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Abstract

We consider the stochastic matching model on a non-bipartite com-
patibility graph and analyze the impact of adding an edge to the
expected number of items in the system. One may see adding an edge
as increasing the flexibility of the system, for example asking a fam-
ily registering for social housing to list fewer requirements in order
to be compatible with more housing units. Therefore it may be nat-
ural to think that adding edges to the compatibility graph will lead
to a decrease in the expected number of items in the system and the
waiting time to be assigned. In our previous work, we proved this
is not always true for the First Come First Matched discipline and
provided sufficient conditions for the existence of the performance para-
dox: despite a new edge in the compatibility graph, the expected total
number of items can increase. These sufficient conditions are related
to the heavy-traffic assumptions in queueing systems. The intuition
behind this is that the performance paradox occurs when the added
edge in the compatibility graph disrupts the draining of a bottleneck.
In this paper, we generalize this performance paradox result to a family
of so called greedy matching policies and explore the type of compatibil-
ity graphs where such a paradox occurs. Intuitively, a greedy matching
policy never leaves compatible items unassigned, so the state space of
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the system consists of finite words of item classes that belong to an
independent set of the compatibility graph. Some examples of greedy
matching policies are First Come First Match, Match the Longest,
Match the Shortest, Random, Priority. We prove several results about
the existence of performance paradoxes for greedy disciplines for some
family of graphs. More precisely, we prove several results about the
lifting of the paradox from one graph to another one. For a cer-
tain family of graphs we prove that there exists a paradox for the
whole family of greedy policies. Most of these results are based on
Strong Aggregation of Markov chains and graph theoretical properties.

Keywords: Matching models, Performance Paradox, Strong Aggregation,
Separable solutions

1 Introduction

Braess showed that adding resources to transportation networks can hurt the
performance of the system [1]. Many authors have been interested in investi-
gating the existence of such a paradox in several contexts related to queueing
networks (see for instance [2-6]). In this work, we analyze whether such a phe-
nomenon exists in dynamic matching models where the compatibility graph is
non-bipartite.

In our previous work [7], we analyzed the performance of the stochastic
First Come First Match (FCFM) matching model with a general compatibility
graph, when the flexibility increases, i.e. when an edge is added to the com-
patibility graph. We showed that, when there is a unique bottleneck in the
system, increasing the flexibility can decrease the overall performance of the
system, which is reminiscent of the Braess paradox. The existence of such a
performance paradox leads to many questions:

® First, is it only due to the FCFM discipline? Are other disciplines like Match
the Longest or Random also prone to this phenomenon? In this article, we
develop some theoretical techniques to transfer the existence of a paradox
from FCFM discipline to any greedy discipline (i.e. to any discipline where
an arriving item must be assigned to a compatible item immediately if there
is one). Most of the disciplines considered in the literature are shown to be
greedy with the notable exception of the threshold disciplines studied in [8]
and [9]. We first prove that all greedy disciplines exhibit the performance
paradox for quasi-complete compatibility graphs. The results are proved
using strong aggregation of Markov chains. Intuitively we prove that all the
greedy disciplines are equivalent for quasi-complete compatibility graphs
when we are interested in the total number of items. We then introduce two
operations on compatibility graphs, the JOIN and the UNION. We show
that if compatibility graph G associated with a greedy discipline satisfies the
conditions for the existence a performance paradox, then the compatibility



Springer Nature 2021 BTEX template

Performance Paradoz of Dynamic Matching Models under Greedy Policies 3

graph G 1 IN,, (IN,, being a set of n independent nodes) associated with
the same discipline also satisfies these conditions and thus also exhibits a
performance paradox.

® [s the paradox related to the size or the number of edges of the compatibility
graph? An important conclusion of our work is that there exists a perfor-
mance paradox for a compatibility graph with n > 3 nodes and 4n — 11
edges. Therefore, the paradox can be obtained for any number of nodes or
any number of edges.

® Does the paradox only appear when we have only one bottleneck in the
system? Is this condition only technical or is it mandatory? In Section 2.4,
we provide an example with two bottlenecks where the performance paradox
exists. Therefore, the assumption on the uniqueness of the bottleneck is
only a technical condition required to prove our previous result about the
existence of the performance paradox.

1.1 Related Work

The model we consider in this work was introduced in [10], where it is called
general stochastic matching model to emphasize that the compatibility graph
is non-bipartite, and further studied in [11]. The works [10] and [11] present
interesting properties of this model such as that the policies Match the Longest,
in which the incoming item is matched with an item of the compatible class
with the longest queue size, and FCFM disciplines have a maximal stabil-
ity region. Recently, Comte shows that this matching model with the FCFM
discipline is related to the order-independent loss queueing networks [12]. An
extension of FCFM stochastic matching model to multigraphs with self-loops
has been studied in [13].

A related model to ours is the bipartite dynamic matching model. In this
model, the graph that determines compatibilities between items is bipartite
and, thus, the nodes can be separated in two disjoint sets: server nodes and
customer nodes. To the best of our knowledge, Kaplan [14] was the first ana-
lyzing the fully dynamic setting of matching model, i.e., all the items arrive
to the system according to a random process. He analyzed the problem of
how to assign public houses to tenants. In that work, it is considered that an
available public house is assigned to the longest waiting family among those
that expressed their interest for that house. The First Come First Served infi-
nite bipartite matching model, proposed by Caldentey et al. [15], considers
an infinite sequence of server nodes, independent and identically distributed
according to a probability distribution on the server classes, and an indepen-
dent infinite sequence of job items, independent and identically distributed
according to a probability distribution on the job classes. Busic et al [16] study
the stability of the system for different matching policies, whereas in [17] Gard-
ner and Righter study the relation between the bipartite matching model under
FCFM and the order-independent queues. Optimal matching policies of bipar-
tite matching models have been studied in an asymptotic regime in [8] and for
the N-shaped model in [9]. Weiss in [18] studies a bipartite matching model, in
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which jobs and servers are assigned according to the First Come First Served
policy, but jobs are immediately lost if they do not find an available server
upon arrival.

Adan and Weiss in [19] show that, under the heavy traffic assumption on
the arrivals, the First Come First Served infinite bipartite matching model has
the same stationary distribution as the First Come First Served-Assign the
Longest Idle Server queueing model. Furthermore, Adan et al. in [20] show
that the First Come First Served-Assign the Longest Idle Server model has the
same stationary distribution as the redundancy service model. In the context
of redundancy networks, the work of [21] shows that providing more flexibility
to a class leads to a performance improvement of this class but it might not be
beneficial for the other classes (the work of [22] shows that the Least Redun-
dant First scheduling policy that is optimal with respect to overall system
response time, can be unfair in that it can hurt the jobs that become redun-
dant). Therefore, from the aforementioned works, one might conclude that
the performance paradox existence analysis in dynamic matching models has
been already carried out. However, we would like to remark that these works
assume a bipartite compatibility graph (whereas in our work we consider non-
bipartite matching dynamic models) and strongly depend on the product form
result for First Come First Served discipline so they cannot be generalized to
any greedy discipline.

1.2 Organization

The rest of the article is organized as follows. In Section 2, we present the model
we study as well as the previous results on the existence of the performance
paradox for FCFM. In Section 3, we focus on the greedy policies and we
study the existence of the performance paradox for quasi-complete graphs. In
Section 4, we consider the join operation on compatibility graphs and analyze
the performance paradox for this instance. In Section 5, we present the main
conclusions of our work as well as the future work.

2 Matching Model and Performance Paradox

We consider a queueing system with n classes of items. Items of different classes
arrive to the system according to independent Poisson processes, with rates
Ai >0, i = 1,...,n. The compatibilities between item classes are described
by a connected non-bipartite compatibility graph G = (V,€), where V =
{1,...,n} is the set of item classes and £ is the set of allowed compatible pairs:
items of classes ¢ and j are compatible if and only if (¢, j) € £. If an incoming
item is incompatible with all items present in the system, it is placed at the
end of the queue of unassigned items. If it is compatible, and if policies are
not restricted to be greedy, the controller has the option of not matching it to
one of the compatible items, in which case it is also added to the end of the
queue. If a compatible item is matched (or assigned) to the incoming item,
both items disappear.
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For a class i € V, we denote by I'(¢) = {j € V' : (4,5) € £} the set of all
the neighbors of the node i in the compatibility graph G, i.e., if j € I'(¢) items
of class i are compatible with items of class j. For any subset of item classes
Vi €V, let (V1) = Uy, T'(0), and Ay, = 3,y Ai A subset of nodes Z C V/
is called an independent set if there is no edge between any two nodes in Z,
ie forany i,j €Z, (i,5) ¢ €.

2.1 Markov Representation for Greedy Policies

Let V* be the set of finite words over the alphabet V' and we denote the empty
word by 0. Let

W= {w=ww, €V :V(i,j) € [1,q°, i # ], (wi,w;) & €}

be the subset of words without a compatible pair of letters, i.e. the set of
ordered independent sets of G. For any w € W and any x € V, let |w|, be the
number of occurrences of letter = in word w. Let |w| be the length of w (i.e.,
the number of letters of the word w). A word containing only letters ¢ will be
denoted by *.

In a greedy policy, a unique compatible item is matched with the incoming
one and both disappear (a formal definition of greedy policies will be presented
in Section 3). Under a greedy policy, a state of the system right after the
new arrival (if any) has been assigned or placed in the queue of unassigned
items can be described by a word w € W. Each letter w; € V represents the
class of an unassigned item waiting in the system and the order of the letters
represents their order of arrival.

Let us present some notation that we will use throughout the paper. Let
M(G,\, D) be the continuous-time Markov chain associated with compat-
ibility graph G, matching discipline D and arrival rates of letters A. Let
E[M (G, A, D)] be the expectation of the total number of letters for this Markov
chain in steady-state. Let K, be a complete graph with n nodes and IN,, be a
set with n independent nodes (i.e. n nodes without edges). Similarly, G — (a, b)
denotes the subgraph of G where edge (a,b) has been deleted. Let K,, — (a,b)
denote the complete graph with n nodes without edge (a,b): it is called a
quasi-complete graph in this paper.

After applying standard uniformization technique, with a uniformization
constant A > " | \;, we obtain a matching model in discrete time. In each
time slot ¢t € N, one item arrives to the system with probability 1 — ayg, and
there are no arrivals with probability

_ AL

Oé():]. A

> 0.

Thus each item belongs to a class within the set of item classes sampled from
a conditional probability distribution over V given the event that there is
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an arrival: o = (aq, -+, ), with ; = Hf\‘ﬁl, V1l < i < n. It follows that
a; >0, Vi.

E[M(G, a, D)] will denote the expectation of the total number of letters
for this discrete-time Markov chain with arrival probabilities a.

Let I be the set of independent sets of G. We assume that

ar < ar(z), VZ el (1)

According to [10, Proposition 2], the above condition is a necessary condition
for any matching policy to be stable. As a consequence, if the compatibility
graph is bipartite, the system is not stable, see [10]. Therefore, throughout
the paper, we assume that the compatibility graph is not bipartite, even if
we consider bipartite graphs as subgraphs. We also assume the compatibility
graph has at least four nodes, to eliminate trivial cases.

For any 7 € T, let Az = ap(z) — az be the stability gap of independent set
7.

We summarize the notation of this work in Table 1.

[ Symbol [ Notation ]
G Compatibility graph
G — (a,b) Subgraph of G in which we remove the edge (a,b)
V={1,...,n} Set of item classes
i Arrival rate of jobs of class ¢
; Arrival probability of jobs of class ¢
w A word over the alphabet V'
eV An arbitrary letter
I'(z) The set of compatible items with
D An arbitrary matching discipline
M(G,\, D) The Markov chain of graph G,
vector of arrivals A and matching discipline D

Table 1: A summary of the main notation.

2.2 Performance Paradox Analysis of [7]

We say that there exists a performance paradox for compatibility graph G and
discipline D if there exists an edge (a, ) such that

E[M(G,a,D)] > E[M(G — (a,b), o, D)] (2)

that is, if the mean number of items increases by adding an edge to the
compatibility graph.

Let us now recall our previous results [7]. We first present some notation
to understand the main result of this section.

Definition 1 (Bottleneck) A set 7 € argming Az will be called a bottleneck set in
the sense that it has the smallest maximal draining speed.
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Let

=iy Az = plplore) ~oz). @)

We have § > 0 as we assume that o satisfies (1). We select a bottleneck set (or
saturated independent set) Z € argminzc; Az with the highest cardinality, i.e.

7| = max |Z]. (4)
Zel s.t. Az=4

We are interested in how the performance of the system evolves by adding an
edge when A5 tends towards 0. First, we define a parameterized family of item
class distributions:

L0 a8 o s o T
a; + 2Tas] ~ 2Tas]? ifveZ,
5 ] i P a; e - -
o] = o — 5 s ifiel'(Z
2 2 2 |O‘F(i)‘ + 2 ‘QF(i)P € ( )a
a;, otherwise,

for all 0 < § < §, where § is defined in (3) and Z in (4). It is clear that o® = .
By definition of o,

5 5 5 6 5
g% T %@ gty T T gt

| 9

=0—0+6=4,

which tends to 0 when ¢ tends to 0.

We now consider the expectations of the total number of items for the mod-
els both with and without edge as a function of § and analyze their difference
when § tends to O.

Definition 2 (Saturated Independent Set) An independent set Z is called saturated
: 6 _ 0 é . .
if A7 = ap(z) — a7 tends to 0 when § tends to 0.

In our previous work [7], we assume there is only one saturated independent
set 7.

Theorem 1 [Adapted from Theorem 2 of [7]] If T is uniquely defined for graph G,
and if T has both a and b as neighbors, then there exists a performance paradoz for
adding the edge (a,b) to G for § sufficiently small.

We would like to emphasize that the assumption about the uniqueness
of the saturated independent set is a technical condition required to prove
the existence of a performance paradox. As we will see in Section 2.4. the
performance paradox also occurs when this assumption does not hold.
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2.3 An Example of Performance Paradox

In the following, we provide an example in which we can establish the exact
value of § for the performance paradox to occur. The example is based on a
matching model formed by a quasi-complete graph with four nodes (denoted
as Ky — (3,4)) (see Fig. 1). We also consider the graph where we add edge
(3,4) (i-e. complete graph K4). Therefore each node different from 3 and 4 is
an independent set that is connected to these nodes.

Fig. 1: Quasi-complete compatibility graph with 4 nodes: K4 — (3,4).

We consider the following conditional probability distribution of arrivals:
ay; = 0.45, ag = 0.11 and as = a4 = 0.22. For this instance, the saturated
independent set is Z = {1} with § = ag234y — a1 = 0.1. We define a new
collection of conditional probability distributions a® for all 0 < § < 0.1, i.e
af = 05— g, ad = 0.1+ 15—0 and o = o = 0.2 + g. Since the saturated
independent set has the nodes that connect the missing edge as neighbors (i.e.,
the node 1 is a neighbor of node 3 and node 4), we know from Theorem 1 that
there exists a performance paradox for ¢ sufficiently small.

We study the exact value of the saturation threshold, i.e. the maximum o
value for the existence of the paradox under the FCFM policy. According to
Lemma 1 and Lemma 4 (which are presented in the next section as they are
proved for any greedy policy) we can conclude that, for FCFM policy, for the
matching model under consideration here, the performance paradox exists if
and only if § < 0.0818369. All the details of the computations as well as a
plot representing the mean number of items of both matching models when §
varies are presented in Appendix A.2.

2.4 An Example With Multiple Saturated Independent
Sets

The definition of the parametrized a® implies that the unique saturated inde-
pendent set is Z. We now discuss the situation where there are multiple
saturated independent sets. This means that multiple independent sets have
their stability gaps that tend to 0 as § tends to 0. In that case, the conditions
of Theorem 1 in [7] are not satisfied. However, in this section, we present an
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example with two saturated independent sets where the performance paradox
exists.

Now we consider compatibility graph K, and K4 — (1,2). Let us define the
conditional probability distribution of the arrivals as a; = ay = 0.15, ag = 0.4
and oy = 0.3. We choose the saturated independent sets to be {3} and {1, 2}.
We define a new parametrized family of conditional probability distributions
o forall0 < <0.1,as af =ad =0.25—6, a} =0.5—§ and a} = 36. In the
following result, we prove that there exists a performance paradox and compute
exactly for which value of § it appears. Its proof is available in Appendix B.1.

Proposition 1 For the dynamic matching model under consideration, there exists
a performance paradox if and only if 6 € (0,0.0563).

A plot representing the number of items of the matching models under
study as a function of ¢ is represented in Appendix B.2. In the follow-
ing result, we show that the difference E[M (K4, a’, FCFM)] — E[M (K, —
(1,2),a’, FCFM)] is unbounded as § tends to 0 and we quantify its growth
rate. Its proof is available in Appendix B.3.

Proposition 2 When § tends to 0,

S(E[M (K4, o, FCFM)] — E[M (K4 — (1,2),a°, FCFM)]) — i.

Remark 1 This example shows that the existence of the paradox is not related to
the uniqueness of a saturated independent set. This was only a technical condition
used to prove Theorem 1 in [7].

3 Greedy Matching Disciplines

In the following, we denote by I'(w) = U, I'(z) for any word w and by S the
set of words. Let us first present some definitions.

Definition 3 (Compatibility) Let w be a state of the system and z a letter which
arrives in the system. We say that x is compatible with w if z € I'(w).

Remember that a subsequence of a word (or a sequence of letters) w is
derived from w by deleting some or no letters without changing the order.
Subsequences can contain consecutive letters which were not consecutive in
the original word. Thus subsequences are not necessarily substrings.

Definition 4 (Effect of a compatibility) Let w be a state of the system and z a
letter which arrives in the system. If x is not compatible with w, it is appended at
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the end of word w. Otherwise, if x is compatible with w, the transition is described
by the matching discipline.

Definition 5 (Matching discipline) Let z € I'(w). A matching discipline D is a
function from S x V which returns a non empty subset of states Np(w,x) and a
discrete distribution of probability ¥, (w,») on this subset such that:

1. All the words in Np(w,z) are possibly subsequences of the word w
concatenated with letter x.

2. The distribution gives the probability to make a transition to any state in
Np(w,2): YNy (w,e)(p) is the probability to jump from state w to any state
p in Np(w,x), due to the arrival of an item of class z. Obviously:

Z ¢Np(w,:r) (p) =1,

PEND (w,2)

and if the set Np(w, z) is a singleton, the probability distribution is a Dirac.

Remark 2 This definition allows us to model disciplines where Np(w,z) = {w} (i.e.
the matching has no effect on word w even when z is compatible with a letter in w).
It is also possible to represent disciplines where the effect of a matching is to remove
all the letters in w which are compatible with letter x. We now introduce the notion
of greedy matching discipline.

Definition 6 (Greedy matching discipline) A matching discipline GD is greedy if,
given state w and arriving compatible letter z, for all states p in Ngp(w, z), we have
lp| = |w| -1 and = & p.

Ezample 1 Clearly, FCFM is a greedy discipline such that the set Np(w,z) is a
singleton for all words w and letters = that are compatible with w. Match the Longest
with random drawing of tie breaking is a greedy discipline but the set Np(w, z) may
contain several words.

Definition 7 (RANDOM discipline) Assuming that a letter is compatible with a
word, we delete one compatible letter in the word, where this letter is chosen with a
uniform distribution among the compatible letters.

Ezample 2 (RANDOM) Consider a state w = abcaba. Suppose that a letter ¢ arrives
and that t is compatible with both a and b but it is not compatible with with c.

Np(w,t) = {bcaba, acaba, abcba, abcaa, abcab}

Under the RANDOM discipline, each of these words has a probability of 1/5 to be
selected.

Remark 3 RANDOM is a greedy discipline.
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Proposition 3 If the compatibility graph is such that the degree of every node is
positive, the arrival rates of all items are positive and the discipline is greedy, then
the Markov chain contains a state with O items which is reachable from any state.

Proof Indeed all items can be deleted due to a succession of arrivals of compatible
classes. |

Now we establish some relations between the FCFM discipline and any
greedy discipline (GD).

3.1 Complete Graphs and Greedy Disciplines

The performance paradox analysis consists of comparing the mean number of
items for a quasi-complete graph and a complete graph. In the main result of
this section, we provide an explicit expression for the mean number of items
of a complete graph with an arbitrary greedy matching policy.

The following result characterizes the Markov chain associated with K,
and any greedy matching policy as well as its expected value.

Lemma 1 For a greedy matching discipline GD, the states of the Markov chain
associated with K, are words which are associated with the independent sets of the
compatibility graph, i.e. the following words: 9, 1%,2* ..., n*. In fact, the Markov chain
consists of n birth and death processes which are connected through the empty word;
when the state is x*, with probability ay the number of letters increases by one and
with probability 1 — ay decreases by one. Assuming o; < 0.5 for all it =1,...,n, the
mean number of items is

(HZlai(l_ Qaj)> (Z (11(_12%.)2)>' 6

i=1

Proof We assume that the initial state is the empty word. The first arrival (say a class
x item) triggers a transition to word z. If the next arrival is again a class x item (with
probability az), the next state is zx, otherwise the arriving letter (say y) matches
with the x as the compatibility graph is a complete graph. For any greedy matching
discipline, this matching causes the destruction of both y and x and a transition to
the empty word. Such an event occurs with probability oy. Thus, by induction on
the transitions, we only obtain words with only one class of item or the empty word.
As the valid states only contain one class of items, the discipline does not matter
as soon as it is greedy and exactly one letter is deleted in the word. Furthermore,
for this compatibility graph, the transition rates of the chain do not depend on the
matching discipline (note that this is not true for sparser compatibility graphs). The
derived Markov chain may be described as a collection of n birth and death processes
connected through state ). When the state is 2™, the birth-probability is «; and the
death-probability 1 — ag. It is easy to check that the mean number of items is (5).
O
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Remark 4 From the above result, we conclude that the mean number of items
associated with compatibility graph K, and disciplines GD and FCFM are equal,
ie.,

E[M(Kn,A,GD)| = E[M(Kn,\, FCFM)]. (6)

The above result provides an explicit expression for the expectation of the
total number of items if the matching is a complete graph. In the next section
we give a similar result when the compatibility graph is a quasi-complete graph.

3.2 Quasi-Complete Graphs and Greedy Disciplines

Let us now study the expectation of the number of items for compatibility
graph K, with a deleted edge (which is denoted by K,, — (n — 1,7n)). We first
show how to derive two compatibility graphs which have the same expected size
of words in steady-state. This construction is based on the exact aggregation
of Markov chains and the strong lumpability property (see [23] for the initial
definition of aggregation for finite state space chains, and [24] for a recent
description of this subject for denumerable ones). The following presentation
follows [24].

Let W be a Markov chain on set of states W. Let (Bj, .., By) be a partition
of W. We define a new process Y as follows:

Yo =m+< W, € B,.

The question is to find conditions such that Y is also a Markov chain. Under
these conditions, Y will be denoted as an exact aggregation of W for partition
(B, .., Bx). The strong lumpability condition (defined in the following) implies
such a result (see [24] for the proof).

Definition 8 (Strong Lumpability) W is strongly lumpable for partition (Bj, .., By)
of its state space if for all subset indices 7 and j and for all states m; and mo in B;,
we have

Pr(Wyi1 € Bj|Wp = m1) = Pr(Wy41 € Bj|Wn = ma2).

B; will be denoted as macro state ¢ in the following.

We first consider an arbitrary compatibility graph and an arbitrary node
x. Let us denote by G, this graph. Let W, = M(G,, \,GD), i.e., W, is the
Markov chain associated with matching G, and an arbitrary greedy matching
policy GD.

Definition 9 (Decomposition matching and Aggregated matching) We define a new
matching by a decomposition of x into two nodes y and z. The decomposition is
defined by:

e D(y) = T(2) = I(a)
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(a) Compatibility graph (b) Compatibility graph (c) Compatibility graph
Kn Kn—(n—1,n) Kn

Fig. 2: compatibility graphs: K,, (a), K, —(n—1,n) (b), K,,—1 (c). The triple
edge represents that the node (n — 1 and n for (a) and (b), and « for (c)) is
connected to all the nodes in K,,_s.

® a,>0
* o, >0
® oyt = Qy.

Let Gy be a new compatibility graph where = is decomposed into y and z. G-
will be denoted as the decomposition compatibility graph while G is called the
aggregated compatibility graph. Let Wy, = M (Ggy, A\, GD). i.e., Wy is the Markov
chain associated with Gy, and an arbitrary greedy matching policy GD.

For instance we consider an aggregated matching in Fig. 2c. Node =z is
decomposed into nodes n and n — 1 to build the decomposition compatibility
graph (see Fig. 2b).

Proposition 4 If the aggregated matching is associated with a stable Markov chain,
so is the decomposition matching.

Note that by construction y ¢ I'(z) and z ¢ I'(y).

Lemma 2 We consider the continuous-time Markov chain associated with com-
patibility graph Kn — (n — 1,n), arrival rates A and a greedy discipline GD:
M(Ky, — (n — 1,n),\,GD). The states of the chain are the words 0, 1*,2*, 3% ..
(n—2)* and words written with letters n — 1 and n. The chain is lumpable according
to the following partition.

e Fach of the states represented by i* remain as individual states, for i > 0,
as does state ().

e All the states w, formed only by letters n and n-1 and such that lw| =1> 0,
are gathered into a macro state called Cj.

13
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Proof We consider the uniformized version of the chain with uniformization rate A as
mentioned formerly to get M(Kn —(n—1,n),a, GD). Let Pgp denote the transition
probability matrix of this DTMC. First, we will prove that this chain is lumpable for
the partition. Let S be its state space. We have to prove the following equality for
all macro states Cj. Let i and j be macro-state indices

> Paplk,ml= > Paplk,n] ¥V m,n e Cj.

keC; keC;
If such a condition holds, we note Pgp(C;, C;) = Zkeci Pgplk, m] where m is any
state in Cj.

Since all the words in C; have length equal to [, we have to consider all the events:

e Arrival of a class n item. A class n item is not compatible with any letter in
word w (remember that w only contains letters n and n — 1). Thus letter n
is appended to word w and the state becomes (w|n). This state is in macro-
state Cj41, and the probability of this transition is «,,. Thus from any state
in C, we have a single transition with probability a,, to a state in Cjy4.

e Arrival of a class n — 1 item: same property, from any state in Cj, we have
a transition with probability «,,_1 to a state in Cj41.

e Arrival of a class k item (with k& < n — 1): such an arrival deletes a class n
or class n — 1 item. In the chain we have a transition from state w to all the
states p in set Ngp(w, k) with probability axtn,, (w,)(p). As the discipline
is greedy, set Ngp(w, k) is not empty. And all the states in Ngp(w, k) have
a length equal to [ — 1. Thus they are all included into macro-state Cy_1. As

Z ¢ND(w,m)(p) =1,

pEND (w,z)

we clearly have

P(C,Ci—1) = Z RN (w,2) (D) = Q.

pEND (w,z)

Thus, we have one transition with probability ay from any state in Cj, to a
state in Cj_1.
O

Let Y be the lumped Markov chain presented in the above result. Note
that both the arrival rates and the discipline have been modified when we
switch from the decomposition compatibility graph to the aggregated one. Let
A be the arrival rate vector in the model before aggregation of nodes n and
n — 1, we define the rates p in the aggregated model as follows: p; = A; for all
t<n—1and pp—1 = A, + Ap—1. For the matching discipline, as we change y
and z into x, we modify the sets Np and the distributions of probability for the
aggregated model. However it is not necessary to describe them precisely. We
just remark that the discipline is still greedy in the aggregated model and we
emphasize that the discipline may change in general by changing its name to
GD' in the equation. From the above result, we directly obtain the following.



Springer Nature 2021 BTEX template

Performance Paradoz of Dynamic Matching Models under Greedy Policies

Proposition 5 Y can be identified with the Markov chain associated with compati-
bility graph K,_1, arrival rate vector p and matching discipline GD'. Therefore,

E[M(Kn — (n,n —1),\,GD)] = E[]M(K,_1, 1, GD")]. (7)

Remark 5 In some cases, it is possible to easily obtain the matching discipline in the
aggregated model. For instance, if the original model uses FCFM discipline for the
decomposition model, then the matching discipline after aggregation is also FCFM.
Therefore

E[M (K, — (n,n — 1), \, FCFM)] = E[M(K,,_1, p, FCFM))]. (8)

We now present the following result that proves, for a quasi-complete graph,
that the expected total number of items coincides for all greedy disciplines.

Lemma 3 For compatibility graph Kn — (n—1,n), all greedy disciplines provide the
same expectation for the total number of items. More precisely,

E[M(Kp — (n,n — 1), \,GD)] = E[M (K — (n,n — 1), \, FCFM)].

Proof : Let GD be an arbitrary greedy discipline. From Proposition 5, we have
E[M(Kn — (n,n —1),\,GD)] = E[M(K,_1, 1, GD")].
And according to Remark 4, we have for any greedy discipline GD’,
E[M (K, _1,p1,GD")] = E[M(K,,_1, u, FCFM)].
Remark 5 allows to conclude as:
EM(Kn — (n,n—1),\, FCFM)] = E[M (Kp_1, 14, FCFM)]. (9)
O

Thus, one can obtain from (5) the expected number of items with a simple
modification of the arrival rates for all greedy disciplines.

Lemma 4 Assume a; < 0.5 foralli=1,...,n—2 and apn—1 + an < 0.5. For any
greedy matching policy, the mean number of items in a quasi-complete graph with n
nodes and edge (n,n — 1) missing, is

n—2
e 7% Qp—1+ Qn
1+ +
< ; 1- 204 12(an1+an)>

n—2
(Z a;(1— OéiQ) 4 (an—1+an)(1 - a”712_ an)) . (10

-1

(1—20y) (1 —ap—1—an)

=1

15
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3.3 Existence of a Performance Paradox for any Greedy
Discipline for K,, — (n — 1,n) Compatibility Graph

From the above results, we conclude that, if a paradox occurs for graphs K,
and K,, — (n — 1,n) under FCFM discipline, it also occurs for any greedy
discipline.

Theorem 2 Combining previous lemmas, we get that:

® if a paradoz exists for compatibility graph K, — (n — 1,n) and discipline
FCFM, it also exists for any greedy discipline GD with the same arrival rates
e a paradoz exists for (K4 — (3,4)) for any greedy discipline GD

Proving the existence of a performance paradox for the complete graph
with arbitrary size n and discipline FCFM will need first that we present some
results about the modular construction of compatibility graphs. This is the
aim of the next section.

4 Modular Construction of Matching Models

In this section, we aim to analyze operations on the compatibility graph
that preserve the performance paradox. We present a modular construction
of matching models by defining operations on compatibility graphs, on arrival
processes and on the matching disciplines. For this purpose, we restrict our-
selves to consistent matching policies, which are a subset of greedy matching
policies.

Definition 10 A discipline is consistent if for any word w, if two letters = and
y have the same neighborhood within w, they also have the same subset of states
Np(w,z) and the same discrete distribution of probability YN p (w,z) OD this subset.
More formally,

it wn F(m) =wn F(y), then ND(w’x) = ND(wvy) and wND(w,w) = wND(w,y)'

Definition 11 We define the compatibility index of a letter x in word w as the
binary vector ICy, 5 with size |w| such that, for all ¢ between 1 and |w|, ICw,z[i] =1
if w[i] € I'(z) and 0 otherwise.

Definition 12 A position-based discipline is a policy which uniquely uses the
compatibility index ICy . to build set Np(w,z) and probability distribution

wND (w,z)-
The following proposition follows directly from the definitions.

Proposition 6 Position-based disciplines are consistent.
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Remark 6

(a) FCFM, Last Come First Match and Random are position-based disciplines
while Match the Longest and Priority are not.

(b) Match the Longest is not position-based but it is consistent.

(c) We remark that Priority is not a consistent discipline. For instance, consider
the word w = abc and two items x and y such that

I(z)Nw ={a,c} =T(y) Nw.

One can design a discipline D such that Np(w,z) = {bc} and Np(w,y) =
{ab}. The greedy assumption is satisfied for this word and these items and
the discipline is not consistent.

In the following, we assume that the matching disciplines are greedy and
consistent. We would like to remark that this assumption excludes matching
disciplines that make use of item class information, such as priorities. We
now consider the following operations to build compatibility graphs: the JOIN
operation and the UNION operation. These two operations allow to have a
modular presentation of compatibility graphs and how to combine them.

Definition 13 (U operation) We consider two arbitrary disjoint graphs G; =
(V1,&1) and G2 = (Va,&2). The UNION of Gy and G2 is graph G = (V, ) defined
as follows:

® Nodes: V =V U Vs,
e Edges: £ =& U&s.

Definition 14 (JOIN operation) We consider two arbitrary disjoint graphs G; =
(V1,&1) and G = (Va,&2). The JOIN of G1 and Gg is graph G = (V, €) defined as
follows:

® Nodes: V =V, U Vs,
e Edges: £ =& U&EU{(x,y),z € V1,y € Va}.

In words, we keep all nodes and edges of G and G2 and we add all the edges between
nodes in V] and V5. The JOIN operation will be denoted by <.

We depict in Figure 3 the JOIN of a graph with 4 isolated nodes (nodes 4
to 7) and a complete graph with 3 nodes (nodes 1 to 3).

Remark 7 If & = £y = ), then G, which is the join of G; and Ga, is a complete
bipartite graph. Remember that we do not study model associated with bipartite
compatibility graphs as their associated Markov chains are not ergodic.

17
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Fig. 4: Graph G; >~ Gs.

As a matching model is a triple with a compatibility graph, a collection
of arrival processes and a matching discipline, we also have to explain how
we associate the last two parts of the model to both modular constructions
of compatibility graphs. For the arrival processes, we consider the union of
the sets of Poisson processes associated with G and G5. This is easier in
continuous time thanks to the race condition which is already well-known
for the modular construction of stochastic models. For a composition of two
compatibility graphs G; and G5 associated with transition rates vectors A and
p we denote as (A, p) the rate vector associated with the composition of G4
and Gs.

For the matching disciplines, we first have to find the state space of the
models as they are defined as sets of states and probability distributions on
these sets.

State Space for UNION

Let G; and G5 be two disjoint compatibility graphs. Consider the compatibility
graph G which is the UNION of graphs GG; and G5. Then the state space of
the continuous time Markov chain associated with G is the Cartesian product
of the state spaces of the two Markov chains associated with G; and Gs.

State Space for JOIN

Remark 8 Consider a compatibility graph G which is the JOIN of graphs G; and
G2. Remember that G; and G2 are disjoint. Let M; (resp. M2) be the continuous-
time Markov chain associated with G1 (resp. G2) and vectors of arrival rates A
(resp. w). Both chains have an empty state because the discipline is greedy. Then the
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continuous time Markov chain associated with G has the following states which are
a couple of words:

e The states associated with M; (no items of G are in the system) denoted
by (w1, @) where wl is a state of M; (i.e., a word). This set of states will be
denoted by S;.

e The states associated with My (no items of G are in the system) denoted
by (0, w2) where w2 is a state of My. Similarly, we denote as S this set of
states.

® Both chains are connected through their empty states which are merged.

The proof is trivial as it is not possible to reach a state (w1, w2) with both
wl # @ and w2 # () due to the edges between G1 and G5 after the JOIN under
a greedy policy. See Fig. 5 for an example.

Finally, we explain how we build a matching discipline on these construc-
tions of compatibility graphs. Again we have to give separate statements. To
be more precise for these definitions, we add a superscript to the name of the
sets to know from which compatibility graphs they come.

Discipline for UNION

Let (w1, w2) a state of the chain associated with G; UG5. We have to consider
two types of arrival: a letter  in V/(G4) or a letter y in V(G2). We define the
discipline on the UNION as follows:

NG9 (w1, w2),2) = NS (wl, z), (11)

and
Nglucz((uﬂ’ua)vy) :NSQ(wa). (12)
The probability distributions are also defined similarly.

Thus, due to this discipline and the race condition between the arrival
processes, the transition matrix of the Markov chain is the Kronecker sum of
the transition matrices associated with G; and G5 (see Plateau [25] for such
a result for stochastic automata networks).

Discipline for JOIN

We consider an arbitrary non empty set (w1, ). Indeed there is no need for a
matching discipline for the empty state and states (), w2) play a symmetrical
role. We have two cases, according to the arriving letter (say x):

e If z € V(G,), if there is compatibility with wl, then we keep the same

discipline

NG (wl,0),2) = Ng* (wl, z), (13)
and the distribution of probability does not change.
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¢ 1 € V(G3). Because of the JOIN between G7 and Ga, all the letters in wl
match with z. We take as a discipline in that case (i.e. N5 ((w1,0),z)),
any consistent discipline. Indeed in the next section, we will aggregate all
the letters x into only one letter, thus we need that the discipline does not
depend on x in that case.

The transitions are the same as in the Markov chains associated with G
or Gy. More precisely : we have a transition from (z1,0) to (x2, ) if there is
a transition from x; to x5 in M. Similarly there is a transition from (0, y;)
to (0, y2) if there is a transition from y; to ys in Ms. Thus the set of states of
the chain is S; U Ss. Let E be the empty state: E = (0,0).

We are now able to study the models based on these modular decomposi-
tions.

(]

Fig. 5: Markov chain of the compatibility graph Ny >t Ko for RANDOM
discipline. The chain is truncated to words smaller than 4 letters. The labels
(except F) and the rates are omitted for the sake of readability.

4.1 Compatibility Graphs G; <1 G5

We first consider graph G; and G5 which both contain at least 2 nodes and one
edge (formally Ko C G; and Ko C G2). The case where one of these graphs is
a set of isolated nodes is studied in section 4.2. We consider any greedy and
consistent discipline D built as in the previous section. We assume that all the
chains we define are ergodic.

Remark 9 Let A be the vector of arrival rates for compatibility graph G and let u be
the vector of rates for items in Gg. After uniformization with rate A = 2(||A||1+||u]1),
the transition probability matrix of discrete-time Markov chain associated with G >
G2 and vector of arrivals rates (A, ) has the following block decomposition associated
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with the partition of the states ({E},S1 \ {E}, S2 \ {E}):

1/2|L1| Lo
M= [P0 |,
Co| 0 | P
where L; and Ly are row vectors such that ||Li]|; = % and ||La]|; = % , C1

and C9 are column vectors and P; and P» are sub-stochastic matrices. Similarly, we
decompose the steady-state distribution M as (Wé\/[,ﬂg{,ﬂ%). Note that we only
need that A > ||A||1 + ||p|l1 for uniformization. This value of A has been chosen to
improve the readability of the matrices.

We now prove that the steady-state distribution of the chain associated
with G has a closed form solution based on the steady-state solutions of chains
associated with compatibility graphs we now describe. We call this solution
a separable solution for the steady-state distribution. Let us begin with the
description of the sub-models.

lﬂ<

Fig. 6: GY: New compatibility graph for the first sub-model.

We build a simpler compatibility graph as follows: we replace G; by a
single node s, we add a loop on s; due to the edges in G, we keep G4
unchanged and we add the edges between s; and all the nodes in Gy (see Fig.
6). Compatibility graphs with self loops were recently introduced by Moyal
et al. in [13] and independently in [26]. Let G% be this compatibility graph.
The arrival rates associated with this compatibility graph are (||A|1, ). The
discipline associated with G is derived from D. As D is consistent, all the
letters of G provoke the same transitions on a word (), m2) and we use this
set of nodes and this distribution to define the discipline.

Let M5 be the transition probability matrix after uniformization with rate
A and let 72 be its steady state distribution. The state space of the Markov
chain associated with G} is the following (see Fig. 7):

e The state (1,0) with one item of class s; and no items of Gs. Note that this
is the only state with a positive number of items of class s; as G4 contains
a loop on s7.

e The state (0,()) = E which represents an empty system.

e The states associated with items of Gy (no s; items are present in the
system) : the states will be denoted as (0, y) where y is a node of G. Clearly,
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