The Performance Improvement of Ultrasound Localization Microscopy (ULM) Using the Robust Principal Component Analysis (RPCA) - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

The Performance Improvement of Ultrasound Localization Microscopy (ULM) Using the Robust Principal Component Analysis (RPCA)

Résumé

This paper presents an algorithm for ultrafast ultrasound localization microscopy (ULM) used for the detec- tion, localization, accumulation, and rendering of intravenously injected ultrasound contrast agents (UCAs) enabling to yield hemodynamic maps of the brain microvasculature. It consists in integrating a robust principal component analysis (RPCA)- based approach into the ULM process for more robust tissue filtering, resulting in more accurate ULM images. Numerical experiments conducted on an in vivo rat brain perfusion dataset demonstrate the efficiency of the proposed approach compared to the most widely used state-of-the-art method.
Fichier principal
Vignette du fichier
EMBC2023__accepted_doc.pdf (512.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04137949 , version 1 (28-11-2023)

Identifiants

  • HAL Id : hal-04137949 , version 1

Citer

Duong-Hung Pham, Vassili Pustovalov, Denis Kouamé. The Performance Improvement of Ultrasound Localization Microscopy (ULM) Using the Robust Principal Component Analysis (RPCA). 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2023), IEEE Engineering in Medicine and Biology Society (EMBS), Jul 2023, Sydney, Australia. à paraître. ⟨hal-04137949⟩
91 Consultations
130 Téléchargements

Partager

More