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ABSTRACT 

In this paper, we propose a study of the use of Linky smart 
meter data to enhance the Diversity Factor (DF) 
assessment in real networks. The literature focus on how 
the number of customers per secondary station affects the 
diversity factor and it distribution. One of our objectives is 
to bring into discussion other indicators, some local, some 
general, which could affect DF variations, as we dispose 
of real French network measurements. The other objective 
is to develop a model to predict the DF based in these sets 
of indicators. We validated the interest of our model 
results by comparing them to one naïve substation-peak 
sizing method, obtaining ~50% result improvement on 
some specific test cases. Thanks to this work, we are able 
to bring into discussion the importance of smart meter 
data for network planning. 

INTRODUCTION 

Electricity networks are going through transformations in 
depth due to the interconnection of renewable energies and 
other distributed energy resources surveyed through smart 
meters. One clear example is when gasoline vehicles 
commercialization will be stopped in Europe. The latter 
scenarios show that half of the French vehicle fleet shall 
be converted to electric by 2035, which might result in a 
massive grid connection of charging infrastructures. From 
the perspective of DSOs, these changes could represent a 
large investment cost to reinforce the existing network 
and/or design new ones. The coincident peak load at the 
MV/LV substation level is an important value for 
distribution network planner. A better assessment of this 
value allows a better estimate of the hosting capacity and 
therefore, at first glance, to avoid/delay/minimize network 
investments. A traditional way to estimate the coincident 
peak load is the use of the Diversity Factor (DF). DF 
reflects the fact that neighbourhood customers do not 
consume with the same profile over time. It can be 
calculated at the secondary substation as the ratio between 
the sum of individual peak loads and the peak-aggregated 
load [1], as shown by equation 1:  
 

𝐷𝐹 =  
∑(௜௡ௗ௜௩௜ௗ௨௔௟ ௣௘௔௞ ௟௢௔ௗ௦ )

௉௘௔௞ ௔௚௚௥௘௚௔௧௘ௗ ௟௢௔ௗ
       (Eq. 1)  

 

 
Based on this definition, the literature focuses on analysing 
the distribution of DF from random samples of customers 
groups. The work presented in [2] supports that DF is 
normally distributed. Using a different normality indicator 
[3] test, the results indicate that DF follows a gamma 
distribution and depends on the customers group size. 
Meanwhile, the authors in [4] use a generalized extreme 
value distribution to model the coincident peak load as a 
random variable that depends of mean energy 
consumption. However, in French scenario, the massive 
roll out of Linky smart meter allows us to recover the 
individual peak loads daily. Complementary, Enedis 
disposes of some grid data measurements at the secondary 
(MV/LV) substation level, such as load aggregated time 
series. These two-information make us able to compute the 
real Diversity Factor for several substations. Since all our 
electricity data come from known French networks, we are 
able to study how different indicators, some local 
(temperature, geographical area), and some general (type 
of clients) affect the DF. This brings into the discussion 
other variables that influence DF besides the number of 
customers per secondary substations, consequently, 
expanding our vision about the subject. Our research aims 
to increase the understanding of how the local and general 
factors influence DF and to develop a model to predict it 
based on these indicators.  

DATA  

Data Recovery 
The data collection period is from beginning of July 2021 
to end of June 2022. A full year period allows us to have a 
better representation of the weather variations as the 
French load is classically largely thermal-dependent. All 
the data used in this work comes from Enedis databases 
and are divided into three categories: 
 
Electricity Data 
Load time series from 89 secondary substations are 
selected. These substations are located in different regions 
of France and cover well the country’s climatic diversity. 
They serve 12352 customers, which the individual peak 
loads and energy consumption measured by Linky Smart 
Meter are collected.  
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Customer Data 
The 12352 customers are grouped into categories : Basic 
Residential, Time of Use  (TOU) Residential, Basic 
Professional, TOU Professional, Public Light and 
Industrial. The associated contractual power value 
subscription is also known. 
 
Meteorological Data  
Temperature, nebulosity from météo-france stations, 
climate zone classification established by 2012 thermal 
regulation norm [7] and types of territory established by 
Enedis (Urban, Rural, Semi-Urban and Dense) are 
collected.  
 

Diversity Factor Computation 
The DF is then computed for all period, on a daily basis, 
using the formulation presented in [1]. With our data, the 
equation can be writen as follows:  
 

𝐷𝐹 =  
∑ ௅௜௡௞௬ ௣௘௔௞  

௉௘௔௞ ௟௢௔ௗ ௔௧ ெ௏/௅௏ ௦௨௕௦௧௔௧௜௢௡
    (Eq. 2) 

 
Figure 1 shows the results of this computation for a given 
secondary substation every day and reflects the fact that 
the DF is not constant throughout the year. It is possible to 
note seasonal and daily variations.  Thus, it is most suitable 
for our analysis to have a year collection period. 
  

 
Figure 1: DF values computed for the entire period 

A histogram showing all DF values for all the select 
substations is provided in Figure 2:  
 

 
Figure 2: DF histogram for the 89 secondary substations 

It is possible to observe that there are very few large DF 
values, which correspond to the discussions in literature 
[2-4]. It is possible to observe some values between six and 
nine with support the fact that a better assessment of DF 
can allow a better estimation of hosting capacity. Indeed, 

the higher the DF is the more room we have for renewable 
connections. 

Indicators Definition 
Using the collected data, a set of indicators listed in Table 
1 is created for each substation to observe the differences 
between them.  In total, there are 56 indicators constructed 
from our data collection.  
 

Categories Quantity 
1 - Customer categories rate One indicator for 

each customer 
category (*) 

2 - Subscription power rate One indicator for 
each subscription 

value (**) 
3 - Daily total individual peak 

load by customer categories rate 
(*) 

4 - Daily total individual peak 
load by subscription power rate 

(**) 

5 - Daily total energy 
consumption by customer 

categories 

(*) 

6 - Daily total energy 
consumption by subscription 

power rate 

(**) 

7 - Thermo-sensitivity Two indicators 
8 - Daily mean temperature One indicator 

9 - Daily maximum and 
minimum temperature 

Two indicators 

10 - Daily mean nebulosity One indicator 
11 - Type of territory Four indicators 

12 - Climate zone classification Eight indicators 
13 - Weekday or Weekend One indicator 

Table 1: Set of indicators 

MODEL PREDICTION 

 Figure 3 shows a flowchart of all the steps presented by 
this section.  
 

 
Figure 3: Model prediction flowchart 
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There are three main steps; the first one is training our 
model using the indicators, the next one is to analyse the 
results to understand the features importance, and the last 
one is to retrain our model based on our analysis 
 

Random Forest Model 
Random Forest is the supervised learning method chosen 
to predict the DF from our selected set of indicators. This 
traditional algorithm generates a number of selected trees 
based on the data and combines the output of all the trees 
[8]. In such manner, it reduces overfitting problem in 
decision trees and reduces the variance. The focus of this 
study is to find a powerful but explainable model, to show 
the importance of daily factors in DF variations. Thus, the 
random forest fits well with our objectives. 
The data set of indicators is split in 80% of train and 20% 
of test set based on the quantity of MV/LV substations to 
avoid prediction bias. This division generates 71 MV/LV 
substations in train set and 18 MV/LV substations in test 
set. Using all the indicators introduced in the section 
above, the model predictions have a symmetric mean 
percentage error (SMAPE) of 16 %. Figure 4Figure 4 
presents a scatterplot showing the Predictions as functions 
of DF values. It is possible to observe that the model has 
difficulties in predicting higher DF values. This is logical 
because there are few values in this range in our data 
collection, so the model will have less training examples. 
In addition, we could observe that the highest errors in our 
predictions are related to a few substations where the 
presence of industrial customers is important.  
 

 
Figure 4: Scatterplot of Prediction x DF values 

Features Analysis  
We note that some of our indicators seem to express the 
same type of information. It was possible to confirm this 

by using Pearson pairwise correlation method. The 
indicators related to the customer categories rate are 
strongly positively correlated. The same was observed for 
the indicators related to the subscription power rate. 
Therefore, we prefer to keep only the daily peak rate 
information in both cases. Twelve features were discarded. 
The next step is to look the model features importance. The 
random forest toolbox of scikit-learn library offers the 
possibility to analyse the importance of features. This 
analyse is known as Gini Importance [9]. It is defined as 
the total decrease in node impurity weighted by the 
probability of reaching that node averaged over all trees of 
the ensemble. The result of this analysis shows that eight 
indicators can be discarded because their importance for 
model results are low.   
Thenceforth, we perform a Shapley addictive explanation 
(SHAP) analysis to interpret the contribution of each 
indicator to the models output. SHAP is a method based in 
cooperative game theory, where it computes the 
contribution of each feature in order to explain the 
prediction [10]. Figure 5 shows how the average daily 
temperature contributes to the variation in DF for all 
substations of our test set. It is possible to observe that the 
higher temperatures contribute to increase the diversity 
factor. Otherwise, when temperature decreases it 
contributes to the decrease of DF.  
 

 
Figure 5: Contribution of average temperature to variations in 

DF 

This can be explained by the fact that part of low voltage 
consumption is temperature-dependent. In France, 
households are equipped with heating systems and water 
boilers that tend to be switch on at similar schedules of the 
day to the residential customers. In this way, the individual 
peak demand and the aggregate peak demand are close to 
each other, reducing the diversity factor. Figure 6 presents 
the daily total peak rate by TOU Residential customer 
type. TOU Residential are those clients that have an energy 
tariff based on the time of day when energy is consumed. 
There are the “full hours” where the tariff is more 
expensive and the “off-peak hours” where the tariff is 
cheaper. Normally, for these customers the consumption is 
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higher during “off-peak hours”. It can be seen that if a 
large part of the consumption is due to these clients it 
contributes to lowering the DF, which corresponds to the 
fact that they have their peaks close in time. 
 

 
Figure 6: SHAP visualization - contribution of TOU Residential 

peak rate to variations in DF 

After the analysis, the following indicator categories were 
selected: 3, 4, 5, 6, 8, 9, 10 and 12. This leaves us with 36 
indicators. 

Prediction Result Actualization 
Now, we are able to re-compute the model predictions 
using the features analyses results.  Principal Components 
Analysis (PCA) [11] is used in order reduce the data set 
dimensions.  PCA is a method that returns the sequence of 
linear combinations with the greatest variance of variables 
in a dataset. For this purpose, PCA uses a vector space 
transformation to reduce the dimensionality of a large data 
set. Eight components are keep after the PCA. The same 
substations test set was used to see the impact caused by 
the changes in our input. Thus, it is possible to compare 
the models results. The model is then re-trained and 
predictions give us a SMAPE of 12.9 %. This increase in 
model performance could be related to the fact that we 
have small data set with a large number of features. 
Therefore, there could have some overlearning even for a 
random forest model.  

MODEL ASSESSMENT 

The further step to measure the quality of our prediction 
results is to compare them to other methods. This section 
presents a comparison between results of a naïve 
substation-peak sizing method and our model. To do that, 
we use our DF Prediction to compute the MV/LV 
substation peak, as expressed by Equation 1. Naïve method 
is describe by Equation 3:  
 

𝑆𝑃 =  𝑊𝐶 ∗ ∑(𝑃𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠)   (Eq. 3) 
 
Where, SP is the substation peak, WC is a weighting 
coefficients based on the total number of customers in the 
MV/LV substation and Psubscriptions is power value 
subscriptions. WC values are compute to have the minimal 
SMAPE between SP and the real peak values for the select 
number of customer’s interval, as shown by Equations 4 
and 5:  
 

𝑊𝐶௘௥௥௢௥ = 𝑆𝑀𝐴𝑃𝐸(𝑅𝑒𝑎𝑙 𝑃𝑒𝑎𝑘 | 𝑆𝑃)   (Eq. 4) 
 

𝑊𝐶 → 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑊𝐶௘௥௥௢௥)   (Eq. 5) 
 
 
This optimization problem is solve using python’s scipy 
library optimize.minimize(method = ‘Nelder-Mead’). 
Table 2 shows the WC values due to the number of clients 
in the substation. 
 

Number of customers WC Value 
< 50 0.166 

50 – 99 0.151 
100 – 149 0.118 
150 – 249 0.116 

> 249 0.104 
Table 2: WC values 

Figure 7 presents the results of this comparison for our 18 
substations test set:  
 

 
Figure 7: Comparison results 

The prediction model has better results in all 18 
substations. The average difference between the prediction 
model results and the naïve method results is 20 %, for this 
test set. To further investigate our comparison, we decided 
to extend it to 100 random test sets of 18 substation from 
our 89 substation tests. Figure 8 shows the average results 
per test set. 
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Figure 8: Average SMAPE histogram per test set 

The histogram shows the difference between the model 
predictions results and the naïve method results. In 
average, the prediction model results have ~50% less error 
than the naïve method results, for these 100 test sets. If we 
look at all substations individually, it is possible to observe 
that for some substations the model predictions have an 
error in the magnitude of 40% to 60%. Again, this can be 
explained by the absence of higher DF values in our data 
set. Random forest models are not capable to extrapolate; 
they only make predictions based on previously observed 
values. This comparison helps to understand the quality of 
predictions in a real life scenario.  

CONCLUSION 

In this paper, we use Linky smart meter data to increase 
the assessment of Diversity Factor variations. Using real 
network data, it was possible to investigate and understand 
how local and global indicators affect the DF and use this 
knowledge to develop a supervised learn model to predict 
this value.  Our results and comparison make easy to 
visualise the importance of smart meter data to the energy 
planning. We were able to obtain a model with around 17% 
error reduction on our specific test set, in the estimation of 
peak-aggregated load. Provide a better assessment of 
Diversity Factor in LV grids can allow a better estimation 
of hosting capacity and thus, minimizing / delaying / 
avoiding network investments.    
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