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ABSTRACT

Due to the significant increase in the share of variable renewable electricity generation, the power
grid flexibility must be enhanced. To achieve this while reducing CO2 emissions, improving the
manoeuvrability of low-carbon sources such as nuclear power plants (NPP) is essential. Time se-
ries forecasting is a crucial task to enhance NPPs manoeuvrability. In particular, because the ability
to forecast critical core operating parameters in a fast and trustworthy manner would substantially
help operators perform load-following operations. Traditionally, core nuclear reactor operating pa-
rameters are estimated through neutron transport simulations, which require a significant amount of
computational resources. Alternatively, machine learning (ML) techniques such as neural networks
have been increasingly used to address this type of problem. In this study, we propose a novel data-
based ML method combining tree-based regressors (Random Forest or Gradient Boosted Trees) and
time series models to forecast the normalized axial offset, a core parameter that must be monitored
and controlled by the operators working in the control room. We consider a rigorous optimization
procedure to determine hyperparameter values leading to high performance. Finally, we validate
our approach on French 1300 MW pressurized water reactors (PWR) historical data. We show that,
knowing the operators’ projected commands, we can compute minute-by-minute forecasts in a few
fractions of a second for the next eight hours, with suitable accuracy for the task at hand.

KEYWORDS: Machine Learning, Time series forecasting, Gradient Boosting, Nuclear power plants, Axial
offset

1. INTRODUCTION

The projected rise in electricity demand due to electrification, together with the significantly increased share
of variable renewable electricity generation, calls for extensive efforts to ensure the stability and flexibility
of electricity supply [1]. Low-carbon, controllable energy sources, such as nuclear power plants (NPPs),
are needed to address these new challenges. Furthermore, NPPs flexibility is currently underexploited, es-
pecially in France [2]. NPPs should, therefore, technically be able to compensate for production variability
from renewable energy sources. This can be achieved by increasing the number of reactors participating in
load-following as well as the number and amplitude of power transients (up and down ramps) performed by
each reactor [3, 4]. To effectively handle these numerous and challenging power transients, operators need
more efficient decision support tools for the monitoring and control of critical operating parameters.

Estimating core nuclear reactor operating parameters. Traditionally, core nuclear reactor operating pa-
rameters are estimated through neutron transport simulations. Different approaches based on neutron trans-
port have emerged over time - leading to the development of numerous nuclear codes - such as point reactor
core modeling, one-dimensional reactor core modeling, multi-node core modeling and three-dimensional
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reactor core modeling [5]. Due to the development of powerful Machine Learning (ML) algorithms capa-
ble of capturing complex dynamics, ML techniques have been increasingly used to identify nuclear power
plants (NPPs) dynamics and address operating parameters forecasting problems. For instance, Kozma et al.
[6] and Kim et al. [7] used neural networks to predict multiple core parameters to help with core monitoring
and fuel reloading problems, respectively. Several researchers used recurrent neural networks to identify
the core dynamics of Water-Water Energy Reactors (WWERs) and Pressurized Water Reactors (PWRs) by
building models able to forecast core parameters such as the axial offset [8, 9]. Zio et al. proposed to use
Locally Recurrent Neural Networks to estimate the neutron flux, only knowing the reactivity evolution [10].
More recently, Naimi et al. [11], used a dynamic neural network to forecast the neutronic power of a PWR.
We noted that most of these studies have been carried out with simulators or research reactors and proposed
solutions have not been evaluated on data from commercial NPPs.

Contributions. Our contributions are as follows:

• We propose a novel approach combining tree-based and time series models to forecast the normalized
axial offset in short and long horizons (one minute to eight hours).

• We demonstrate how to efficiently optimize the hyperparameters of our models by performing a Bayesian
Search.

• We compare the performance and computational time of two tree-based methods, a Random Forest
(RF) and Gradient Boosted Trees (GB) trained on a large amount of operational data from the French
1300 MW PWRs.

• We validate our hybrid method on a different subset of operational data from these reactors.

2. THEORETICAL BACKGROUND

2.1. Tree-based methods

Tree-based methods have become very popular in the field of statistical learning due to their simplicity,
interpretability and high performance on supervised classification and regression problems. These non-
parametric methods require minimal assumptions about the underlying data generating process, making
them highly versatile and applicable to a wide range of problems including nonlinear ones. Moreover, it has
been demonstrated that they can outperform Deep Learning methods when applied to tabular data like ours
[12]. In this section we describe three tree-based methods that were used in this work: Regression Trees,
Random Forests and Gradient Boosted Trees.

Regression trees. A regression tree is a predictive model that takes the form of a binary tree where each
internal node tests the value of a given input feature and each leaf node contains the predicted value of
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Figure 1: Example of a regression tree built to predict the normalized axial offset ∆I in a nuclear
reactor core, based on the input features P , Tavg, G1 and Boron (see section 3).
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a response variable. The most popular algorithm for building classification and regression trees, namely
Classification and Regression Trees (CART), was introduced by Leo Breiman et al. [13] in 1984. To apply
it, we first need to construct a dataset D composed of n ∈ N points such that D = {x1i , ..., x

p
i , yi}i∈[1,n]

where {x1, ..., xp} are the input features and y is the response variable. Then, we partition the input space
into smaller regions, with each region corresponding to a different prediction. At each step of the tree
construction, the algorithm chooses the feature and the threshold that best splits the data into two subsets
that are most different with respect to the corresponding value of the target variable. This process is repeated
recursively until a stopping criterion is met, such as reaching a minimum number of samples in a leaf node
or a maximum depth. The output of a regression tree is the predicted numerical value associated with the
leaf node that corresponds to the input feature values (see Figure 1).

Random Forest. Algorithms using multiple regression trees were introduced to address some of the limi-
tations of single regression trees such as overfitting and high variance in their predictions. One of the most
popular one is an ensemble learning algorithm called Random Forest. It was first introduced by Tin Kam
Ho in 1995 [14] and extended by Leo Breiman et al. [15] six years later. This algorithm, as introduced by
Leo Breiman et al., works by creating a large number of regression trees, each trained on a random subset
of the training data and a random subset of the features.

Input: Training dataset D = {x1i , ..., x
p
i , yi}i∈[1,n], number of trees k ∈ N, data and

features subsets sizes l,m ∈ N
Output: Random forest F
F ← ∅
for i← 1 to k do

Di ← set of l points randomly drawn from D
Ti ← regression tree trained on Di while randomly selecting m possible splitting
features for each split

Add Ti to F
return F

Algorithm 1: Random Forest

The final prediction is made by aggregating the predictions of all the individual trees in the forest. The
randomness in feature and data selection helps to reduce overfitting and increase the diversity of the trees,
which in turn leads to better generalization and improved accuracy on test data.

Gradient Boosted Trees. In 2001, Friedman et al. introduced a new algorithm involving multiple regres-
sion trees: the Gradient Boosted Trees algorithm [16]. As classical boosting algorithms, it is based on the
idea of iteratively adding weak learners - regression trees in this case - to the model, each correcting the

Input: Training dataset D = {x1i , ..., x
p
i , yi}i∈[1,n], differentiable loss function L,

number of iterations M ∈ N
Output: Final model FM (x)

Initialize the model with a constant value: F0(x)← argmin
γ

n∑
i=1
L(yi, γ)

for m = 1 to M do
Compute the pseudo-residuals: rim = −

[
∂L(yi,F(xi))

∂F (xi)

]
F (x)=Fm−1(x)

for i ∈ [1, n]

Fit a regression tree hm to the pseudo-residuals: hm ← argmin
h

n∑
i=1
L(rim, h(xi));

Compute the step size: γm ← argmin
γ

n∑
i=1
L(yi, Fm−1(xi) + γhm(xi))

Update the model: Fm(x)← Fm−1(x) + γmhm(x);
end
return Fm;

Algorithm 2: Gradient Boosted Trees
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errors made by the previous learners. Here, the term gradient refers to the fact that the algorithm minimizes
the loss function by computing the gradient of the loss with respect to the predictions returned by the model
and updating it in this direction. Since each individual tree has been built to predict the residuals of the
previous tree, the final prediction is simply obtained by summing the predictions of all the individual trees.

2.2. Time series forecasting

The time series forecasting problem can be considered as a particular type of regression problem. The aim
is to predict the future values of a sequence based on its historical data. Various time series forecasting
techniques have emerged over time such as ARIMA, Exponential Smoothing, Recurrent Neural Networks
or Transformers [17]. We will specifically focus on the Persistence model and the ARIMA model in this
study.

Persistence. The Persistence model is a naive model often used as a baseline for comparison with more
complex models. It consists in using the last observed value of a time series as the prediction for the next
time step. In other words, the model assumes that the future values of the series will be the same as the
most recent past value. It can be represented by the following formula:

Persistence : yt = yt−1 (1)

While this model is simple and may not always provide accurate predictions, it can be a useful benchmark
for appreciating the performance of more sophisticated models.

Autoregressive Integrated Moving Average. The ARIMA model is a time-series forecasting model that
was introduced in 1970 by Box et al. [18]. Since then, it has been widely used in various fields such as
economics, finance, and engineering. The model has three components: the autoregressive (AR) compo-
nent, the integrated (I) component, and the moving average (MA) component. The AR component models
the dependence of the current value on the previous values, the MA component models the dependence on
the previous errors, and the I component models the differencing needed to remove any trend or seasonal
effects that may be present in the data. The general equation for the ARIMA model is the following:

ARIMA(p, d, q) : ϕp(B)(1−B)dyt = θq(B)ϵt (2)

where ϕp(B) is the autoregressive polynomial of order p ∈ N, θq(B) is the moving average polynomial of
order q ∈ N, B is the backshift operator, d ∈ N is the degree of differencing, yt is the time series and ϵt is
white noise.

3. DATA

The data we collected are measurements from sensors of 20 PWRs belonging to the French 1300 MW
nuclear fleet. From these data, we built 168 datasets, each representing an operating cycle of one of the
reactors considered. The variables are the following: thermal power (as a percentage of the nominal power)
P , boron concentration Boron, reference temperature (setpoint temperature defined according to the ther-
mal power) Tref , average core temperature Tavg, positions of the six banks of control rods G1, G2, N1, N2,
R1, R2 and normalized axial offset ∆I . The thermal power P refers to the amount of heat energy produced
by the fission of nuclear fuel in the reactor core. The power output is controlled by adjusting the number of
free neutrons available to sustain the chain reaction. This is typically achieved by inserting or withdrawing
the six banks of control rods mentioned - which are made of neutron-absorbing materials - from the reactor
core. Boron is also used in the coolant to control the overall reactivity of the reactor and maintain a stable
power output. Given that the acquisition frequency of the sensors that capture the operating signals was
not the same for each variable, we standardized the dataset temporally. Specifically, we chose a uniform
sampling frequency of one minute to simplify data manipulation and analysis.

4. PROBLEM FORMULATION

Notations. The following notations are used in this section: t0 refers to the current instant; H is the
maximum prediction horizon; yt refers to the normalized axial offset value at time t; xt is the vector of
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Figure 2: Illustration of the proposed solution for forecasting the normalized axial offset. The final
∆I forecast is obtained by combining g and c predictions.

input features values mentioned in section 3 at time t; l is the number of previous time steps that contain
relevant information and ϵt is white noise.

While performing load-following operations, operators in the control room must monitor and control the
normalized axial offset ∆I , defined by the difference between the thermal power generated in the top half
and that in the bottom half of a core reactor in the axial direction as a percentage of the nominal power:

∆I =
Pt − Pb

Pnom
=

Pt − Pb

Pt + Pb
× Pr = AO × Pr (3)

where Pt and Pb denote the thermal power generated in the top and bottom halves of the core, respectively,
Pnom is the nominal power, Pr is the relative core thermal power and AO is the axial offset. The actions
performed by the operators can have a direct impact (e.g.: power drop in the top half of the core caused
by the insertion of a neutron-absorbing control rod) or an indirect one (e.g.: Xenon oscillation indirectly
caused by the insertion of a control rod) on the ∆I in the long term. It is therefore very useful for them
to know how ∆I will evolve over the next hours as a result of their actions. Thus, we seek to estimate the
function f such that:

∀h ∈ [1, ...,H], ŷt0+h = f(yt0−l, ..., yt0−1, xt0−l, ..., xt0+h) + ϵt0+h (4)

5. PROPOSED METHODOLOGY

Hybrid method. We propose a hybrid method to address this problem. First, we use a tree-based model
(Random Forest or Gradient Boosted Trees) to predict the future values of ∆I given the future values of the
input features, then we use a time series model (Persistence or ARIMA) to forecast the tree-based model
residuals (Figure 2). Thus, we learn two functions g and c such that:

∀h ∈ [1, ...,H], ŷt0+h = g(xt0+h) + c((yt − g(xt))t∈{t0−l,...,t0}) (5)

where g is the tree-based model and c is the time series model mapping past g residuals to g residual at time
t0 + h.

Selection of the tree-based model g. The first step of our approach is to select the tree-based model
that best capture the instantaneous information in the training dataset. To this end, we start by optimiz-
ing the hyperparameters of both the Random Forest and the Gradient Boosted Trees models implemented
in the Python xgboost package. The best hyperparameter values are estimated by defining a prior dis-
tribution for each hyperparameter first, then performing a Bayesian Search based on the Tree-structured
Parzen Estimator Approach [19]. At each iteration, the candidate (set of hyperparameter values) is eval-
uated by averaging the Root Mean Squared Errors (RMSE) over every validation sets. Figure 3 reveals
that the performance of the best Random Forest and the best Gradient Boosted Trees models found with
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Figure 3: Violin plot showing the
distribution of RMSEs for the op-
timized Gradient Boosted Trees
(dark blue) and Random Forest
(light blue) models on every val-
idation datasets. Each black dot
represents the RMSE for a specific
validation dataset. The width of
the violin indicates the density of
scores at that level.

Figure 4: Training times of the optimized Gradient Boosted
Trees (dark blue) and Random Forest (light blue) models
for different training dataset sizes. The x-axis represents
the proportion of training data selected from each dataset
to form the final training dataset, while the y-axis represents
the training time in seconds. Each curve depicts the average
training time for a particular model, with a shadow indicat-
ing the standard deviation across 168 runs.

this method is comparable. Besides comparing the performance of the two tree-based models, we compare
their training times. To achieve this, we form multiple training datasets by randomly selecting a proportion
p ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1} of training data per cycle (see section 3 for further details on the
data), we train the two tree-based models on those training datasets with a Tesla V100 SXM2 32GB GPU
and record their training times. Since Gradient Boosted Trees exhibit significantly faster training times, as
illustrated in Figure 4, we only use this tree-based model to predict ∆I in the subsequent study.

Selection of the ARIMA model. To select the optimal ARIMA model for predicting GB residuals, we
use the Python AutoARIMA function implemented in the pmdarima package [20]. The function performs
several steps to automatically select the best ARIMA model. First, it checks for stationarity in the input
time series data using the Augmented Dickey–Fuller (ADF) test. If the data is not stationary, the function
applies differencing to make it stationary. Next, it searches for the best ARIMA model by evaluating a
range of models based on their Akaike Information Criterion (AIC). Once the optimal model is selected,
the function performs model diagnostics to check the normality of its residuals using the Ljung-Box test. If
the model fails these tests, the function searches for a new best model.

Training and prediction phases of the hybrid model. To predict the target variable ∆I using the proposed
hybrid model on one of the 168 validation datasets constructed (see Section 3), we first train the Gradient
Boosted Trees model on all the datasets except the validation one. We then split the validation dataset into
as many H minutes windows as possible. As shown on Figure 2, for each window, we compute the last l
GB residuals, train c on those residuals, and predict future residuals for the next H minutes. The pmdarima
package is used to identify the best ARIMA model that fits the last l residuals. The Persistence model does
not require fitting, it simply computes the last known GB residual and propagates it on the full prediction
horizon. The final ∆I forecast is eventually obtained by adding the H residuals predicted by c to the initial
GB prediction.

6. RESULTS

Notation. The following notation is used in this section: GB +c refers to GB combined with the time series
model c.
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Figure 5: The top figure displays ∆I forecasts (represented by red, pink and blue curves) generated
by GB , GB+ARIMA and GB+Persistence , respectively, for a validation power transient. The green
line corresponds to the measured ∆I values. The bottom figure represents the normalized input
feature values over time for this validation power transient.

Our objective was to be able to compute minute-by-minute forecasts of ∆I for the next eight hours, provid-
ing operators with enough time to take corrective measures if ∆I deviated from its set point.

Case study. Here, we show how our models behave when trying to forecast ∆I during a load following
operation (Figure 5). This power transient includes a decrease of the core power from 100% to 50%,
constant power at 50% for 2 hours, a return to full power in 30 minutes and another decrease of the core
power from 100% to 50% in two steps. The eight-hour-long forecasts produced by GB , GB+Persistence
and GB+ARIMA on this power transient are shown at the top of Figure 5. As we can see, the predicted
values (in red, pink and blue) are very close to the actual ones (in green), indicating that our model is
performing well on this transient. The root mean squared error (RMSE) between the predicted and actual
values is only 1.15 for GB , 1.07 for GB+Persistence and 1.01 for GB+ARIMA , which is much lower than
the uncertainty measurement of ∆I , that is around 2. Note that it only took 0.129 seconds for GB+ARIMA
, which is our slowest model, to compute this forecast.

Reliability of the proposed hybrid model. The results we obtained when comparing the performance of
GB, GB+Persistence and GB+ARIMA on the entire dataset are displayed on Figure 7. We produced them
by performing a custom cross validation procedure depicted in Figure 6. Knowing that the uncertainty
measurement of ∆I is about 2, our goal was to obtain errors lower than 2 for every prediction horizon. As
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Figure 6: Illustration of the cross-validation procedure performed in this study. For each validation
dataset Di, with i ∈ [1, ..., 168], the GB model is trained on the blue part which corresponds to the
167 remaining datasets. For every H-minutes window in Di, the ARIMA model is trained on the l
previous timesteps represented in light pink. The hybrid model, which combines the predictions of
the GB model and the ARIMA or Persistence model is evaluated on the light red part in the far right.

we can see on Figure 7, we achieved this on the majority of the validation data - data points that reside below
the upper whisker of the boxplot - with our two hybrid models GB+ARIMA and GB+Persistence until the
2 hour horizon. To the best of our knowledge, this is the first study conducted using real-world data on
flexible nuclear power plants operations, with EDF being the sole owner of such data. As a consequence,
we were unable to compare our results with other studies, which were carried on simulated or research
reactor data.

Figure 7: Absolute residuals of GB , GB+Persistence and GB+ARIMA on the entire dataset. These
residuals were obtained for every horizon ranging from 1 to 480 with our cross validation procedure
but only the results for horizons 1, 60, 120, 240, 360 and 480 are displayed here.
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Figure 8: Feature importance plot showing that Tavg and G1 are the most important features in
predicting the normalized axial offset for the Gradient Boosted Trees model.

The feature importance plot generated by the Gradient Boosted Trees model (Figure 8) indicates that the
average temperature and the position of the G1 control rods bank are the two most important features in
predicting the normalized axial offset. This suggests that these two variables have a strong relationship
with the target variable. In fact, ∆I is highly dependent of P , while Tavg and G1 are both functions of
P in the real-world system. As such, the results are in line with the real behavior of the system, which
highlights the effectiveness of the Gradient Boosted Trees model in capturing the underlying relationships
between the input features and ∆I . However, as we can see on figures 5 and 7, the models’ predictions do
not always align with the actual data. This can be attributed to the fact that the models are not capturing the
complex temporal relationships between the input features and the output variable. Alternatively, there may
be important variables that are not included in the model, which could prevent them from performing well
in specific situations. Another limitation of our models is the closed-loop effect induced by the fact that the
operators perform actions to limit the axial-offset excursion, such as moving the control rods or injecting
boron. A part of the natural evolution of the axial offset is then contained in the behavior of these actuators.
Future work should aim to address these issues in order to improve the overall performance and reliability
of the model.

7. CONCLUSIONS

In this work, we describe a novel approach combining tree-based and time series models to forecast the
normalized axial offset. Using a large dataset of commercial nuclear power plants operating data, we
demonstrate the efficiency and speed benefits of our approach. To the best of our knowledge, evaluating
the performance of such methods on a real dataset of this size has not been reported in the literature before.
In future works, we plan to enhance our models by incorporating physics knowledge, such as the Bateman
equations, to estimate Xenon concentration. Additionally, we aim to compare our approach with deep
learning models, including LSTM, GRU, Transformer or recently proposed latent variable models such as
variational diffusion models, both in terms of efficiency and explainability. Finally, to improve the reliability
of our solution, we are considering to investigate recent and promising probabilistic forecasting techniques
such as conformal prediction.
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