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A Rate Splitting Strategy for Mitigating Intra-Cell Pilot Contamination in Massive MIMO

The spectral efficiency (SE) of Massive MIMO (MaMIMO) systems is affected by low quality channel estimates. Rate-Splitting (RS) has recently gained some interest in multiuser multiple antenna systems as an effective means to mitigate the multi-user interference due to imperfect channel state information. This paper investigates the benefits of RS in the downlink of a single-cell MaMIMO system when all the users use the same pilot sequence for channel estimation. Novel expressions for the SE achieved in the downlink by a single-layer RS strategy (that relies on a single successive interference cancellation at each user side) are derived and used to design precoding schemes and power allocation strategies for common and private messages. Numerical results are used to show that the proposed RS solution achieves higher spectral efficiency that conventional MaMIMO with maximum ratio precoding.

I. INTRODUCTION

Massive MIMO (MaMIMO) is a wireless technology where the base stations (BSs) are equipped with a large number M of antennas to serve a multitude of single-antenna K user equipments (UEs) by spatial multiplexing [START_REF] Marzetta | Noncooperative cellular wireless with unlimited numbers of base station antennas[END_REF]. The acquisition of channel state information (CSI) is the limiting factor in MaMIMO [START_REF] Marzetta | Noncooperative cellular wireless with unlimited numbers of base station antennas[END_REF]. In a time-division duplex (TDD) mode, channel reciprocity allows to acquire all the necessary CSI for uplink (UL) and downlink (DL) transmissions from a finite number of UL pilot signals [START_REF] Marzetta | Noncooperative cellular wireless with unlimited numbers of base station antennas[END_REF]. Thanks to the intense research performed over the last decade, MaMIMO is today a mature technology [START_REF] Marzetta | Fundamentals of Massive MIMO[END_REF], [START_REF] Björnson | Massive MIMO networks: Spectral, energy, and hardware efficiency[END_REF], which has been adopted into the 5G NR standard [START_REF] Björnson | Massive MIMO is a Reality What is Next? Five Promising Research Directions for Antenna Arrays[END_REF].

One phenomenon that is tightly connected with MaMIMO is pilot contamination, which can be briefly explained as follows [START_REF] Marzetta | Noncooperative cellular wireless with unlimited numbers of base station antennas[END_REF]. UEs that transmit the same pilot signal contaminate each others' channel estimates. This "pilot interference" not only reduces the CSI quality but also creates the so-called "coherent interference", which has been believed to fundamentally limit the spectral efficiency (SE) of MaMIMO, even when M → ∞ [START_REF] Marzetta | Noncooperative cellular wireless with unlimited numbers of base station antennas[END_REF], [START_REF] Marzetta | Fundamentals of Massive MIMO[END_REF]. Recently, [START_REF] Björnson | Massive MIMO Has Unlimited Capacity[END_REF] showed that with optimal signal processing and spatially correlated channels, the SE increases without bound as M → ∞ while K is fixed. The fact that there is no fundamental SE limit does not imply that the pilot contamination effect disappears; there is still an SE loss caused by estimation errors and interference rejection [START_REF] Sanguinetti | Toward massive MIMO 2.0: Understanding spatial correlation, interference suppression, and pilot contamination[END_REF]. The aim of this paper is to deal with this effect for a finite M .

Observe that, when the estimation error variance decays with the signal-to-noise-ratio (SNR) as O(SNR -δ ) for some 0 ≤ δ < 1, conventional precoding techniques result in a sum degrees of freedom (DoF) of Kδ. This in turn reveals that as δ → 0 (implies constant channel estimation error), the system becomes interference limited. A possible solution to this issue is to take a rate splitting (RS) approach [START_REF] Clerckx | Rate Splitting for MIMO Wireless Networks: a Promising PHY-Layer Strategy for LTE Evolution[END_REF] that splits the UEs' messages into common and private parts, encode the commmon parts into a common stream, and private parts into private streams and superpose in a non-orthogonal manner the common stream on top of all private streams. The common stream is drawn from a codebook shared by all UEs and is intended to one only, but is decodable by all UEs. On the other hand, the private streams are to be decoded by the corresponding UEs only. The sum DoF achieved by RS in the DL is 1 + (K -1)δ [START_REF] Joudeh | Sum-Rate Maximization for Linearly Precoded Downlink Multiuser MISO Systems With Partial CSIT: A Rate-Splitting Approach[END_REF], which is higher than Kδ and matches the upper bound obtained from the Aligned Image Sets in [START_REF] Davoodi | Aligned Image Sets under Channel Uncertainty: Settling Conjectures on the Collapse of Degrees of Freedom under Finite Precision CSIT[END_REF]. Interestingly, RS not only achieves the optimal sum-DoF but the entire DoF region of the K-UE channel with imperfect CSI [START_REF] Piovano | Optimal DoF region of the K-user MISO BC with partial CSIT[END_REF].

Motivated by the above results, the design and optimization of RS at finite values of SNR has been investigated and was found to provide significant benefits in the DL with imperfect CSI, compared to multi-user MIMO and NOMA [START_REF] Joudeh | Sum-Rate Maximization for Linearly Precoded Downlink Multiuser MISO Systems With Partial CSIT: A Rate-Splitting Approach[END_REF], [START_REF] Joudeh | Robust Transmission in Downlink Multiuser MISO Systems: A Rate-Splitting Approach[END_REF], [START_REF] Mao | Rate-Splitting Multiple Access for Downlink Communication Systems: Bridging, Generalizing, and Outperforming SDMA and NOMA[END_REF], but also to Dirty Paper Coding [START_REF] Mao | Beyond Dirty Paper Coding for Multi-Antenna Broadcast Channel with Partial CSIT: A Rate-Splitting Approach[END_REF]. The application of RS to an FDD MaMIMO system has been investigated in [START_REF] Dai | A Rate Splitting Strategy for Massive MIMO with Imperfect CSIT[END_REF], [START_REF] Papazafeiropoulos | Rate-Splitting to Mitigate Residual Transceiver Hardware Impairments in Massive MIMO Systems[END_REF]. Particularly, [START_REF] Dai | A Rate Splitting Strategy for Massive MIMO with Imperfect CSIT[END_REF] shows that a two-layer RS architecture, so-called hierarchical RS (HRS), can bring significant benefits in MaMIMO.

In this paper, we focus on a TDD single-cell MaMIMO network and assume that all the UEs use the same pilot signal for channel estimation. Novel expressions for the SE achieved in the DL by a single-layer RS strategy are derived by applying the hardening bound to both common and private messages [START_REF] Marzetta | Fundamentals of Massive MIMO[END_REF]. A maximum ratio (MR) precoding scheme is used for private streams while a precoder based on a weighted combination of the channel estimates of all UEs is adopted for the common stream. A novel algorithm is proposed to allocate the power among the common and private streams.

II. SYSTEM MODEL

We consider a single-cell MaMIMO network where the BS is equipped with M antennas and serves K UEs. We denote h i ∈ C M the channel from UE i to the BS, and consider a correlated Rayleigh block fading model h i ∼ CN (0, R i ) where R i ∈ C M ×M is the covariance matrix [START_REF] Björnson | Massive MIMO networks: Spectral, energy, and hardware efficiency[END_REF]Sec. 2.2]. The Gaussian distribution is used to model the small-scale fading variations, while R i describes the macroscopic propagation characteristics. The normalized trace β i = 1

M tr(R i ) is the average channel gain from the BS to UE i.

The UEs are perfectly synchronized and operate according to a TDD protocol with a data transmission phase and a pilot phase for channel estimation [START_REF] Björnson | Massive MIMO networks: Spectral, energy, and hardware efficiency[END_REF]. We consider the standard block fading TDD protocol in which each coherence block consists of τ channel uses, whereof τ p are used for UL pilots, τ u for UL data, and τ d for DL data, with τ = τ p + τ u + τ d . Only the DL is considered in this paper, i.e., τ u = 0.

A. Channel estimation

We assume that a single pilot sequence of length τ p is used. For a total uplink pilot power of ρ tr per UE, the BS obtains the MMSE estimate of h i as

h i = R i Q -1 K k=1 h k + 1 √ ρ tr n i ∼ CN (0, Φ i ) (1) 
where

n i ∼ CN (0, I M ) is noise, Φ i = R i Q -1 R i and Q = K k=1 R k + 1 ρtr I M . The estimation error h i = h i - h i ∼ CN (0, R i -Φ i ) is independent of h i .
The mutual interference generated by the pilot-sharing UEs is known as pilot contamination and has two main consequences in the channel estimation process. The first is the reduced estimation quality, whereas the second is that the estimates

{ h i } become correlated. If R k is invertible, we have that [3, Sec. 3.2] h i = R i R -1 k h k (2) 
from which it follows that

E{ h i h H k } = R i Q -1 R k . B.

Rate Splitting in Downlink transmissions

The RS scheme is used in the DL for transmission. The message intended to UE k is split into two parts, W k = (W k0 , W k1 ). We assume that W k0 ∈ W k0 represents the common part and W k1 ∈ W k1 is the private part. All the common parts are packed into one common message, W c = (W k0 , ..., W K0 ) ∈ W c , which is encoded into a common stream ς c using a common codebook. The private message W k1 is encoded in the conventional manner into the private stream ς k . The resulting transmitted DL signal is:

x = w c ς c Common message + K i=1 w i ς i Private messages (3) 
where ς i ∼ CN (0, ρ i ) is assigned to a precoding vector w i ∈ C M that determines the spatial directivity of the transmission and satisfies E{ w i 2 } = 1 so that ρ i represents the average transmit power of UE ∀i. Similarly, ς c ∼ CN (0, ρ c ) denotes the common message, which is assigned to a precoding vector w c ∈ C M with E{ w c 2 } = 1 so that ρ c represents its average transmit power. We assume that

ρ c + K i=1 ρ i ≤ ρ T (4)
where ρ T is the total transmit power in the DL. The received signal y k ∈ C at UE k is given by

y k = h H k w c ς c + h H k w k ς k + K i=1,i =k h H k w i ς i + n k (5) 
where n k ∼ CN (0, σ 2 ) is the receiver noise. At each UE k, the common stream is first decoded into W c , by treating the interference from the private streams as noise. Then, successive interference cancellation (SIC) is performed, which removes the common message part from the received signal. Further, the private stream ς k is decoded into W k1 by treating the intracell interference as noise. UE k reconstructs the transmitted message by extracting W k0 from W c . Further, combining with the decoded private stream to form W k = ( W k0 , W k1 ).

C. Spectral efficiency

Characterizing the SE in the DL is hard since it is unclear how UE k should best estimate the effective precoded channels h H k w c and h H k w k that are needed for decoding the common signal ς c and the private signal ς k . A common approach in classical MaMIMO is to resort to the hardening bound [START_REF] Björnson | Massive MIMO networks: Spectral, energy, and hardware efficiency[END_REF]Sec. 4.3]. This bound relies on the assumption that the deterministic average precoded channels E{h H k w c } and E{h H k w k } are known at UE k. The received signals for the common and private messages can then be expressed as

y k,c = E{h H k w c }ς c + (h H k w c -E{h H k w c }) ς c + K i=1 h H k w i ς i + n k (6) 
and (after SIC)

y k,p = E{h H k w k }ς k + (h H k w k -E{h H k w k }) ς k + (h H k w c -E{h H k w c }) ς c + K i=1,i =k h H k w i ς i + n k . ( 7 
)
The following bounds can be computed.

Lemma 1. Achievable rates for the common and private messages of UE k can be computed as

SE k,c = τ d τ log 2 (1 + γ k,c ) (8) 
and

SE k = τ d τ log 2 (1 + γ k ) (9) 
with γ k,c and γ k given by [START_REF] Joudeh | Robust Transmission in Downlink Multiuser MISO Systems: A Rate-Splitting Approach[END_REF] and [START_REF] Mao | Rate-Splitting Multiple Access for Downlink Communication Systems: Bridging, Generalizing, and Outperforming SDMA and NOMA[END_REF]. The expectations are computed over channel realizations.

Proof: It can be proved from ( 6) and ( 7) by using standard results in MaMIMO (e.g., [3, App. C.3.6]), which are omitted for space limitations.

The achievable rate of the common message is defined as

SE c = τ d τ log(1 + γ lmin,c ) (13) 
where

l min = arg min k γ k,c (14) 
γ k,c = ρ c |E{h H k w c }| 2 K i=1 ρ i E{|h H k w i | 2 } + ρ c E{|h H k w c | 2 } -|E{h H k w c }| 2 + σ 2 (11) 
γ k = ρ k |E{h H k w k }| 2 K i=1 ρ i E{|h H k w i | 2 } -ρ k |E{h H k w k }| 2 + ρ c E{|h H k w c | 2 } -|E{h H k w c }| 2 + σ 2 (12) 
Observe that the above achievable rates can be utilized along with any precoding scheme. Moreover, each of the expectations in γ k,c and γ k can be computed separately by means of Monte Carlo simulations. Closed forms will be provided next for the proposed precoding schemes.

III. POWER OPTIMIZATION AND PRECODING DESIGN

A common and popular choice for w k is MR precoding, defined as

w MR k = h k E{| h k | 2 } = h k tr{Φ k } (15) 
which has low computational complexity and allows to compute some of the expectations in closed form. Particularly, we have that (e.g., [START_REF] Björnson | Massive MIMO networks: Spectral, energy, and hardware efficiency[END_REF]App. C.3.7])

|E{h H k w MR k }| 2 = tr{Φ k } (16) 
E{|h H k w MR i | 2 } = tr{R k Φ i } + tr{R k Q -1 R i } 2 tr{Φ i } . ( 17 
)
In the remainder, we assume that MR precoding is used for private messages. Next, we look for the transmit powers that maximize the sum SE of the network and design the precoding vector for the common message.

A. Power optimization

From the above section, the sum SE, for any given precoding scheme, can be computed as:

SE = SE c + K k=1 SE k (18) 
where SE k and SE c are given in ( 9) and ( 13), respectively. The power allocation problem can thus be formulated as:

max {ρc≥0,ρ≥0} SE c (ρ c , ρ) + K k=1 SE k (ρ c , ρ) (19) 
s.t. ρ c + K i=1 ρ i ≤ ρ T (20) 
with ρ = [ρ 1 , . . . , ρ K ] T . Finding the solution to the above problem is a challenge since it is not in a convex form.

A possible way out consists in using the method in [START_REF] Kim | Optimal Resource Allocation for MIMO Ad-hoc Cognitive Radio Networks[END_REF], and linearize the sum SE in (18) using a first order Taylor series approximation. The optizimation is then carried out by adopting an iterative approach in which the variables ρ c and Algorithm 1 ILA-WF power allocation 1: initialize t = 0 and ρ (0) c = 0 (no RS) and ρ if ρ

(0) k = ρT /K. Also, µ (0) = 1 2 (µ (0) u + µ (0) l ) with µ (0) u = 10
(t) c + k ρ (t) k > ρT then 10: µ (t+1) l = µ (t) , µ (t+1) u = µ (t) u 11: else 12: µ (t+1) u = µ t , µ (t+1) l = µ (t) l 13: 
end if

14: update µ (t+1) = µ (t+1) u +µ (t+1) l 2 15: 
update t = t + 1 16: until convergence {ρ i : i = 1, . . . , K} are alternatively optimized. In Appendix A, it is shown that at iteration t the powers must be updated as follows

ρ (t) k = 1 µ (t) + σ (2,t) k - 1 σ (1,t) k + (21) 
and

ρ (t) c = 1 
µ (t) + σ (2,t) c - 1 σ (1,t) c + (22) 
where (x) + = max(x, 0) and the quantities {σ

(1,t) k , σ (1,t) c } and {σ (2,t) k , σ (2,t) c
} are defined in Appendix A. The former represent the signal powers of private and common messages at iteration t, respectively, while the latter can be interpreted as the corresponding leakage powers. This is why (21) and ( 22) are called interference leakage-aware water-filling (ILA-WF) power allocations [START_REF] Thomas | Deterministic Annealing for Hybrid Beamforming Design in Multi-Cell MU-MIMO Systems[END_REF]. Note that the Lagrange multiplier µ (t) needs to satisfy the power constraint in (20) and can be computed by a bisection method [START_REF] Boyd | Convex Optimization[END_REF]. The entire procedure is summarized through Algorithm 1.

As done for γ k,c and γ k , we observe that all the quantities involved in the computation of {σ 

c } are deterministic and can be computed by means of Monte Carlo simulations for any choice of the precoding scheme for the common message. Closed form expressions are provided below for a MR-inspired precoding scheme.

B. Precoding design for common message

The optimal design of the precoding vector w c for the common message requires to solve a multi-objective problem involving γ lmin,c and {γ i : ∀i}. To overcome this issue, we assume that the difference E{|h 11) is small so that it can be neglected. The precoding vector is then suboptimally selected as the solution to the following problem:

H k w c | 2 } -|E{h H k w c }| 2 in (
max wc min k π k |E{h H k w c }| 2 s.t. E{ w c 2 } = 1 (23) 
where

π k = 1 K i=1 ρ i E{|h H k w i | 2 } + σ 2 . ( 24 
)
Following [START_REF] Dai | A Rate Splitting Strategy for Massive MIMO with Imperfect CSIT[END_REF], we heuristically select w c as a linear combination of the estimated channel vectors { h i : ∀i}:

w c = α K i=1 a i h i ( 25 
)
where α is needed to satisfy the constraint E{ w c 2 } = 1. Plugging (25) into E{h H k w c }, we may rewrite (23) as:

max {ai} min k π k K i=1 a i tr{R i Q -1 R k } 2 ( 26 
)
where we have neglected the scaling factor α 2 . We now observe that (26) can be reformulated as a geometric programming problem [START_REF] Boyd | Convex Optimization[END_REF]:

max t>0 t, s.t. a T u i ≤ t, ∀ i = 1, .., K (27) 
where we have defined a = [a 1 , ..., a K ] T and u i = [u i (1), . . . , u i (K)] T with entries

u i (k) = tr{R i Q -1 R k }.
Once the solution a to (27) is computed, the optimal w c is obtained as:

w c = K i=1 a i h i K i=1 K j=1 a i a j tr{R i Q -1 R j } . ( 28 
)
The expectations that depend on w c can be computed in closed form as follows. By using ( 2) into (28) yields

E{h H k w c } = K i=1 a i tr{R i Q -1 R k } K i=1 K j=1 a i a j tr{R i Q -1 R j } . ( 29 
)
To compute E{|h H k w c | 2 }, observe that it can be rewritten as

E{|h H k w c | 2 } = 1 K i=1 K j=1 a i a j tr{R i Q -1 R j } ×   K i=1 (a i ) 2 E{| h H i h k | 2 } + K i=1 K j=1,j =i a i a j E{h H k h i h j h k }   . ( 30 
)
The first term in (30) becomes (e.g., [3, Eq. (C.65)])

E{| h H i h k | 2 } = tr{R k Φ i } + tr{R k Q -1 R i } 2 (31)
while the second one in (30) reduces to

E{h H k h i h H j h k } (a) = E{h H k h i h H i R -1 i R j h k } (32) (b) = tr R -1 i R j E{ h k h H k h i h H i } + tr R -1 i R j E{ h k h H k }E{ h i h H i } ( 33 
) (c) = tr R -1 i R j E{ h k h H k h i h H i } + tr R -1 i R j (R k -Φ k )Φ i } (34)
where (a) uses h j = R j R -1 i h i (as it follows from (2)), (b) follows from h k = h k + h k and the independence between the estimate h k and estimation error h k , whereas (c) uses

E{ h k h H k }E{ h i h H i } = (R k -Φ k )Φ i . In Appendix B, it is shown that E{ h k h H k h i h H i } = tr{B ik }Φ k + Φ 1/2 k diag (B ik ) + B ik (Φ 1/2 k ) H (35) 
where

B ik = (Φ 1/2 k ) H R i R -1 k Φ 1/2 k
and diag (•) indicates the main diagonal of the enclosed matrix.

Note that, by using the above expressions and those in ( 16) and ( 17), we can eventually compute in closed form all the expectations involved in [START_REF] Joudeh | Robust Transmission in Downlink Multiuser MISO Systems: A Rate-Splitting Approach[END_REF] and [START_REF] Mao | Rate-Splitting Multiple Access for Downlink Communication Systems: Bridging, Generalizing, and Outperforming SDMA and NOMA[END_REF].

IV. SIMULATION RESULTS

To quantify the SE that can be achieved in MaMIMO with RS, we consider a cell of size 250 m × 250 m. The UL pilot power is ρ tr = 20 dBm, whereas the noise power in UL and DL is σ 2 = -94 dBm. The samples per coherence block are τ = 200 with τ p = 10. Each BS is equipped with a uniform linear array with half-wavelength antenna spacing. Each channel consists of S = 6 scattering clusters, which are modeled by the Gaussian local scattering model [3, Sec.

2.6]. Hence, the (m 1 , m 2 )th element of R i is [R i ] m1,m2 = β i × 1 S S s=1 e jπ(m1-m2) sin(ϕi,s) e - σ 2 ϕ 2 (π(m1-m2) cos(ϕi,s)) 2 (36)
where β i is the large-scale fading coefficient given by (in dB)

β i | dB = -34.53 -38 log 10 d i 1 km + F i (37) 
with UEs being placed uniformly at random and d i (>= 35 m) represents the distance of UE i from the BS. F i ∼ N (0, 10) is the logarithm of the shadow fading between UE i and BS. Also, let ϕ i be the geographical angle to UE i as seen from the BS. Cluster s is characterized by the randomly generated nominal angle-of-arrival ϕ i,s ∼ U[ϕ i -40 • , ϕ i + 40 • ] and the angles of the multipath components are Gaussian distributed around the nominal angle with standard deviation σ 2 ϕ = 10 • . Fig. 1 plots the sum SE as a function of the total transmit power defined as ρ T (in dBm) with M = 100 and K = 10. Comparisons are made with a classical MaMIMO system with MR precoding and power allocated through Algorithm 1 with ρ c fixed to 0. As seen, RS improves the sum SE significantly for values of ρ T higher than 5 dBm. Moreover, the sum SE with RS does not saturate at high ρ T values. This in contrast to what happens without RS, due to pilot contamination. Fig. 2 illustrates the sum SE as a function of number of antennas, M , with K = 10 and transmit power ρ T = 20 dBm. We observe that the RS scheme does help to mitigate the pilot contamination effect for a finite number of antennas.

Finally, in Fig. 3 we report the sum SE as a function of K with M = 100 and ρ T = 20 dBm. As K increases, the gain provided by RS decreases. The larger K, the lower the common rate since the common message has to be decoded by all UEs. This issue can be solved by using HRS approach as in [START_REF] Dai | A Rate Splitting Strategy for Massive MIMO with Imperfect CSIT[END_REF]; this is an interesting topic left for future work.

V. CONCLUSIONS

This paper focused on a single-cell MaMIMO system in which all the UEs use the same pilot signal in the training phase. To deal with the reduced channel estimation quality, caused by pilot contamination, a single layer RS approach was proposed and shown to improve the SE at high SNR values. However, we remark that much remains to be done, for e.g. c . For simplicity, we drop the iteration index t. We begin by rewriting the SE of UE k as (by explicating its dependence from ρ k )

SE k (ρ k ) = τ d τ log 2 NUM k (ρ k ) DEN k (ρ k ) = τ d τ (log 2 (NUM k (ρ k )) -log 2 (DEN k (ρ k ))) (38) 
where

DEN k (ρ k ) represents the denominator of γ k in (12) while NUM k (ρ k ) = DEN k (ρ k ) + ρ k |E{h H k w k }| 2 . Observe that -log 2 (DEN k (ρ k )) is a non-concave function of ρ k .
By linearizing it around a tentative value ρ k , the following approximation is obtained:

log 2 (DEN k (ρ k )) ≈ E{|h H k w k | 2 } -|E{h H k w k }| 2 DEN k ( ρ k ) α k (ρ k -ρ k )
where the terms independent of ρ k have been neglected for simplicity. Similarly, we can rewrite SE i as

SE i (ρ k ) = τ d τ (log 2 (NUM i (ρ k )) -log 2 (DEN i (ρ k ))) . ( 39 
)
By linearizing both terms around ρ k

log 2 (NUM i (ρ k )) ≈ E{|h H i w k | 2 } NUM i ( ρ k ) (ρ k -ρ k ) (40) log 2 (DEN i (ρ k )) ≈ E{|h H i w k | 2 } DEN i ( ρ k ) (ρ k -ρ k ) (41) 
we obtain the following approximation for SE i (ρ k )

SE i (ρ k ) ≈ τ d τ E{|h H i w k | 2 } NUM i ( ρ k ) - E{|h H i w k | 2 } DEN i ( ρ k ) ζi (ρ k -ρ k ). σ (1) k = E{|h H k w k | 2 } σ 2 + ρ c E{|h H k w c | 2 } -|E{h H k w c }| 2 + K i=1,i =k ρ i E{|h H k w i | 2 } (45) 
Following the same approach for the SE of the common message yields

SE c (ρ k ) ≈ τ d τ E{|h H lmin w k | 2 } NUM c,min ( ρ k ) - E{|h H lmin w k | 2 } DEN c,min ( ρ k ) ζc (ρ k -ρ k )
where NUM c,min (ρ k ) = DEN c,min (ρ k ) + ρ c |E{h H lmin w c }| 2 and DEN c,min (ρ k ) represents the denominator of γ lmin,c in [START_REF] Dai | A Rate Splitting Strategy for Massive MIMO with Imperfect CSIT[END_REF]. Putting all the above together, an approximation of the sum SE in [START_REF] Boyd | Convex Optimization[END_REF] is

SE(ρ k ) = τ d τ log 2 (NUM k (ρ k )) -σ (2) 
k (ρ k -ρ k ) (42) 
where σ

(2)

k = ζ c + α k + K i=1,i =k ζ i . ( 43 
)
Taking the derivative of its Lagrangian (obtained after adding the power constraint in ( 20)) and equating it to zero yields

E{|h H k w k | 2 } NUM k (ρ k ) -σ (2) 
k -µ = 0 (44) from which one obtain (21) in the text, with σ 

1/2 k ) H R i R -1 k Φ 1/2 k . By recalling that h i = R i R -1 k h k yields E{ h k h H k h i h H i } = Φ 1/2 k E{cc H B ik cc H }(Φ 1/2 k ) H . ( 48 
Putting the above results together yields E{ h k h H k h i h H i } = tr{B ik }I + diag (B ik ) + B ik .
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  5 (or some very large value) and µ

		(0) l	= 0.
	2: repeat
	3: 4: 5:	for k = 1 to K do compute σ (1,t) k and σ use µ t to update p t k in (21) (2,t) k
	6: 7: 8:	end for compute σ c (1,t) use µ t to update p t and σ c (2,t) c in (22)
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