
HAL Id: hal-04137788
https://hal.science/hal-04137788v1

Submitted on 30 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An ICN-based Approach for Service Caching in
Edge/Fog Environments

Hamza Ben-Ammar, Yacine Ghamri-Doudane

To cite this version:
Hamza Ben-Ammar, Yacine Ghamri-Doudane. An ICN-based Approach for Service Caching in
Edge/Fog Environments. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Dec
2020, Taipei, France. pp.1-6, �10.1109/GLOBECOM42002.2020.9322305�. �hal-04137788�

https://hal.science/hal-04137788v1
https://hal.archives-ouvertes.fr

An ICN-based Approach for Service Caching in
Edge/Fog Environments
Hamza Ben-Ammar and Yacine Ghamri-Doudane

La Rochelle University, L3i Lab., France.
Emails: {hamza.ben_ammar, yacine.ghamri}@univ-lr.fr

Abstract—Edge and Fog computing represent today a realistic
alternative to traditional cloud data centers in order to support
data-intensive and time-sensitive applications, such as those
laying under the Internet of Things (IoT) umbrella. One of
the main problems associated to this is the service placement
problem, or how to efficiently manage the available computing
and storage resources while deploying the plethora of application
services, to be made available to clients, at the network edge/fog?
Due to the similarities shared by this problem and the traditional
data caching problem, multiple researches started looking at
the adaptation of the Information-Centric Networking (ICN)
paradigm to answer the aforementioned question, giving birth
to what we depict as an ICN-Edge/Fog architecture. Leveraging
such an architecture, we propose in this paper a novel service
caching strategy, called 3Q, that is the first to argue on the
caching of both, the service instances, consuming computing
resources, as well as their associated source codes, consuming
storage resources. Being characterized by its low-complexity and
its low-overhead, 3Q proves to achieve near-optimal results in
terms of cached services hits, latency and cloud usage.

Index Terms—Service Caching, Edge Computing, Fog Com-
puting, Information-Centric Networking.

I. INTRODUCTION

Edge Computing (EC) and Fog Computing (FC) [1] are
promising paradigms aiming at overwhelming some of the
limitations faced by traditional cloud data centers, especially
those related to the support of time-sensitive applications and
eco-responsibility (as cloud data centers have an important
energy footprint). However, EC and FC solutions face stringent
challenges in terms of resources allocation for the support of
heterogeneous applications at the network edge/fog. Indeed,
they are composed of multiple distributed nodes that are
characterized by their very limited computing and storage
resources, in comparison to those available in centralized (and
geographically localized) cloud data centers. A relevant issue
that needs to be addressed is the service placement problem
(SPP), which relates to the process of determining where to
place different services, namely their instances (i.e. computing
resource consumption) as well as their associated source codes
(i.e. storage resource consumption). Such a service placement
needs to answer the question of how to distribute workloads
of a placed application on multiple locations. In this paper,
one of our arguments is that such a workload is not only
to be considered in terms of computing resources, as mostly
considered in the literature, but also in terms of storage
resources as well (i.e. for source codes storage).

Several existing works have addressed the service placement
problem in edge and fog environments and more generally
in network architectures having distributed and limited com-
putational and storage resources [2]. They can be classified
following multiple criteria: single or multi-objective optimiza-
tion, centralized or distributed solution, etc. More precisely,
SPP has been studied from different angles, that led to various
proposals, such as integer programming [3], meta-heuristics
[4] or constrained optimization [5]. The problem of how to
optimize the placement of services in the edge/fog computing
environment shares few similarities with the well-investigated
problem of cache management [6], [7], which started with
computer architecture and continued later with web caching to
then regain new interests with the arrival of the ICN paradigm
[8]. These similarities led researchers to wisely think about
combining both approaches, including the design of specific
and efficient network architectures allowing to combine both,
such as the one in [9], where the main idea is to handle the
“low-level” network communication operations on behalf of
applications. This includes some basic tasks such as enabling
the users requests to invoke applications hosted at edge and
fog nodes, delivering the applications from selected nodes in
a timely manner and allowing the reuse of computing results
by other similar tasks.

In this paper, our objective is to revisit the service place-
ment problem while an ICN-based Edge/Fog architecture is
deployed. More precisely, we argue that a caching strategy in
such a context must rely on two main features: (i) handling the
caching of both, the service instances as well as their source
codes (or software images), and (ii) keeping the overhead as
low as possible by adopting a strategy that does not require any
explicit cooperation among nodes. So, we propose in this paper
3Q, a low-complexity caching strategy that uses three queues
at each edge/fog node, in order to manage which services to
admit in the service instances cache and which one to admit to
the source code cache. Extensive evaluations show that such
a simple caching strategy proves to have cached services hits,
latency and cloud usage performances that are close to the
ones obtained by an optimal (oracle) strategy.

The remainder of the paper is organized as follows. Sec-
tion II reviews the main related work. This is followed in
Section III by our proposal for Service Placement in an ICN-
based Edge/Fog architecture. In Section IV, we analyze the
performance of our proposal. Finally, Section V concludes this
paper and presents some future research directions.

II. RELATED WORK

Several papers have presented different solutions to the SPP
problem. In [4], the authors propose a genetic algorithm to
maximize the instances of deployed services in the fog nodes
as an alternative to the cloud. The authors in [5] handled the
SPP problem in Fog Computing by providing a generic and
evolving constraint programming model. In [3], a framework
based on Network Functions Virtualization (NFV) is proposed
to deploy in the fog nodes, services provided by the cloud.
In their work, the deployment problem is formulated as an
Integer-Linear Programming (ILP) problem. These proposals
are examples of interesting solutions to the SPP problem.
However, they all significantly increase the network overhead,
as they require centralized information to be collected as well
as a collaboration among network nodes.

To the best of our knowledge, there are only few studies
that dealt with the Service Placement Problem in edge/fog
environments that are built following the ICN principles and
proposing online and distributed caching and cahe replacement
strategies that are characterized by their low overhead. Hou et
al. [10] tackled in their paper the service provisioning problem
in edge-clouds from a theoretical point of view. They propose
an online algorithm for the dynamic reconfiguration of edge-
clouds where their limited capacity, operational costs and the
unknown arrival patterns of requests are considered. Their so-
lution, named retrospective download with least recently used,
is an LRU-based replacement strategy with low complexity
where the history of previously requested services is used to
decide which service to replace in the edge-cloud when it
reaches its maximum capacity. However, the edge nodes in
their system model are not geographically distributed as they
are considered as forming a single entity. In [11], the authors
argue that the SPP is similar to the resource storage allocation
problem and studied it as such. Using the principles of cache
management and by considering delay-sensitive services, they
propose an uncoordinated resource allocation where the edge-
cloud nodes are used as on-path opportunistic resources. Their
solution is based on the combination of well-known scheduling
strategies and cache replacement strategies. Nevertheless, they
suppose in their work that the source code necessary to instan-
tiate the different proposed services/applications are available
in advance in every edge/fog node of the network.

III. TOWARDS AN ICN-BASED SERVICE INSTANCES AND
SOURCE CODES CACHING STRATEGY

A. System model

We consider in this work an ICN-based Edge/Fog Com-
puting environment, similar to the one presented in [9], and
we use one of the most popular concrete implementations of
ICN, which is the Named-Data Networking [12], also known
as Content-Centric Networking or CCN.

Edge and Fog computing are natively service-centric ar-
chitectures where clients, asking for specific services from
the edge of the network, can get it from any edge/fog node
offering the service in the network. The ICN paradigm matches

perfectly the objective and the mechanisms of EC and FC
through the use at the network layer of application-defined
naming. Let’s recall that in CCN, the content’s name (services
in our case) is the only identifier of a specific data (respec-
tively, a service in our case). To request and retrieve data, two
types of packets are commonly used [12]: Interest Packets
and Data Packets. Users ask for specific data by sending
Interest packets, which are forwarded towards the data sources
using the Forwarding Information Base (FIB). A record of the
forwarded Interests is kept in the Pending Interest Table (PIT)
in order to keep track of the Interests waiting for a data packet.
When a node receives multiple requests for the same data, the
Interest packets are aggregated in one entry in the PIT and
only the first one is routed. Once the request is found, it is
automatically routed back to the clients on the reverse path.
All the nodes along this path can store a copy of the requested
data to answer future demands. In our case, clients requests
regards the available running services in the network.

Let G = (V,E) be the graph representing an ICN-Edge/Fog
network, where V = {v1, . . . , vM} depicts the nodes of the
network and E ⊂ V × V is the set of links connecting the
nodes. Each node in the network has computation capabilities
(CPU and RAM) to run the services and storage capacity to
host their source codes allowing to instantiate pre-installed
services as an answer to client requests. Unlike ICN, where
each node has only one cache to save in the network copies
of the flowing data packets, every node in our work will have
two separate caches: one to host the running services available
to the users and the other is used to store the source codes.
Let S = {s1, . . . , sR} be the set of services available to the
users. We assume that all the accessible applications in the
system along with their source codes have an identical size.
The node capacity is then expressed in terms of the number
of maximum running services and the number of application
source codes (or software images, in case where containers
are used) that can be stored. The pattern of the interests sent
by the users is depicted by the Independent Reference Model
(IRM) [13] where these are generated in a independent and
identical distributed sequence of requests. More precisely, the
probability pr to request an item sr from the catalog S of R
services follows a popularity law in which the items compos-
ing the catalog of services are ranked decreasingly according
to their popularity from 1 to R. All the available services are
hosted permanently at one or more servers within the network.
In the rest of the paper and for the sake of readability, we will
use the term service/application interchangeably as well as the
terms rank/popularity and source code/image.

B. Service caching and management

In this work, our aim is to propose an online strategy with
low-complexity using ICN’s on-path caching feature to decide
how the services and their images are cached and managed
within the network. The intended objectives are to reduce
the cloud load, minimize the average distance and delay for
the users to get their requested applications and improve the
efficiency of the edge/fog nodes resources. We assume that

all the services available for the users and their source codes
are initially only hosted in the cloud. In order for any node
wanting to serve a specific application upon the reception of
an interest for it, it has first to download from the cloud the
corresponding source code in order to be able to instantiate
the service afterword.

Whenever a client sends a request asking for a specific
service, the first node that receives it will check whether it
has the application available in its cache. If there is a hit, then
this node will provide the requested service. In case of a miss,
we suppose that even if a node has an image of the demanded
application in its cache, launching the service takes more time
than getting it from an another node or the cloud. The user’s
demand will then be forwarded to the next nodes toward the
cloud checking for the presence of the application. Once it is
found, it is sent in the reverse path towards the end user and
following the adopted caching policy, the service’s image is
cached or not at each node that receives it in order to create
an instance of the service. Once one of the node’s caches is
full and a new caching decision is to be enforced, then one
item has to be selected for eviction to make room for the new
element to be cached.

The caching scheme has to manage basically two aspects
of the services cache and the source code store: the cache
replacement policy and the caching decision. The first one
is the algorithm responsible for managing the cache. When
the cache is full, an item is chosen by the algorithm to be
discarded. To achieve this, one can cite the following existing
algorithms: First In First Out (FIFO), Least Frequently Used
(LFU), Least Recently Used (LRU), to name a few. The
second one determines which object should be cached and
at which node. In other words, whenever a service requested
by an end user is travelling towards its destination node, an
intermediate node has to choose whether to ask for its source
code in order to launch the application locally. This depends
on the implemented caching strategy. Among the examples
of such strategies that are commonly used in ICN, we can
cite the Leave Copy Everywhere (LCE) [14], the Leave Copy
Down (LCD) [14] and the Two Queue (2Q) [15], for instance.
Schemes like these three examples have the specificity of being
of low-complexity and of low-induced network overhead as
there is no information exchange or cooperation between the
different nodes, which is our aim in this work.

C. LCE and LCD

In multi-cache systems in general and more specifically in
ICN, the default caching strategy that can be used is the Leave
Copy Everywhere (LCE) where every data packet received
by each node along the downloading path is systematically
cached. It is a very basic mechanism that does not imply any
overhead or communication cost. Such schemes can be used
in performance evaluation campaigns to have the lower bound
values in terms of performance. Another interesting technique
having a low overhead cost but with a better efficiency is
the Leave Copy Down (LCD). Instead of saving a copy of
the data packet in all intermediates node caches as in LCE,

LCD consists on performing the caching operation only in
the immediate downstream node on the path from the hit
location. This mechanism creates a kind of filtering system
where contents gradually move towards the users with the
popular ones to be the first to be cached as close as possible
to clients.

D. 2Q algorithm

On the basis of the algorithm named LRU-K presented in
[16], Johnson et al. proposed the Two Queue scheme (2Q).
LRU-K is basically an enhancement of the classical LRU
algorithm while keeping track of the timing of the K last
occurrences of each element entering the cache, thus allowing
to have an estimation of their reference inter-arrival times. The
item whose Kth most recent access is furthest in the past will
then be evicted when the cache is full (LRU-1 is equivalent to
the classical LRU). It is shown that the most important gain of
the LRU-K method is achieved when K = 2 (LRU-2) [16],
but with the cost of having a relatively high complexity, as
each item access requires log(N) operations to manipulate a
priority queue (N being the cache size). 2Q is similar and
performs as well as the LRU-2 algorithm but unlike the latter,
it has a constant complexity time overhead. Instead of cleaning
cold elements from the main buffer like LRU-2, 2Q admits to
the cache only the ones that are more likely to be requested in
the near future. When a request is received by a cache using
2Q, the requested object’s hash is first placed in a virtual cache
(called A1), which is managed as a FIFO queue. If an item is
requested during its A1 residency, it is then promoted to the
main cache (called Am). The authors, then, propose another
version of 2Q in which the A1 queue is partitioned into A1in
and A1out. The A1in queue along with Am form the physical
cache and A1out is a virtual cache, which will contain only
items hashes. The most recent first accesses are stored in A1in,
which is managed as a FIFO queue. When objects are evicted
from A1in, they are remembered in A1out. Upon arrival of
a request and if it is present in the A1out queue, then it is
cached in Am. The item to be discarded in 2Q is chosen either
from A1in or Am. One should also note that the sizes of the
different queues (A1in, A1out and Am) are sensitive to the
requests patterns and should be tuned carefully.

E. 3Q: a 2Q-inspired algorithm for service caching

In this paper we propose a caching scheme that we call
3Q, which is similar to the first version of 2Q but where the
virtual buffer and the main store are both managed using LRU.
The virtual cache’s role is to allow only popular services to
be cached by detecting the services that are requested more
than once within a short period of time. The 2Q algorithm
was initially proposed in the context of page replacement
algorithms for computer operating systems and it was then
shown to be efficient in ICN [17]. We believe that adopting
a 2Q like algorithm in the context of services placement in
an ICN-Edge/Fog architecture can also lead to very good
performance. As it was explained earlier, each node in the
network has to have the service’s source code in order to

Network node with
computation and

storage ressources

Check
MC

Check
AC

Send
service

Hit

Miss

Instantiate
service and

forward
interest

Hit

Miss
Check

VC

Ask for code
source (or
image) and

forward interest

Hit

Miss

Save hash
value and
forward
interest

Interest
received

Back-end cloud

1. Interest 2. Interest

4. Service

3. Interest

5. Service6. Service

7. Interest 8. Service

3Q algorithm

Figure 1. 3Q functioning in an ICN-based Edge/Fog architecture.

instantiate it and be able to provide it to users. So, in addition
to the virtual cache (VC) and the main cache (MC) that hosts
the services, there is an auxiliary cache (AC) for the source
codes, thus having three queue in total for each node (see
Figure 1). Once a node receives the request issued from a client
looking for a specific service, it checks if it has a copy running
in the MC. If there is a hit, then it provides the application
to the user. In case of a miss, it looks for the presence of
its source code in the AC. If a copy is found, it instantiates
the corresponding service, but the interest is also sent upward
to other nodes since we assume that loading an application
from its source code or from its image takes more time than
getting it from another node or even from the cloud. If not, it
is the turn of the VC to be checked. If there is a hit and while
the node forwards the interest to the other nodes toward the
cloud, it also asks for the service’s source code (which can be
received from one of the upward nodes or the cloud) in order
to save it in the AC and then instantiate a copy of it in the MC.
In case of a miss, a hash value of the requested application
is saved in the VC waiting to be requested again while being
present in this buffer and thus to trigger its caching. Here
again, the interest is forwarded upward.

F. Optimal caching strategy (OPT)

When designing a caching scheme, the aim is generally to
maximize the overall hit ratio in order to reduce the cloud
load and maximize the cache hits at the nodes close to
users, which reduces the average latency to get a requested
object. This is achieved by creating a mechanism that tries
to detect and cache the most popular and requested data
packets as near as possible to end users and to have the lowest
possible redundancy between neighboring nodes. In this case,
an “optimal” strategy (that we call OPT) works as follow:
if we suppose that the services popularities are known in
advance and that all the caches of services of the network’s
nodes have the same size C, then the most C popular services
(s1, . . . , sC) are exclusively cached at the nodes located at a
one-hop distance from the users, then the second C popular
items (sC+1, . . . , s2C) are cached at a 2-hop distance, etc.
Such strategy gives the upper bound in terms of performance.

IV. RESULTS

A. Evaluation settings

We evaluate in this section the performance of 3Q and
compare it to the following caching strategies: LCE, LCD
and OPT. As for the cache replacement policy, we will focus

in this work on LRU to manage each node’s caches. We
could have considered other cache management algorithms
like FIFO, Random or LFU but LRU is known to perform
much better than FIFO and Random. As for LFU, it requires
a more complex replacement process and do not adapt very
well in time with the popularity variations of the elements to
be cached.

The different evaluations are conducted using ccnSim [18],
a discrete-event and chunk-level simulator of CCN (ccnSim
was modified in order to handle the management of services
instead of contents). We use during the simulations a complete
binary tree network topology containing 31 nodes (with a total
of five levels). The root node is attached to the back-end cloud
system, which hosts all the services available to the users and
their source codes. The clients, attached to the leaves nodes of
the network, generate their requests for the different services
according to a Poisson process with a rate of 1 request/sec
(this rate corresponds to each aggregation of users attached
to each leaf node). We consider in the topology a uniform
latency of 25 ms between each two nodes except for the inter-
connection between the root and its child nodes where the
latency is set to 100 ms (to represent a higher latency to access
the back-end cloud system compared to the hop-to-hop node
latency). For our simulations, we consider a catalog of ser-
vices containing 10000 services whose popularity distribution
follows the Zipf’s law, where each service has a probability
to be requested that is equal to: pr = r−α/

∑R
i=1 i

−α, α
being the skew of the distribution. The Zipf’s law has been
used in many fields, including the modeling of the services
popularity distribution in Cloud and Edge/Fog Computing
[19]. We suppose that the network’s nodes have service cache
sizes following the uniform distribution, with values varying
from 50 to 250, and source code caches having its double in
size, as storage capacity is generally greater than computation
capacity according to price trends. The size of the virtual
cache in 3Q is also a parameter to be tuned, which was set to
10% of the services cache size (we obtained the best results
using this value). We tested different values of the Zipf’s law
parameter α (0.8, 1.0 and 1.2). The numerical results depicted
in Figure 2 and Figure 3 represent the mean values taken over
30 simulation runs (using a confidence interval of 95%) and
in which 2× 106 requests from users are sent in the network
after the system reaches stability (i.e. after all service caches
become full).

B. Results and analysis

We display in Figure 2 the average service cache hit for the
entire network (2(a), 2(b) and 2(c)) as well as for the edge
nodes only (2(d), 2(e), and 2(f)) to highlight the efficiency
of cache resource usage. We can see from the results how
using low cost strategies (LCD and 3Q), i.e. strategies that do
not require any sort of cooperation and information exchange
between nodes, can be effective as the cache hit performance
is greatly improved compared to LCE, which is the default
caching technique. We denote, however, a superiority of 3Q
over LCD. This is even more clear when we focus on the cache

LCE LCD 3Q OPT

50 100 150 200 2500
5

10
15
20

Cache services size (%)

Av
er

ag
e

se
rv

ic
es

hi
t

(%
) (a) α = 0.8

50 100 150 200 250
10

20

30

Cache services size (%)

(b) α = 1.0

50 100 150 200 250

30

40

50

60

Cache services size (%)

(c) α = 1.2

50 100 150 200 250
10

20

30

40

Cache services size (%)Le
av

es
no

de
s

se
rv

ic
es

hi
t

(%
) (d) α = 0.8

50 100 150 200 250

30

40

50

60

Cache services size (%)

(e) α = 1.0

50 100 150 200 25050

60

70

80

Cache services size (%)

(f) α = 1.2

Figure 2. Average cache services hit in all the network and at the leaves nodes.

hit performance of the edge nodes only (2(d), 2(e), and 2(f)) as
the performance of 3Q, and at slightly lower extent LCD, are
very close to OPT. This also illustrates the difficulty of taking
an efficient advantage of the nodes resources located at higher
levels of the network topology, resulting in lower performance
compared to edge nodes, which have the chance to serve more
popular services as they are the first to receive the clients
requests. Furthermore, one should note that the performances
are heavily impacted by the service popularity distribution and
the cache size. Lower value of α means less difference in
the service popularity, and vice-versa, which makes it more
difficult to have multiple hits for the same item in the cache
(and vice-versa). As for the cache size, a lower value means
a higher probability of discarding from the cache running
services that could be requested in the near future.

Figure 3 depicts the network performance in terms of
latency reduction ratio (3(a) and 3(b)), cloud services load
reduction ratio (3(c) and 3(d)) and cloud source code load
reduction ratio (3(e) and 3(f)). These are obtained while
considering various values of α and the cache size. The cloud
load reduction metric represents how much (in percentage)
the solicitation of the back-end cloud is decreased due to
the caching process at the edge/fog nodes. The results shows
how 3Q outperforms the other caching strategies achieving
performances close to those of OPT. For example, 3Q achieves
96% of the OPT performance in terms of latency reduction
ratio when α and the cache size are set respectively to 1.2 and
250. These results indicate clearly that 3Q is more successful
compared to LCE and LCD in serving most popular services,
especially in the lower levels of the network topology.

Overall, we can conclude from these results that an unco-
ordinated caching strategy, like 3Q, can achieve near optimal
performance as defined by OPT.

V. CONCLUSION AND FUTURE WORK

We studied in this paper the service placement problem in
the context of Edge/Fog computing environments. We started
first by highlighting how the ICN paradigm can be used to
tackle this problem from a new perspective. By leveraging the
in-network caching feature of ICN, the services along with
their source codes (or software images) can be managed at
the Edge and Fog nodes using a specifically designed caching
strategy. To keep the network overhead as low as possible,
we focused on caching schemes that does not require explicit
cooperation between nodes. To do so, we proposed in this
paper a service caching strategy called 3Q, an extension of a
caching algorithm called 2Q that was shown to be efficient for
data caching in ICN. 3Q works in a distributed manner where
each node within the network is autonomous, inducing only a
marginal control overhead and cost. The conducted simulations
showed the closeness of our proposal to an optimal solution,
i.e. a solution knowing the popularity distribution of the
services in advance, in terms of cached services hits, latency
and cloud usage. As per our future works, we aim to explicitly
incorporate the QoS requirements (e.g. deadline satisfaction)
in the service caching process. We also aim at developing
analytical tools in order to quantify the cost/efficiency ratio
when studying and using caching strategies and their network
overhead impact.

LCE LCD 3Q OPT

50 100 150 200 250

20
30
40
50

Cache services size (%)

La
te

nc
y

re
du

ct
io

n
(%

)

(a) α = 0.8

50 100 150 200 250
20

40

60

Cache services size (%)C
lo

ud
se

rv
ic

es
lo

ad
re

du
ct

io
n

(%
)

(c) α = 0.8

50 100 150 200 25020

30

40

50

60

Cache services size (%)C
lo

ud
im

ag
es

lo
ad

re
du

ct
io

n
(%

)

(e) α = 0.8

50 100 150 200 250
60

70

80

90

Cache services size (%)

La
te

nc
y

re
du

ct
io

n
(%

)

(b) α = 1.2

50 100 150 200 250

70

80

90

Cache services size (%)C
lo

ud
se

rv
ic

es
lo

ad
re

du
ct

io
n

(%
)

(d) α = 1.2

50 100 150 200 25060

70

80

90

Cache services size (%)C
lo

ud
im

ag
es

lo
ad

re
du

ct
io

n
(%

)

(f) α = 1.2

Figure 3. Network performance comparison in terms of latency and cloud load.

REFERENCES

[1] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal of
Systems Architecture, vol. 98, pp. 289 – 330, Sep. 2019.

[2] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service
placement problem in fog and edge computing,” in Research Report
RR-9295, Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP,LYON, France,
Nov. 2019, pp. 1–43.

[3] R. I. Tinini, L. C. M. Reis, D. M. Batista, G. B. Figueiredo, M. Tornatore,
and B. Mukherjee, “Optimal placement of virtualized bbu processing in
hybrid cloud-fog ran over twdm-pon,” in 2017 IEEE Global Communi-
cations Conference, Dec. 2017, pp. 1–6.

[4] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, “Op-
timized iot service placement in the fog,” Service Oriented Computing
and Applications, vol. 11, pp. 427–443, Oct. 2017.

[5] F. Ait Salaht, F. Desprez, A. Lebre, C. Prud’homme, and M. Abderrahim,
“Service placement in fog computing using constraint programming,” in
2019 IEEE International Conference on Services Computing (SCC), Jul.
2019, pp. 19–27.

[6] H. Ben-Ammar, Y. Hadjadj-Aoul, G. Rubino, and S. Ait-Chellouche,
“A versatile markov chain model for the performance analysis of CCN
caching systems,” in IEEE Global Communications Conference, Dec.
2018, pp. 1–6.

[7] H. Ben-Ammar and Y. Hadjadj-Aoul, “A GRASP-based approach for
dynamic cache resources placement in future networks,” Journal of
Network and Systems Management, pp. 1–21, Mar. 2020.

[8] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. Katsaros, and G. C. Polyzos, “A survey of information-
centric networking research,” IEEE Communications Surveys and Tuto-
rials, vol. 16, pp. 1024–1049, Jul. 2014.

[9] S. Mastorakis, A. Mtibaa, J. Lee, and S. Misra, “ICedge: When edge
computing meets information-centric networking,” IEEE Internet of
Things Journal, jan 2020.

[10] I.-H. Hou, T. Zhao, S. Wang, and K. Chan, “Asymptotically optimal
algorithm for online reconfiguration of edge-clouds,” in Proceedings of
the 17th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, Jul. 2016, p. 291–300.

[11] O. Ascigil, T. K. Phan, A. G. Tasiopoulos, V. Sourlas, I. Psaras, and
G. Pavlou, “On uncoordinated service placement in edge-clouds,” in
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), Dec. 2017, pp. 41–48.

[12] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking named content,” in Proceedings of the 5th
International Conference on Emerging Networking Experiments and
Technologies, Dec. 2009, pp. 1–12.

[13] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon
collectors, caching algorithms and self-organizing search,” Discrete
Applied Mathematics, vol. 39, pp. 207–229, Nov. 1992.

[14] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnection
of LRU caches and its analysis,” Performance Evaluation, vol. 63, pp.
609–634, Jul. 2006.

[15] T. Johnson and D. Shasha, “2Q: A low overhead high performance
buffer management replacement algorithm,” in Proceedings of the 20th
International Conference on Very Large Data Bases, Apr. 1994, pp.
439–450.

[16] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page replace-
ment algorithm for database disk buffering,” ACM SIGMOD Record,
vol. 22, pp. 297–306, Jun. 1993.

[17] H. Ben-Ammar, Y. Hadjadj-Aoul, G. Rubino, and S. Ait-Chellouche,
“On the performance analysis of distributed caching systems using a
customizable markov chain model,” Journal of Network and Computer
Applications, vol. 130, pp. 39–51, Mar. 2019.

[18] R. Chiocchetti, D. Rossi, and G. Rossini, “ccnSim: An highly scalable
ccn simulator,” in IEEE International Conference on Communications,
Jun. 2013, pp. 2309–2314.

[19] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, “Service popularity-based smart
resources partitioning for fog computing-enabled industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14, pp. 4702–
4711, Oct. 2018.

