i represents the message passed from any factor node a to variable node i and ni→a represents the message passed from any variable node i to factor node a. The fixed point equations corresponding to the constrained optimization VFE can be written as follows [START_REF] Riegler | Merging belief propagation and the mean field approximation: a free energy approach[END_REF] (<>q represents the expectation w.r.t distribution q) qi(θi) = zi

a∈N BP (i) m BP a→i (θi) a∈N M F (i) m M F a→i (θi), ni→a(θi) = b∈N BP (i)\a m b→i (θi) b∈N M F (i) m b→i (θi), m M F a→i (θi) = exp(< ln fa(θa) > j∈N (a)\i n j→a (θ j ) ), m BP a→i (θi) = ( j∈N (a)\i nj→a(θj)fa(θa) j =i dθj), (2) 

Dynamic BP-MF-EP based SBL

The figure 1 represents the FG (note that static case is a special case with the state update nodes being not present), where it is divided into two disjoint subsets ABP = f δ n,t ∀n, l, t and AMF represents rest of the factor or variable nodes. To combine BP and MF, we introduce the new variables hn,t = A (t) n,:xt, s l,t = f l x l,t-1 and the hard constraint factor nodes, f δ n,t = δ(hn,t -A (t) n,:xt), ∀n ∈ [1 : N ], t, and f∆ l,t = δ(s l,t -f l x l,t-1 ), ∀l ∈ [1 : M ], t. We can compute m f δ n,t →x l,t (x l,t ) = f δ n,t n h n,t →f δ n,t (hn,t)

l =l n x l ,t →f δ n,t (x l ,t ) l =l
dx l ,t . For notational brevity, we denote subscript (l, n) or (n, l) to represent the messages passed from l to n or viceversa. All the messages (beliefs or continuous pdfs) passed between them can be shown to be Gaussian [START_REF] Tan | Computationally efficient sparse Bayesian learning via belief propagation[END_REF] and thus it suffices to represent them by the mean and variance of the beliefs. The joint distribution of all the observations and parameters can be written as, p(yt, θt/y1:t-1) = p(yt/θt)p(θt/y1:t-1), where p(θt/y1:t-1) denotes the predictive distribution. Similar as in KF, first we compute the posterior distribution of θi,t given the observations till (t -1), which is called as the prediction stage.

Diagonal AR(1) ( DAR(1) ) Prediction Stage

Since there is no coupling between the scalars in the state update (1), it is enough to update the prediction stage using MF. However, the interation between x l,t and f l requires Gaussian projection, using expectation propagation (EP). For more detailed derivation, we refer to our previous work [START_REF] Thomas | Gaussian variational Bayes Kalman filtering for dynamic sparse Bayesian learning[END_REF] due to space limitations.

Measurement Update (Filtering) Stage

For the measurement update stage, the posterior for xt is inferred using BP. Note that we represent the mean of the messages by

x (t) n,l , ν (t) 
n,l . The mean and variance of the beliefs computed at x l,t are denoted by x l,t|t , σ 2 l,t|t . In the measurement stage, the prior for x l,t gets replaced by the belief from the prediction stage. We refer to our previous work [START_REF]Low Complexity Static and Dynamic Sparse Bayesian Learning Combining BP, VB and EP Message Passing[END_REF] for detailed derivations and expressions for the messages. We define d l,t = (

N n=1 ν (t) -1 n,l ) -1 , r l,t = d l,t ( N n=1 x (t) n,l ν (t) n,l + x l,t|t-1 σ 2 l,t|t-1
). Given the messages, m f δ n,t →x l,t (x l,t ), the belief q(x l,t ) can be obtained as (

f λ i (λi) = p(λ k /a, b)), q(x l,t ) ∝ f λ i (λi) N n=1 m f δ n,t →x l,t ∝ N (x l,t ; x l,t|t , σ 2 l,t|t ), where σ -2 l,t|t = λ l,t + d -1 l,t , x l,t|t = r l,t 1+d l,t σ -2 l,t|t . (3) 
One remark here is that compared to our previous work using VB [START_REF] Thomas | SAVE -Space alternating variational estimation for sparse Bayesian learning[END_REF], combining BP and MF gives a more accurate approximation of the error variance as shown in [START_REF] Thomas | Space alternating variational estimation and kronecker structured dictionary learning[END_REF], where σ 2 l,t|t incorporates the effect of all σ 2 l ,t|t , l = l.

Lag-1 Smoothing Stage

We show in [21, Lemma 1] that KF is not enough to adapt the hyperparameters, instead we need at least a lag 1 smoothing (i.e. the computation of x k,t-1|t , σ 2 k,t-1|t through BP). For the smoothing stage, we use BP with Gaussian Markov Random Fields (GMRF) based factorization. GMRF refers to the representation of BP [START_REF] Yedidia | Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms[END_REF], when the underlying Gaussian distribution is expressed in terms of pairwise connections between scalar variables xi,t. We skip the detailed derivation and instead refer to our paper [START_REF]Low Complexity Static and Dynamic Sparse Bayesian Learning Combining BP, VB and EP Message Passing[END_REF]. Applying the MF rule from (2), the resulting Gaussian distribution has mean, σ -2 f i |t and variance, f i|t , the detailed derivations for which are in [21, Section 3.2.3]. The entire algorithm (a combination of BP, MF and EP, we call it as Combined BP-MF-EP DAR-SBL) is described in Algorithm 1. Also we remark that for the estimation of λ l , γ, we follow the same approach as in our paper [START_REF] Thomas | Gaussian variational Bayes Kalman filtering for dynamic sparse Bayesian learning[END_REF] and we refer to it for more details. One remark here is that another version called as Combined Vector BP-MF-EP DAR-SBL follows immediately from the derivations for Algorithm 1, where all the components of xt are considered jointly in the FG. Even though the performance will be higher (as observed in the simulations) for the vector case, it comes at the cost of a higher complexity due to the matrix inversion involved. Note that in Algorithm 1, we introduce temporal averaging for certain quantities (represented by <> |t ) in hyperparameter estimates and β being the temporal weighting coefficient which is less than one, see [START_REF] Thomas | Gaussian variational Bayes Kalman filtering for dynamic sparse Bayesian learning[END_REF] for more details. For the KS DL, the algorithm remains same as in our previous work [START_REF] Thomas | Space alternating variational estimation and kronecker structured dictionary learning[END_REF], which is denoted as space alternating variational estimation with Kronecker structured DL (SAVED-KS DL).

Suboptimality of SAVED-KS DL and Joint VB

First, we define the unfolding operation on an N th order tensor

Yt = [[A (t) 1 , ..., A (t) N ; x]] as [25] (Y (n) t is of size In × N i=1,i =n Ii) Y (n) t = A (t) n X (n) t (A (t) N ⊗ A (t) N -1 ...A (t) n+1 ⊗ A t n-1 ... ⊗ A (t) 1 ) T . ( 4 
) From the expression for the error covariance in the estimation of the factor aji (tr{(

1 k=N,k =j < A T k A * k >) < X (j) T X (j) >}I), it is
clear that it does not take into account the estimation error in the other columns of Aj. The columns of Aj can be correlated, for e.g. if we consider two paths (say i, j) with same DoA but with different delays, the delay responses v f (τi(t)) and v f (τi(t)) may be corre-

Algorithm 1 Combined BP-MF-EP DAR-SBL with KS DL

Initialization: f l|0 , λ l|0 = a b , γ0 = c d , x l,0|0 = 0, σ 2 l,0|0 = 0, ∀l. Define Σ t-1|t-1 = diag (σ 2 l,t|t-1 ). for t = 1 : T do Prediction Stage: 1. From [12], x l,t|t-1 = f l|t-1 x l,t-1|t-1 , σ 2 l,t|t-1 = | f l|t-1 | 2 σ 2 l,t-1|t-1 + σ 2 f l |t-1 (| x l,t-1|t-1 | 2 + σ 2 l,t-1|t-1 ) + λ -1 l|t-1 . Filtering Stage: 1. Compute x (t) n,l , ν (t)
n,l from [21, eq. ( 5)] and update x l,t|t , σ -2 l,t|t from (3).

Compute ν

(t) l,n , x (t) 
l,n from [21, eq. ( 7)]. 3. Continue steps 1) to 2) until convergence.

Smoothing Stage: Initialization

: Σ (0) t-1|t = Σ t-1|t-1 , x (0) t-1|t = x t-1|t-1 . Define B (t) =< F T A (t) T R -1 t A (t) F > +Σ t-1|t-1 , ht =< F T A (t) T > R -1 t yt. 1. Pi,j = -B (t) 2 i,j B (t) i,i + k∈N (i)\j P k,i
, µi,j = (hi,t +

k∈N (i)\j P k,i µ k,i ), ∀i, j. 2. σ -2 i,t-1|t = B (t) i,i + k∈N (i) P k,i , x i,t-1|t = σ 2 i,t-1|t (hi,t + k∈N (i) P k,i µ k,i )
Estimation of hyperparameters (Define:

x k,t = x k,t -f k x k,t-1 , ζt = βζt-1+ (1 -β) < yt -A (t) xt 2 >), b t = (< x k,t 2 > |t +b). 1. Compute f l|t , σ 2 f l|t from [21, eq. (11)], γt = c+N (ζ t +d) and λ l|t = (a+1) b t . SAVED-KS DL: aji = (bj ) 1 , bj = (Y (j) < X (j) >< ( 1 k=N,k =j A k ) T >)i, Υj,i = βj,iI, βj,i = tr{( 1 k=N,k =j < A T k A * k >) < X (j) T X (j) >}.
lated. However, since it is not clear how to model this dependency, we indeed keep it as a future work. This suboptimality in the error covariance estimate using SAVED-KS resulting from the correlation between the columns, can be avoided by using a joint VB [START_REF] Thomas | Space alternating variational estimation and kronecker structured dictionary learning[END_REF]. The joint VB estimates (mean and covariance) can be obtained as

M T j = A T 1,j =< γ > Ψ -1 j B T j , Ψj = (< γ >< X (j) ( 1 k=N,k =j < A T k A * k >)X (j) T >), (5) 
where Vj =< X (j) >< (

1 k=N,k =j A k ) T >
and Bj is defined as with the first row of (Y (j) V T j ) removed. However, the joint VB involves a matrix inversion and is not recommended for large system dimensions. Nevertheless, it is possible to estimate each columns of Aj by BP, since each column estimate can be expressed as the solution of a linear system of equation from ( 5), a T j,i = Ψ -1 j bj,i. bj,i represents the i th column of B T j . The message passing expressions under BP (using a GMRF based FG) for the factor matrices can be written as

ζm,n = -(Ψj) 2 m,n /(ζm,m + k∈N (m)\j ζ k,m ), κm,n = (ζm,mκm,m)+ k∈N (m)\j ζ k,m κ k,m (Ψ j )m,n , (6) 
where we initialize ζm,m = (Ψj)m,m, κm,m = (b j,i )m (Ψ j )m,m,ζm,n = 0, κm,n = 0. Finally the mean (κm) and variance (ζm) of the posterior belief can be computed as

κm = ζm,mκm,m+ k∈N (m) ζ k,m κ k,m ζm,m+ k∈N (m) ζ k,m , ζm = ζm,m + k∈N (m) ζ k,m . (7) 
We remark that, the above BP based low complexity scheme for KS DL represents a major innovation compared to our previous work [START_REF] Thomas | Space alternating variational estimation and kronecker structured dictionary learning[END_REF], apart from the extension to the dynamic SBL case.

OPTIMAL PARTITIONING OF THE MEASUREMENT STAGE AND KS DL

In [START_REF] Thomas | Space alternating variational estimation and kronecker structured dictionary learning[END_REF], we derived the Fisher Information Matrix (FIM) for the KS DL where the sparse vector is static. Here, we reuse the FIM expressions to derive the optimal partitioning of the variables in the measurement stage. We refer to our paper [26, Lemma 1], where the main message was that if the parameter partitioning in VB is such that the different parameter blocks are decoupled at the level of FIM, then VB is not suboptimal in terms of (mismatched) Cramer-Rao Bound (mCRB). More detailed overview on mCRB can be found in [START_REF] Fortunati | Performance Bounds for Parameter Estimation under Misspecified Models [Fundamental findings and applications[END_REF]. If a finer partitioning granularity is used (such as up to scalar level as in MF), then VB becomes quite suboptimal, which can be alleviated by using BP instead.

Lemma 1. For the measurement stage, an optimal partitioning is to apply BP for the sparse vector xt and VB (SAVED-KS) for the columns of the factor matrices A (t) j,i assuming the vectors A (t) j,i are independent and have zero mean. However, if the columns of A (t) j are correlated, then a joint VB, with the posteriors of the factor matrices assumed independent, should be done for an optimal performance.

Proof: Let F (i) j = [0 I j ×I j (i-1) II j 0 I j ×I j (P j -i) ], Φj,t = vec(A (t) j )
. We observe that we can separate the contributions of J(Φt, xt) = [J(Φt) J(xt)], J(Φt) = [J(Φ1,t) ..... J(Φ N,t )] where, J(Φ j,t ) = F(xt)(Φ1,t ⊗ ...I I j P j .... ⊗ Φ N,t ),

A (t
J(xt) = [ F1( N j=1 Φ j,t ), ...., F M ( N j=1 Φ j,t )) ].
Further, the FIM for the case of SBL can be derived as [START_REF] Thomas | Space alternating variational estimation and kronecker structured dictionary learning[END_REF] 

F IM =      E(γ)J(Φ t ) T J(Φ t ) 0 0 0 0 E(γ)J(x t ) T J(x t ) + E(Γ -1 ) 0 0 0 0 a E(Γ -2 ) 0 0 0 0 (N + c -1) E(γ -2 )      (8) 
Here, γJ(xt) T J(Φt) = 0, since xt is zero mean. If the all columns of A (t) j are independent and zero mean, then E(J(Φt) T J(Φt)) becomes a diagonal matrix with no coupling between the free variables of any two different columns of the factor matrices. However, if any factor matrix is A (t) j is correlated, it is suboptimal to factorize the columns of A (t) j independently in the approximate posterior. Hence, in this case, a joint VB method (which has higher complexity) would be optimal to estimate the posterior distributions and this indeed justify the superior performance of joint VB approach described in Section 3.2.

SIMULATION RESULTS

For the observation model, the parameters chosen are N = 256, M = 200. For the simulations, we consider a 3 -D tensor with dimensions [START_REF] Tipping | Sparse Bayesian learning and the relevance vector machine[END_REF][START_REF] Skretting | Recursive least squares dictionary learning algorithm[END_REF][START_REF] Skretting | Recursive least squares dictionary learning algorithm[END_REF] and the number of non-zero elements of xt or the rank of the tensor (no of non-zero elements of xt) is fixed to be K = 16. All signals are considered to be real in the simulation. All the elements of the factor matrix A (t) j (time varying) are generated i.i.d. from a Gaussian distribution with mean 0 and variance 1. The rows of A (t) are scaled by √ 16 so that the signal part of any scalar observation has unit variance. Taking the SNR to be 20dB, the variance of each element of vt (Gaussian with mean 0) is computed as 0.01.

Consider the state update, xt = Fxt-1 + wt. To generate x0, the first 16 elements are chosen as Gaussian (mean 0 and variance 1) and then the remaining elements of the vector x0 are put to zero. Then the elements of x0 are randomly permuted to distribute the 30 non-zero elements across the whole vector. The diagonal elements of F are chosen uniformly in [0.9, 1). Then the covariance of wt can be computed as Γ(I -FF T ). Note that Γ contains the variances of the elements of xt (including t = 0), where for the non-zero elements of x0 the variance is 1. Following observations can be made from the simulations. In Figure 2, which is for static SBL case with DL, there is substantial improvement in NMSE compared to our previous work [START_REF] Thomas | Space alternating variational estimation and kronecker structured dictionary learning[END_REF]. Our proposed low complexity algorithm using BP has similar performance as that of joint VB which has higher complexity. In Figure 3, we evaluate the performance of the proposed BP-MF-EP DAR SBL and show that the parameter estimation benefits from BP. "MF DAR-SBL" refers to the sub-optimal version with no BP and only MF for filtering or smoothing of xt. Also we show the drastic improvement in performance with lag-1 smoothing for hyperparameter estimation compared to just using filtering. 

CONCLUSION

N

  j ] which is unknown and the tensor product is repre-sented by [[A ; xt]], xt is the M (= N j=1 Pj)-dimensionalsparse signal and wt is the additive noise. We consider A

  ; a, b), where, Gamma(λi; a, b) = M i=1 Γ -1 (a)b a λ a-1 i

  f b (θ b ), where ABP , AMF represent the set of nodes belonging to the BP part and MF part, respectively. NBP (i) represents the number of neighbouring nodes of i which belong to the BP part, similarly NMF (i) is defined.

  ) and xt in (1) as, yt = (

Fig. 2 .

 2 Fig. 2. Static SBL: NMSE as a function of N .

Fig. 3 .

 3 Fig. 3. DAR-SBL: NMSE as a function of time.

We have presented here a low complexity algorithm for KS DL using a combination of BP, VB and EP. The motivation behind the proposed algorithm is to circumvent the suboptimality associated with incorrect posterior covariance computation for the columns of the factor matrices in a previous paper of ours which was entirely based on MF approximations. However, we are still unclear whether the proposed algorithm is robust enough to perform comparably with the variations in the model of KS A (t) , which is left as a future work.