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Abstract—In order to face the rise in data consumption and
network congestion, caching structures like Content Delivery
Networks (CDNs) are being more and more used and integrated
into the network infrastructure. Knowing that the capacities
of caching resources are most often limited due to their large
operational cost, it has become very important that these entities
are managed efficiently. Especially, at the caching operations
level, the question that arises is what content should be cached
or evicted from the cache when it becomes full. Having these
in mind, we introduce a lightweight Artificial Intelligence-based
caching scheme called Reversed OPT (RevOPT). In our proposal,
we use a Long Short-Term Memory (LSTM) encoder-decoder
model to learn future requests patterns from the past and exploit
its outcome with a Counting Bloom Filter (CBF) structure to
manage efficiently the caching decisions and to keep in the
cache only contents expected to be reused in the near future.
The conducted simulations show promising results of RevOPT
in terms of the cache hit ratio compared to existing caching
algorithms.

Index Terms—Caching Scheme, Deep Learning, LSTM, CDN,
Bloom Filter.

I. INTRODUCTION

The last few years witnessed a shift on the Internet usage
that switched from a host-centric model to a content-centric
approach, especially when dealing with content retrieval and
data dissemination [1]. This evolution is mostly driven by the
rapid growth of media-enriched services, e.g., Peer-to Peer
file sharing, Video on Demand, video/audio streaming and
social networks. These had significantly changed the way that
people experience the Internet, making media traffic one of
the main drivers of the Internet economy. According to the
Cisco Annual Internet Report [2], mobile Machine to machine
(M2M) connections will grow from 1.2 billion in 2018 to 4.4
billion by 2023, which represents a four-fold growth. Across
the globe, the overall IP traffic is expected to grow to 396
Exabytes (EB) per month by 2022, up from 122 EB per month
in 2017.

The rapid growth of data consumption has led to the con-
tinuous raise during the last two decades of Content Delivery
Networks (CDNs) [3], which use the mechanisms of caching
to optimize the content delivery performance. The term cache
[4] was first employed in computing systems to describe a
data storing technique that provides the ability to access data
or files at a higher speed. Caches can be implemented both in
hardware and software. They are used to serve as an interme-
diary component between the primary storage appliance and
the recipient hardware or software device to reduce the latency

in data access. Caching is considered one of the most simple
and effective techniques in computer science for improving
a system’s performance. The concept of caching was later
adopted by the Internet [5]. Web caching solutions can help
enhancing the content access time significantly by storing
popular contents from previous requests. CDNs have become
an important layer in the Internet ecosystem and are used
to enhance the delivery of contents by replicating commonly
the most requested ones across a globally distributed set
of caching servers. The aim is to reduce the load on the
origin servers and to improve the experience of the clients
by delivering a local copy of the content from a nearby cache
located at the edge of the network.

Due to the limited capacities of caches compared to the
requested data in networks and the operational cost of large
CDNs and their networks of caches, deciding which object
must be stored in caches becomes critical. Even though ex-
tensive studies have been conducted over the years to propose
efficient caching schemes, more room for improvement is still
visible compared to the theoretical optimum (OPT) efficiency
that can be achieved. The OPT replacement policy consists
basically of evicting from the cache the item that will be
requested the furthest in time. However, OPT can only be
achieved if we have access to all future access requests, which
is impractical in reality. Even if we have exactly the order
of the future requests for contents, which have various sizes,
computing OPT is NP-hard [6].

Using AI-based approaches, many studies tried to mimic
OPT operations or predict what items will be requested in the
future in order to achieve better outcomes. Nevertheless, these
proposals generally induce significant temporal complexity
and their efficiency is impacted by the requests access patterns
and the tuning parameters. Our goal in this paper is to use AI
tools to build an efficient caching scheme with a low-overhead.
In this context, we propose RevOPT, which resembles the
mechanisms of OPT and can be seen as a reversed version
of it, where a Recurrent Neural Network (RNN) is used for
the prediction of future requests to be generated. Unlike OPT
where the items that will be requested the furthest in the future
will be evicted from the cache, RevOPT will admit in the store
the ones that will get at least one hit before the time where
they are supposed to be evicted. This is basically achieved by
looking each time a new request is received at the N next
future distinct objects to be requested, N being the cache size
in terms of the number of items. By doing so, RevOPT allows



achieving a higher cache hit ratio than other caching schemes
from the literature.

The reminder of this paper is structured as follows. Sec-
tion II reviews the main related work. This is followed in
Section III by a detailed description of our proposal RevOPT.
In Section IV, we provide the performance evaluation of our
proposal to finally conclude this paper and present some future
research directions in section V.

II. RELATED WORK

The study of caching has started a long time ago [7],
where it was mainly used in operating systems before it
becomes widely adopted to retrieve data from the Internet.
In [8] and later on in [9], Belady’s MIN and, respectively,
Mattson’s OPT were presented and both provided an optimal
replacement policy. Due to the many similarities in their
operations, there seems to be a long-lived confusion between
these two proposals where authors referred to Belady’s MIN,
but in reality, they described Mattson’s OPT [10]. These
optimal algorithms can be achieved only when future data
accesses are known in advance, which can not be implemented
in practice where caching schemes can operate only using past
information. Besides, calculating OPT when the items have
different sizes become an NP-hard problem [6]. Still, many
proposed implementable caching algorithms were inspired by
OPT. Since then, there has been a very large and considerable
amount of work aiming to design efficient caching algorithms.
With the proliferation over the last years of CDNs and the
rapid deployment of 5G networks along with the advance-
ments of AI and its adoption in the field of networks and
distributed systems, many studies have started to propose AI-
based caching schemes in order to outperform the limitations
attained by classical approaches [11], [12] and reduce the gap
with OPT.

In [13], the author proposed LFO (Learning From OPT),
where a gradient boosting decision tree learning algorithm is
used to learn from OPT and the requests’ features and thus
making the caching decisions. The authors in [14] presented
a Machine Learning (ML) approach where the goal is to
approximate Belady’s MIN algorithm (oracle) by finding items
to eject from the cache based on the past access information.
To avoid the prohibitive cost of using the naive version of
Belady’s MIN, a relaxed version of it was used instead. In
[15], a framework for content caching called DeepCache was
proposed. By leveraging an LSTM-based model to predict the
popularity of content objects, DeepCache allows to proactively
cache the items that are mostly to be demanded in the future.
The authors in [16] introduce a Federated learning-based
Proactive Content Caching (FPCC) scheme. Their proposal
aims to provide an efficient caching scheme and at the same
time to preserve the users’ privacy by avoiding the centraliza-
tion of their data for training purposes thanks to the use of the
Federated Learning (FL) approach. In [17], Xu et al. present
an incremental learning-based framework for data caching
in edge networks and CDNs. In their proposal and instead
of rebuilding a new caching model each time the system

Figure 1. System model.

dynamics are changed, the valuable knowledge gathered from
the previous models are preserved and the same model is
incrementally improved to adapt faster and efficiently to the
dynamic workloads.

All these previous approaches come with a higher cost as
they increase the temporal complexity. With this in mind, we
aim to use AI to design an efficient caching scheme with a
low-overhead.

III. LSTM-BASED CACHING

A. System model

The system model of our proposal is depicted in Figure 1.
We consider a catalog of contents available to users from
the Internet and hosted initially at an origin server. We have
a caching entity (operated for example by a CDN) located
between the users and Wide Area Network (WAN), where it
can store only a portion of all the available contents. When
a specific data is requested by a user, it is checked first
whether or not it exists in the cache. If a copy is found (which
represents what we call a cache hit), the requested item is sent
to the client. If not, we say that a cache miss has occurred and
the requested data is to be served by the origin server. One
key metric to measure cache efficiency is thus the cache hit
ratio, which is the ratio between the cache hits occurrences
and the total number of requests sent by the users. Since the
cache size is limited, it is essential through a caching manager
to choose wisely how contents are managed within the cache.
More specifically, each time a specific content passes by the
cache, it has to decide whether a copy should be saved or not
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Figure 2. RevOPT overview.

(this is called the caching decision). Once the cache is full
and whenever a new object is going to be stored, an item has
to be chosen to be ejected from the cache (which is managed
through a cache eviction policy). Multiple cache replacement
algorithms exist. Among them, one can cite First In First Out
(FIFO), Least Recently Used (LRU), and so on and so forth.

B. RevOPT overview

In our proposal and by leveraging state-of-the-art machine
learning techniques, the basic idea is to learn future character-
istics of the system. Then, we feed the learned features to a
caching algorithm capable of using them to achieve improved
performance, while at the same time keeping the overhead as
low as possible. The caching scheme that we designed, called
RevOPT, is described in Figure 2 and works as follows. First,
we use a recency-based cache replacement policy like LRU.
Now, once an item has been saved in the store (of size N ), we
know that it will be evicted only if N other distinct objects
are saved in the cache. The idea then is to operate at the
cache admission level and allow items to be cached only if
we are sure that they will get at least one hit before getting
evicted. To do so and whenever a new item is received by the
cache, we look at the N next future distinct requests (in case
of items having different sizes, we look at the next distinct
future requests whose total size is equal to N ). If the received
item exists within them, a copy is saved. Otherwise, it is not
cached. So, in order for RevOPT to work properly, we need
to access the future requests that are to be received. For now,
let’s suppose that we have this information and we will explain
later how it can be accessed using ML. More precisely, each
time a new item is received, we need to access a table of
size N and do a lookout operation. Since we aim to keep
the overhead as low as possible, during the lookout operation
we need only to check the presence of an element without
accessing its exact position. To do so, we use a Bloom Filter
(BF) [18] containing the future sequences of requested objects.
A Bloom Filter is a space-efficient probabilistic data structure
used generally to test whether an element is a member of a
set or not, which matches perfectly the lookout operation in
RevOPT. Now every time we move forward in the sequence

of requests to decide whether to cache the current item or
not, we need to add at the same time new elements to the
table and remove from it the next element to be checked.
In a classical BF, elements can be added to the set, but not
removed. To avoid this issue, we use a structural variant of BF
called Counting Bloom Filter (CBF) [19]. Unlike classical BF,
a CBF allows updating the filter without recreating it afresh.
A CBF can suffer from a high false-positive rate when the
designed capacity of the table is exceeded due to its incapacity
to expand the filter. Since in our case, we know in advance
the maximum size of the filter, this is no longer an issue.

To sum up, the idea behind RevOPT is to offer a good
trade-off between temporal complexity and cache efficiency
by forbidding from the cache the items that will be saved then
evicted before getting any cache hits. We have a complexity
of O(1) for the replacement policy since LRU is used and a
complexity of O(1) for the caching admission thanks to the
CBF structure used in RevOPT. Of course, RevOPT is not
expected to achieve the same performance as OPT. It only
shares with it somehow the same conceptual similarities and
can be seen as a “Reversed” version of OPT where the items
that will be requested the furthest in the future are evicted
from the cache. Even when having the exact information of the
future requests and in the case where the items have the same
size, OPT is unpractical to apply as each eviction decision
has a time complexity of O(N) and OPT becomes NP-hard
in case of items with variable sizes.

C. LSTM encoder-decoder model

As we have seen in the previous part and to apply RevOPT,
we need to have in advance the sequence of requests to be
generated in the future by the users and received by the cache
entity. One way to tackle this problem is to extract from a
given sequence of past requests the evolution of its probability
distribution in time in order to predict the future distributions.
More specifically, the input sequence of items is transformed,
using time intervals or based on the number of items, into
a sequence of probability distributions to predict the future
ones. The aim is then to use these predicted distributions to
generate a sequence of items representing the future objects to
be requested by the users and feed it to RevOPT. This problem
falls under the umbrella of the time series prediction family.
One approach to such type of prediction problems that has
proven to be very effective is to use a special type of RNNs
called LSTM [20].

An LSTM is basically an artificial Recurrent Neural Net-
work architecture used in the field of Deep Learning where
hidden layers are treated as memory units. It is capable of
detecting patterns in sequential information by learning the
relationship between present inputs and previous ones in order
to predict future outputs. LSTMs were developed to deal with
the vanishing gradient problem that can be encountered when
training traditional RNNs and the resulting “short memory”
behavior when the most recent inputs in time are prioritized
at the expense of forgetting old inputs.



Figure 3. A basic architecture of a one-layer LSTM encoder-decoder model.

Since we are addressing multi-step time series forecasting,
which is a type of sequence-to-sequence prediction problem,
we use the Encoder-Decoder LSTM architecture, a very effec-
tive tool to deal with such types of problems. In this architec-
ture (see Figure 3), we have an LSTM encoder model to read
the input sequence step-by-step and encodes it into a hidden
state vector representing an internal learned representation.
The encoded sequence is then fed to the LSTM decoder model
to generate the output sequence step-by-step using each time
the actual output to train the encoder-decoder model. All of
these operations are done using LSTM units [20], which are
commonly composed of a cell and three types of gates (input,
output and a forget gate). The cell’s role is to remember values
over time intervals and the gates are used to regulate the flow
of information into and out of the cell.

As illustrated in Figure 4 and for each time window, we
train our LSTM model on the series of requests received
at that point in time to generate the future requests to be
used by RevOPT in the next time window. In the meantime,
we use RevOPT with the requests generated in the previous
time window, except at the beginning where there is no past
information. In that case, we use only LRU waiting to have
enough requests sent by the users to start applying the LSTM
model.

IV. PERFORMANCE EVALUATION AND RESULTS

A. Evaluation settings

In this section, we evaluate the performance of our pro-
posal RevOPT in terms of prediction accuracy and cache hit
efficiency. RevOPT is compared to the following caching al-
gorithms: LRU, S4LRU [21], LRB (Learning Relaxed Belady)
[14] and OPT. S4LRU is a variant from the classic LRU
where the cache is quadruply-segmented and items move from
one queue to another instead of considering the cache as a
whole. LRU and S4LRU are widely used when studying cache
performance [14]. LRB had been recently proposed and it
is a machine-learning approach that tries to mimic a relaxed
version of the Belady MIN algorithm. It has been compared in
[14] to many other AI-based and classical caching proposals.
We believe that it is interesting to use it for comparison against
RevOPT.

The LSTM encoder-decoder model in our proposal was
developed in Python using the Keras deep learning library.
We considered a 4-layer depth model with 64 hidden units
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Figure 4. Applying LSTM encoder-decoder with RevOPT.

for middle layers and 128 hidden units for the others. This
LSTM architecture had been chosen as we have seen that
additional layers and hidden units did not show any efficiency
improvement in the model’s results in our case. We used the
mean-squared-error and ReLU as the loss function and the
activation function, respectively. The number of epochs was
set to 50 after stability and we used the Adam algorithm as
the optimizer with a learning rate of 0.001.

During the evaluations, we used a catalog of contents con-
taining 10000 items whose popularity distribution follows the
Zipf’s law, where each object with a rank r has a probability
to be requested that is equal to: pr = r−α/

∑R
i=1 i

−α, α
being the skew of the distribution. The Zipf’s law has been
used in many fields, including the modeling of the requests
popularity distribution in CDNs and Cloud/Edge Computing
environments [22]. The synthetic datasets generated contain
each 1 Million requests in total and the model training is
launched each 100k requests. We considered the cases of either
contents having the same sizes (cache size is then expressed
in the number of maximum objects that can hold) or having
different sizes (varying between 500 MB and 5000 MB) and
multiple values of the Zipf’s law parameter α and the cache
size are tested.

B. Results and analysis

To measure the content popularity prediction’s accuracy of
RevOPT and its impact on the caching efficiency, we compare
in Figure 5 the cache hit ratio as a function of α of our proposal
with RevOPT having the exact information concerning the
future sequence of requests to be generated. We can see
that in general and for the results that are exposed in this
figure, the LSTM encoder-decoder model achieves on average
a good accuracy to predict the future requests’ distribution.
The accuracy is impacted by the skewness of the distribution
(controlled by the parameter α of the Zipf’s law in this case)
as it can achieve 98% of accuracy for high values of α and
vice-versa. This is actually normal as a high value of α will
result in fewer items dominating the requests, which makes it
easier to predict the overall popularity. In contrast, a low value
of α means less skewness in the distribution and thus, more
difficulty anticipating which objects will be requested in the
future.

In Figure 6, we display the cache hit performance as a
function of α of RevOPT in comparison to the theoretical
optimum values and other caching strategies. This is realized
for the case of catalog’s items having the same size. We can see
that in general and for multiple configurations of the cache size
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Figure 5. Popularity prediction accuracy of RevOPT.
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Figure 6. Cache performance in terms of cache hit with catalog’s items having the same size.

and the parameter α, that our proposal outperforms classical
approaches like LRU and S4LRU and is slightly better than
LRB (or at least equal to it). One should note that LRB has
been shown in [14] that it outperforms many efficient caching
algorithms from the state-of-the-art. One important aspect to
point out from Figure 6 is that as the cache size is increased,
especially with the rise of α, the performance of all the tested
caching strategies become similar and very close to OPT (for
the same reasons explained earlier). This means that in some
cases, using a caching policy other than, for example, LRU
(which has very low complexity) can be useless.

In Figure 7, we have the cache hit performance as a function
of the cache size in the case of the catalog’s items having
different sizes. Compared to OPT and other caching strategies,
we get approximately the same results in terms of the cache
hit performance as the catalog’s objects having different sizes
did not have a negative impact on RevOPT performance. The
results displayed in this section represent preliminary and
promising outcomes on the efficiency of RevOPT, which uses

a lightweight AI approach with a low-overhead caching policy
compared to other AI-based caching strategies.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the content caching problem and
proposed a new caching scheme called RevOPT. Our proposal
was designed using practical state-of-the-art machine learning
techniques in order to outperform classical approaches. To do
so, we used an LSTM-based model to predict future requests
to be generated by users by learning from their habits, which
are depicted by their past data. The information provided by
the LSTM model was then fed to a caching algorithm that
was designed to keep the cache miss ratio as low as possible
by allowing in the cache, only the items that are the most
likely to be requested at least once after they are saved in
the content store. To keep a very low-overhead, a Counting
Bloom Filter structure was used in RevOPT to manage the
necessary data that are needed to make the caching decisions.
We compared our proposal to existing caching algorithms and
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Figure 7. Cache performance in terms of cache hit with catalog’s items having different sizes.

OPT. The conducted simulations have shown promising results
for our proposal in multiple configurations. For now, we tested
our proposal in the case of a centralized cache, with a relatively
small catalog size and a content popularity following the Zipf’s
law. We aim in the future to adapt our proposal and extend it
to the case of networks with multi-cache settings and evaluate
its efficiency on real dataset traces.
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