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The Performance Improvement of Ultrasound Localization Microscopy
(ULM) Using the Robust Principal Component Analysis (RPCA)

Duong Hung Pham, Vassili Pustovalov and Denis Kouamé

Abstract— This paper presents an algorithm for ultrafast
ultrasound localization microscopy (ULM) used for the detec-
tion, localization, accumulation, and rendering of intravenously
injected ultrasound contrast agents (UCAs) enabling to yield
hemodynamic maps of the brain microvasculature. It consists
in integrating a robust principal component analysis (RPCA)-
based approach into the ULM process for more robust tissue
filtering, resulting in more accurate ULM images. Numerical
experiments conducted on an in vivo rat brain perfusion dataset
demonstrate the efficiency of the proposed approach compared
to the most widely used state-of-the-art method.

Index Terms— ULM, ultrafast ultrasound, inverse problems,
robust PCA, blood flow, tissue filtering, UCA localization.

I. INTRODUCTION
Ultrasound (US) imaging is increasingly used in medical

practice as a non-invasive, nonionizing radiation, low-cost,
and ease-of-use tool. Using plane wave techniques, the US
modality can perform acquisitions with a frame rate up to
20kHz, which enables a good visualization and quantifica-
tion of microvascular structure including sudden functional
changes in the brain, as well as an increase of blood-low sen-
sitivity for more accurate filtering [1]. However, the propaga-
tion of US waves faces many phenomena including diffrac-
tion and attenuation, resulting in a limited spatial resolution.
The recent advent of ultrasound localization microscopy
(ULM) successfully handles the trade-off of US imaging be-
tween spatial resolution and penetration depth while achiev-
ing a high sensitivity thanks to the clever interaction be-
tween sparse ultrasound contrast agents (UCAs) and ultrafast
imaging [2]. Having a similar principle to photoactivated
localization microscopy (PALM), ULM considers UCAs as
sensors to image the region of interest by detecting, localiz-
ing, accumulating, and rendering thousands of microbubble
events through density-based techniques. Besides, the high
framerate within ULM allows the retrieval of the trajectories
of UCAs in the bloodstream, thus imaging efficiently both
the vasculature and microvasculature. Interestingly, ULM has
been freshly adapted for 2D transcranial application, which
has the potential of providing new imaging biomarkers for
early detection, diagnosis, and prognosis of many cerebral
diseases [3]. Despite its efficiency, most current algorithms
for ULM have been implemented together with a trivial
spatio–temporal singular value decomposition (SVD) filter
[3]–[5]. The idea of using this technique emanates from
the fact that in US imaging, particularly ultrafast technique,
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back-scattered blood signals carrying UCAs (originating
from vessels) and clutter signals (from tissues surrounding
the vessels) superimpose themselves on the images [6].
Applying tissue filtering consequently enables the removal
of unwanted clutter signals from stationary or moving tissues
to retain only the contribution of individual UCAs. The SVD
technique is fast and straightforward; however, the empirical
tuning process of its thresholding parameters does not rely
on any interpretable model, which remains problematic in
practice, limiting the method’s applicability.

In this paper, we propose to use an alternative technique
for tissue filtering, namely a robust principal component
analysis (RPCA), resulting in more accurate and saturated
ULM images [7]. The principle of RPCA is to formulate
tissue filtering as an inverse problem of the blood-tissue
separation, where a priori knowledge about tissue and blood
structures carrying UCAs can be incorporated. In practice,
the tissues are assumed to be low-rank while the blood
flow is sparse. The inverse problem is then solved using
iterative approaches such as the alternating direction method
of multipliers (ADMM) [8]. The remainder of the paper
is organized as follows. The background about SVD-based
ULM is given in Section II. The proposed PRCA-based ULM
algorithm is detailed in Section III. Finally, numerical results
on in vivo ultrafast US data are regrouped in Section IV,
showing the improvement achieved by the proposed approach
over the most efficient algorithm for ULM nowadays.

II. BACKGROUND ON SVD-BASED ULM

Ultrasound localization microscopy (ULM) is a multi-step
process including six main steps resumed as follows1. 1)
Acquisition of raw US images of a perfused organ injected
with UCAs at a high frame rate. 2) Tissue filtering on
these images to get rid of tissue signals. 3) Detection and
localization of UCAs with sub-pixel precision. 4) Pairing
successive positions of the detected UCAs together into
tracks. 5) Interpolation and projection of the tracks on a
rendering grid. 6) Reconstruction of ULM vascular image
accumulating a large number of tracks (called rendering).
The quality of ULM images is strongly dependent upon
all the steps above which have been greatly improved over
the past decade. For instance, a thorough study of ULM
framework has been introduced including 6 sets of in vitro
and in vivo data and a systematic comparison of the seven
most used algorithms for UCAs localization in [5]. In this

1The interested reader is referred to [5] for a detailed description of these
steps of the method.



article, we focus on the improvement of the tissue filtering
step which is often overlooked in previous works [3]–[5].
Indeed, in these works, a trivial SVD was used to separate
blood flow containing UCAs from unwanted tissue signals,
and also to increase the Doppler sensitivity of the resulting
image. It consists in factorizing the 2D Casorati matrix
S ∈ CNzNx×Nt (i.e. obtained by stacking the frames into
columns of the recorded image) using SVD as follows [6]:

S = UΣV † =

r∑
k=1

ukσkv
†
k, (1)

where Nz , Nx, and Nt are respectively the axial, lateral,
and temporal dimensions. U ∈ CNzNx×NzNx and V ∈
CNt×Nt are two unitary matrices of the spatial (left) uk

and temporal (right) vk singular vectors. Σ ∈ RNzNx×Nt is
a non-square diagonal matrix with diagonal elements being
its singular values σk. † denotes the conjugate transpose and
r = min(NzNx, Nt) the rank of S. It is worth mentioning
that the diagonal elements Σ are sorted in ascending order
of magnitude. The smallest singular values correspond to
the noises, the intermediate ones to the blood signals, and
the largest ones to the tissue signals. Then, some empirical
heuristics are used to tune the clutter Tc and blood Tb

thresholds. This enables to filter out the unwanted tissue
signals and the noises, and also to reveal of the blood flow
components as follows:

B̂ =

Tb∑
k=Tc

ukσkv
†
k. (2)

Although the SVD technique is very simple and can
perform at a very low computational cost, the manual choice
of the optimal thresholds is not obvious, not only in the ULM
scenario but also in other practical situations, thus making
its applicability complex.

III. PROPOSED RPCA-BASED ULM
The main aim of the proposed algorithm is to enhance

the ultimate ULM image quality by integrating a more
efficient tissue filtering technique in the ULM process in
the place of SVD. To this end, we investigate a robust
principal component analysis (RPCA)-based technique [7] as
an alternative solution. It consists in formulating blood-tissue
separation as an inverse problem, where a priori knowledge
about tissue and blood structures with UCAs is taken into
account. The blood flow with UCAs B is assumed to be
sparse and is conventionally promoted by the minimization
of the l1-norm. The tissue signals T is assumed to change
very slowly with time, leading to a low-ranking assumption
on T which is usually modeled by the nuclear norm ||.||∗. N
is assumed to be a Gaussian noise. Thus, RPCA is expressed
as the following convex optimization problem:

[B̂, T̂ ] = argmin
B,T

{
||S −B − T ||2F + λ||B||1 + ρ||T ||∗

}
,

(3)

where .̂ stands for the estimated variables, ||.||F is the Frobe-
nius norm, and λ, ρ > 0 are two hyperparameters balancing

the trade-off between the blood sparsity and the tissues’
low-rankness [9]. To solve (3), the augmented Lagrangian-
based alternating direction method of multipliers (ADMM)
is used. It consists in solving iteratively several sub-problems
over each variable separately [8]. Precisely, the augmented
Lagrangian related to (3) is first written as follows:

L (B,T ,ν) = λ||B||1+ρ||T ||∗+
µ

2
||S−B−T +

1

µ
ν||2F ,

where ν is the Lagrange multiplier and µ is the Lagrangian
penalty parameter controlling the convergence speed of the
algorithm. Finally, at each iteration k, ADMM performs the
following three steps, until a predefined stopping criteria is
met:

B̂(k+1) = argmin
B

(λ||B||1 +
µ

2
||B − (S − T (k) +

1

µ
ν(k))||2F )

T̂ (k+1) = argmin
T

(ρ||T ||∗ +
µ

2
||T − (S −B(k+1) +

1

µ
ν(k))||2F )

ν(k+1) = νk + µ(S −B(k+1) − T (k+1)).

It is interesting to note that the two first steps for B̂(k+1)

and T̂ (k+1) are both convex problems associated, respec-
tively, with closed-form solutions: soft thresholding (ST) [10]
and singular value thresholding (SVT) [11]. Note that other
RPCA-related approaches, e.g. [12], [13] can also be used.

IV. NUMERICAL RESULTS
This section regroups numerical results on a in vivo rat

brain perfusion dataset to illustrate the improvement brought
by the proposed algorithm over the most efficient method
currently for ULM. Note that due to space limitation, only
this in-vivo data will be used to illustrate the proposed ap-
proach. As mentioned above, an exhaustive study conducted
in [5] drew a conclusion that SVD-based UML with radial
symmetry (RS) algorithm for UCAs localization came out on
top both in qualitative and quantitative evaluations. There-
fore, it will be selected for comparison with our proposed
algorithm in the sequel.

A. In vivo rat brain perfusion dataset

This dataset is the in vivo angiography of the rat brain that
is publicly available at [15]. Before the acquisition, the skull
of the rat had been removed following a craniotomy surgery
protocol. Then, UCAs (400µl, Bracco Imaging, Italy) were
continuously injected through the jugular vein (192, 000 US
images). The radiofrequency data were beamformed on the
ultrasound machine’s graphics processing unit (SuperSonic
Imagine). An US acquisition comprising of 240 blocs of 800
frames of size 78x118 pixels was taken at a compounded
frame rate of 1KHz with 3 tilted plane waves [−3o, 0o,+3o]
and pulse repetition frequency 15 MHz (Vermon, France)
with a 0.1mm pitch. The acquisition time was 4 min. Refer
to [5] for more details.

B. Performance comparison

The hyperparameters of the two studied algorithms were
tuned to maximize the performance measures. To this end,
those of SVD-based ULM were kept the same as in the
original publication, which showed the best performance [5].
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Fig. 1. ULM density-based rendering images of in vivo rat brain perfusion with two zoomed-in regions: 1 (left panel) and 2 (right panel). The density
renderings are obtained by counting the number of UCAs trajectories passing each pixel in the image (unit: counts). The density rendering using the RS
localization algorithm. Composite rendering of 192,000 frames. (a) the SVD-based ULM; (b) the proposed PRCA-based ULM. All images are displayed
with a dynamic range of 1000 counts, and the zoomed-in boxes show the same magnified areas in each image.
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Fig. 2. CR measures for the two tested methods. In these boxplots, the red
horizontal line indicates the median, the bottom and top edges of the box
indicate the 25th and 75th percentiles and the black lines indicate the entire
range of data samples, per category. Red markers indicate outliers excluded
from the statistical calculations [14]. For this simulation, the median of the
SVD-based ULM is 23.45 whereas the one of the proposed PRCA-based
ULM is 46.11.)

Particularly, the SVD relying on two distinct thresholds to
filter the eigenvalues were, respectively, chosen as Tc = 5
and Tb = 800. For the RPCA-based ULM, we recall that
λ and ρ associated with RPCA express the compromise
between the blood sparsity and the tissue low-rankness while
µ manages the convergence speed of the algorithm. As

suggested in [9] for the general RPCA problem, ρ was set
to 1 while the reference values λref =

1√
max(Nz×Nx,Nt)

and

µref = 10×λref, were applied to ease the tuning. With this in
mind, the best values of λ and µ selected were respectively
set to 0.0104 and 0.104, in the experiments. Note also that the
RS algorithm for UCAs localization with the same parameter
setting for both two studied algorithms was used to ensure
a fair comparison.

In Fig. 1, we depict the ULM density rendering images
along with two zoomed-in regions obtained by the two
algorithms carried out on the in vivo rat brain perfusion
dataset. The density rendering image shows the number of
trajectories passing through a single pixel whose square size
is set to 10µm×10µm. Visually judging these plots, one may
notice that the proposed RPCA-based ULM algorithm yields
a density rendering image that is overall less noisy and more
saturated vessels than the SVD-based ULM one. Looking at
the two zoomed-in regions, one may further remark that the
delineation of blood vessels given by the proposed method
is sharper and more accurate.

In order to compare the performance of the two studied
algorithms on the in-vivo data, two commonly employed
quantitative measures are used. The first one is the res-
olution gain (RG) as suggested in [16]. It is defined as
a ratio between the number of pixels of the normalized



autocorrelations (values greater than 0.75, i.e. 3dB) of the
ULM density images obtained respectively by the SVD-
based algorithm (considered as a reference) and the proposed
RPCA-based method. The calculated RG is 1.16, indicating
a 16% improvement in the resolution of the proposed method
over the SVD-based algorithm. The second one is contrast
ratio (CR), a quantitative measure of contrast between the
background and blood regions. A larger CR value indicates
a better performance of ULM. For a pair of background and
foreground patches, CR is defined as [17]:

CR[dB] = 20 log 10

(
µR2

µR1

)
,

where µR1 is the mean value of intensities in the blue rectan-
gular patch R1 which is kept fixed as a reference patch. µR2

is the mean value of intensities in the green rectangular patch
R2 which is one of the non-overlapping patches of the image
(see Fig. 1). Fig. 2 shows the boxplot of all the patchwise CR
values of the two algorithms. One can see that the proposed
method results in a much better contrast, producing a much
higher median value (46.11 for the proposed PRCA-based
ULM and 23.45 for the SVD-based ULM). It proves the
consistency with the above qualitative observation about the
ULM density image results of the two studied techniques.

V. CONCLUSIONS

In this paper, we introduced an efficient algorithm of ul-
trafast ultrasound localization microscopy (ULM) for hemo-
dynamic maps of the brain microvasculature, based on
improving the tissue filtering performance using the robust
principal component analysis (RPCA)-based method. The
proposed method enabled more accurate ULM results than
the reference method. Assessments carried out on in vivo
rat brain perfusion dataset showed the benefits of using
the proposed algorithm. Future work could be devoted, for
instance, to deep learning (DL) techniques for automatic
hyperparameter tuning, alleviating a practical downside of
current state-of-the-art methods.
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