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Abstract— Using local caches is becoming a necessity to
alleviate bandwidth pressure on cellular links, and a number of
caching approaches advocate caching popular content at nodes
with high centrality, which quantifies how well connected nodes
are. These approaches have been shown to outperform caching
policies unrelated to node connectivity. However, caching content
at highly connected nodes places poorly connected nodes with low
centrality at a disadvantage: in addition to their poor connectiv-
ity, popular content is placed far from them at the more central
nodes. We propose reversing the way in which node connectivity
is used for the placement of content in caching networks, and
introduce a Low-Centrality High-Popularity (LoCHiP) caching
algorithm that populates poorly connected nodes with popular
content. We conduct a thorough evaluation of LoCHiP against
other centrality-based caching policies and traditional caching
methods using hit rate, and hop-count to content as performance
metrics. The results show that LoCHiP outperforms significantly
the other methods.

Index Terms—Content Centric Networking, Content Caching,
Content Offload, Centrality.

I. INTRODUCTION

Facing an exponentially growing demand [1, 2], cellular
network operators have been trying to offload traffic to other
networks as aggressively as possible [3]. An effective method
to alleviate bandwidth pressure on the cellular links consists
of using local caches at users’ nodes or at the access points
of small cell base stations or WiFi networks, and providing
methods and incentives for users to draw traffic from local
caches as much as possible [4] [5].

Traditional caching policies consist of keeping popular or
recent content, using First-In First-Out (FIFO), Least Recently
Used (LRU) and Least Frequently Used (LFU) [6][7][8].
These are non-managed caching policies, where an individual
cache of a caching network receives new content periodically,
and upon seeing this new content, decides whether to keep it
or not, and if needed, which other piece of content to discard
to make room for this. In typical Content Delivery Networks
(CDNs), the operator of the network of caches assigns some
content to caches according to some optimization principles.

It makes sense to take into account the topology around
caches for content placement, and in particular the connected-
ness of caching nodes. Centrality is a concept used to identify
the most connected nodes in a graph. A high centrality score

reflects a high topological connectivity for a node in the
network. In the past, the concept of centrality has been used
with node connectivity having social or physical meanings. For
example, it has been used in the analysis of social networks to
find influential users in a social network [9]. Centrality has also
been used with physical connectivity in mind, and a number
of approaches [10, 11] advocate caching popular content at
nodes that have high centrality, i.e., that are well connected.
Section II discusses relevant prior work, and it is important
to note that prior caching policies that take advantage of the
connectivity of caching nodes place popular content at those
nodes that have high centrality, which we call High Centrality
High Popularity (HiCHiP) caching policies.

Contrary to the conventional wisdom regarding caching
policies that consider node connectivity, we believe HiCHiP
caching policies are ill-suited for traffic offload: It is a case
of the rich getting richer. In an area with many densely-
connected nodes, base stations, access points, a richly con-
nected node will have access to plenty of content, and will be
able to pick from the most popular. A poorly connected node
at the edge of this area on the other hand will have few caches
nearby from which to fetch data, and these caches at the edge
will have low centrality. If caching is based on HiCHiP, poorly
connected nodes will hold low popularity content as well.

The rationale for HiCHiP caching policies in the past has
been the prevailing view that a high-centrality node is a
natural candidate to provide the content to other nodes.
However, when centrality refers to physical connectivity, cost
and system efficiency dictate that there can only be a few high-
centrality nodes in a network, and hence an HiCHiP caching
policy results in the most popular content being concentrated
at a few nodes, and the system may not be able to deliver much
of this content to requesting nodes because natural bottlenecks
are created.

In this paper, we argue that a far better way to take
node connectivity into account in a caching policy consists
of reversing the meaning of connectivity insofar as content
delivery is concerned. Specifically, a high-centrality node is a
natural candidate to obtain the content from other nodes.
According to this view, we propose a new network cache
management policy, namely, a Low-Centrality High-Popularity
(LoCHiP) policy for content placement, so that a node that has978-1-7281-4973-8/20/$31.00 c� 2020 IEEE



poor connectivity at least will have popular content nearby;
while a well connected node may find it from one of its many
neighbors. There is no performance loss if a high-centrality
node does not have the content in its cache: it can find it
nearby. On the other hand, a poorly-connected node that does
not have some content in its cache has few opportunities to get
it otherwise. LoCHiP based cache management policy ensures
that the content of a poorly connected cache is as useful as
possible.

The main contribution of this paper consists of formalizing
this intuition by validating that LoCHiP indeed performs better
than HiCHiP or that non-managed policies such as LRU.

The paper is organized as follows: Section II discusses
the related work; Section III describes LoCHiP in details.
Section IV discusses a distributed algorithm for collaborative
content placement based on LoCHiP where low-centrality
nodes cache the most popular content, and high-centrality
nodes cache the most popular content that is not directly
available in their connected neighborhood (as in any caching
policy, unpopular content is not cached). Section V presents
the results of extensive simulations that validate LoCHiP on
both static and dynamic realistic topologies comprising 2, 986
nodes. Section VI concludes our paper with some insights into
future directions.

II. RELATED WORK

Network centrality schemes such as Degree, Closeness,
Betweenness and Eigenvector centrality are well known tools
to identify important nodes in networks. Social networks
analysis exploit centrality to find influential information hubs
for publishing/spreading information or advertisements.

Pantazoupoulos et al. [12] defined a variant of typical
betweenness centrality named as conditional betweenness cen-
trality (CBC) to place content. The authors considered a subset
of nodes with high CBC for content caching. However, no
solution is provided on which content should be placed at
each node. Chai et al. [10] proposed centrality-based caching
algorithm by exploiting the concept of betweenness centrality
to improve the caching gain. Wang et al. [13] solve an
optimization problem to find where to place the content in
order to minimize the cost of delivery. A solution is provide
to address how much cache should be allocated at each node.
By contrast, our target is to address which nodes should cache
which content in the network.

Rossi et al. [14] proposed to size the cache of different nodes
as a function of different centrality metrics such as degree,
betweenness, closeness, graph, and eccentricity. They show
little benefit of using centrality to size caches, which supports
our claim that high centrality should not be where to place the
content first. In a similar context, Yufei et al. [15] use “control
nodes” to cache content based on betweenness centrality.
Nguyen and Nakazato [16] proposed a betweenness-centrality-
based network coder placement for peer-to-peer (P2P) content
distribution. However, they do not consider content placement;
they use random linear network coding at every coding node
to assist content delivery. Li et al.[5] use game theory for

caching popular videos at small cell base stations (SBSs) while
Mehr et al. [17] suggest to prefetch video content in caches
to improve Quality of Experience for users at the network
edge. Mangili et al. [18] proposed a game theoretic approach
in Information Centric Networks (ICN) to stimulate wireless
access point owners to jointly lease their unused bandwidth
and storage space to a content provider under partial coverage
constraints. Both efforts targeted a pricing model instead of
providing an efficient content-placement solution.

Distributed caching in ICN is targeted by different studies
[19, 20, 21]. Wang et al. [22] address the distribution of the
cache capacity across routers under a constrained total storage
budget for the network. They found that network topology
and content popularity are two important factors that affect
where exactly should cache capacity be placed. Yu et al. [23]
looked at pushing content to the edge to anticipate network
congestion, while Azimdoost et al. [24] computed the capacity
of an ad-hoc network of caches.

III. CENTRALITY-BASED CONTENT PLACEMENT

A. Motivating Example

We consider the illustrative example shown on Figure 1.
We define the known content to be X = {xj , j = 1, . . . , N}
where xj is an indivisible content chunk in the network, and
N is the (potentially very large) number of pieces of content.
In the remaining of the paper, with no loss of generality,
we consider individual content chunk x. We assume a set of
connected nodes can each cache exactly one piece of content
from the content set X = {x1, x2, x3, x4, x5}1. Each content
is requested with popularity p(X) = {p1, p2, p3, p4, p5} by
the nodes at the edge of the network, where p1 > p2 > p3 >

p4 > p5. We assume that nodes can fetch traffic from at most
h hops (say, h = 3) away, so as to meet delay constraints.

In each of the three panels, we can see the caching decision
of the nodes. In (a) the content is cached greedily at each
node, namely each node keeps the most popular content for
which it sees requests(Figure 1a). This means the nodes near
the edge will cache x1, and since requests from x1 will be
served from there, the next node towards the center will cache
x2, etc. In (b), the most popular content is cached at the High
Centrality nodes. This is the HiCHiP policy. The centrality can
be either degree (noted d on Fig. 1) or the cache size in the
2-hop neighborhood (denoted as CCC for Cache Connectivity
Centrality on Fig. 1) as in this example, both degree and CCC

have the same order. We can verify that x1 is stored in the
middle of the graph, and x4 at the edge. Finally, in (c) we
describe the caching policy for LoCHiP (where the centrality
is d or CCC). Now x1 is cached at the edge.

For each of these scenarios, we can compute the rate of
traffic request that are issued to the cellular network operator
from edge users, or conversely, the rate of offload. None of
the caches have space for x5, which is the less popular tail of

1Each xi may correspond to a group of content with similar popularity of
total size comparable with that of a cache.



(a) LRU/Greedy (b) HiCHiP (c) LoCHiP

Figure 1: Content placement strategies

the content, so downloading x5 will incur the same costs for
all three scenarios (and therefore we ignore it).

For (a), the content x4 with popularity p4 is not cached
locally thus it will be downloaded from the Service Provider
(SP) by all users. The content x3 with popularity p3 is
cached at the most central node, and is unreachable for users
more than three hops away, thus, they will download it from
the infrastructure. The total content downloaded from the
infrastructure is: p3(x3) ⇤ 4 + p4(x4) ⇤ 8 = 4(p3 + 2p4).

For (b), the most popular content x1 at the most central
node is unreachable from half of the users since it is more
than 3 hops away. Thus, the total content downloaded from
the SP are p1(x1) ⇤ 4 = 4p1.

For (c), a less popular content x4 is cached at the most
central node and is downloaded from the SP by the users more
than three hops away from it. In this case, the total content
downloaded from the SP are p4(x4) ⇤ 4 = 4p4.

It is easy to see that (a) incurs 4(p3 + p4) more download
traffic from the infrastructure than (c); and the (b) incurs
4(p1 � p4) more download traffic. LoCHiP outperforms the
other two proposals for any pi satisfying p1 > p2 > p3 >

p4 > p5.
We note that with LoCHiP, the popular content is still

reachable to the highly connected nodes. Indeed, in (c) the
most central node has access to x1, x2, x3, x4 despite caching
the least popular content (among those cached in the network).
Our algorithm ensures that the most popular content is reach-
able for all the nodes, as we will see below.

Our example shows the benefit of LoCHiP for a generic
distribution (as long as p1 > p2 > p3 > p4; p5 corresponding
to the non-cached tail may have a higher probability if it is
aggregating multiple less popular items). For lack of space,
we cannot include other illustrative topologies. However, other
topologies show that LoCHiP perform at least as well as
greedy or HiCHiP. This is confirmed by our simulations, where
the topologies are randomly arising out of dynamic networks.

IV. LOCHIP-BASED OPTIMAL PLACEMENT

We define an optimization model with the objective function
is to minimize the overall cost for all users in retrieving content
from the service provider:

L = minimize

✓P
U

P
X

cu,xpu,x

◆
,

s.t,
P
x
bv,x  bv, and d(u, xu)  h, 8u

where the loss function L minimizes, for the set of users U
their cost c.,. to retrieve all contents in the set X. The first
constraint deals with the buffer requirements for a node v to
not cache content exceeding its buffer size bv . The second
constraint limits user u to retrieve the content xu from a
maximum of h hops away.

We allow nodes to mutually cache the maximum amount
of content in a distributed manner. Nodes with caches in
a neighborhood can self-organize and estimate the content
popularity online based on the amount of user interest received
for the cached content. We present below a heuristic for a set
of nodes to opportunistically cache content in a neighborhood.

A. Distributed Content Placement

Algorithm 1 is used for content placement by each node.
Node v first defines its h-hop neighborhood as the set Sv 2 V
and exchanges information regarding its cache size with the
nodes in Sv (Lines 4 and 5). Using the cache size information
in the neighborhood, it then computes and exchanges its
respective centrality CCCv (Line 9) with the nodes in Sv .
Each node compares its CCC with the other nodes in their Sv

and in case it has the lowest CCC, it initializes the placement
by caching the most popular content x from the content list X
in order to have access to the most popular content. In Line
7, a node that has filled up its buffer already indicates so, and
is not considered as a candidate to be the lowest CCC node
any longer. The next lowest CCC node can then fill up its
cache by drawing on the next most popular content.

A popularity tag can be used for each content by the
operator where nodes can recognize content based on its tag,
i.e. most popular content tagged as popularity level 1, lesser
popular as level 2 and so on. For ease of explanation, assume
that the amount of content tagged with the same label is
comparable to the size of one cache, except for the tail of
the content that includes all the content that cannot be cached
at all.



Thus, for a node v in a neighborhood S with k nodes
having a lower centrality than CCCv , v will cache content
with the (k + 1)th popularity level content in its placement
policy. This content can be cached opportunistically (if the
user sees content with this tag, it keeps it) or the cache can
be populated with this content by the SP, say during periods
of low demand. We denote by XS the content cached in the
neighborhood S and by Xv the content cached at node v.

Line 11 of Algorithm 1 ensures that the occupied buffer
space bv does not surpass the total available node buffer
b
t
v while XS < X allows the node to cache content with

decreasing popularity order (Line 12) as long as there exist
content to populate its cache until no more content are left to
cache. The node updates the amount of individually occupied
buffer space bv and Xv the set (list) of content it cached (Line
14). The content availability in the neighborhood S is updated
as shown in Line 15 and the set of content cached at the node
Xv are added to the set of contents in the neighborhood XS

(Line 16).
In order to achieve collaborative caching at the set of

nodes in the neighborhood, in the increasing order of node
centrality CCC, the other caching nodes in the neighborhood
Sv perform the same steps and cache content in its decreasing
popularity order. The algorithm converges until either there
is no more content left to cache or the corresponding nodes
buffers are full as mentioned in Line 11. In case when a node
buffer is full, it can exempt itself from the caching process.
The nodes with still buffer remaining repeat the process only
now considering the content that is not already placed in the
neighborhood to add in the unfilled caches.

Algorithm 1: Content Placement Algorithm at Node v

1: INPUT: S, X, P , h, bv , 8v 2 V
2: OUTPUT: XSv , Xv 2 X
3: for each node v do
4: Define its h-hop neighborhood Sv 2 V,
5: Exchange buffer size bv in Sv

6: Find CCCv

7: if buffer bv is full then
8: set CCCv to +1
9: end if

10: Exchange CCCv , 8v in Sv

11: if CCCv = argmin
v02Sv

(CCC), v0 6= v then

12: while (bv  b
t
v) or (XS < X) do

13: bv  argmax
x2X,x/2XS

(px)

14: end while
15: Update bv, Xv

16: XS  XS [Xv

17: end if
18: end for
19: return Xv, XS

B. Content Retrieval
The proposed collaborative caching scheme can be com-

plemented by a content retrieval mechanism as described in

Algorithm 2: Content Retrieval
1: INPUT: Sv , CCCv for v 2 Sv , h
2: for a node v receiving INTEREST (x) do
3: if x in bv then
4: RETURN(x)
5: end if
6: if in Sv exists v

0 = argmax
v02V,v0 6=v

(CCC), then

7: FORWARD(x, v0)
8: else
9: FLOOD(INTEREST (x), Sv)

10: end if
11: end for

Algorithm 2. For a node v in the h-hop neighborhood Sv

receiving user interest for a content x, it verifies in its buffer
bv (or Content Store - CS) whether the content is already
cached and return the desired content (Lines 2 � 5). In case
the content is not in the node’s cache, it looks for a node v

0

with a higher centrality CCC within its h-hop neighborhood
and forwards the interests to it as show in Line 6� 7. In case
of failure to find a higher CCC node, the node floods the
interests in its h-hop neighborhood Sv , where the interest still
remains in a local broadcast scope to a maximum of h hops.

The routing tables are populated at the high CCC nodes in
the h neighborhood where routing entries at such nodes pertain
their ability to know where the content can be found. For
instance, based on its better connectivity, a high CCC node
can easily route the interest to the low CCC node caching
the corresponding content. In case the content is not available
in the neighborhood, the user can retrieve it directly from the
SP using the costly infrastructure network as the last resort
solution.

V. NUMERICAL EVALUATION

In our previous work [25], we presented analytical models
to show the benefit of the proposed approach with respect to
the average cost (hops) for retrieving content for an arbitrary
leaf user on lattice and tree based topologies with varying Zipf
skewness parameters. We theoretically evaluated the proposed
LoCHiP based policy in comparison with HiCHiP and greedy
cache management policy and the results suggest it to be better
performing in reducing the cost of retrieving content in the
network.

To further evaluate our algorithm in a network of caches,
we implement a CCN-based content caching and retrieval [26]
using NS-3-based simulator for the named-data networking
model, ndnSIM [27] . We extract the node mobility from
a realistic model of large scale dynamic mobility of nodes
in Köln, Germany [28] to consider scalable caching with the
existence of extreme case of mobile nodes.

A total of 2, 986 nodes are used to validate the scalability of
our caching approach. The analysis is performed by dividing
an area of 6⇥ 6 km

2 into 36 uniform neighborhoods each of
1⇥1 km

2. Each neighborhood comprises a set of nodes, both



5 10 20 30

Network Caches (Percentage)

0

20

40

60

80

100
A

ve
ra

g
e

 H
it 

R
a

te
 (

P
e

rc
e

n
ta

g
e

) LoCHiP
HiCHiP
LRU/Greedy
No Collaboration

(a) Overall Comparison

5 10 20 30
Network Caches (Percentage)

0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 H

it
 R

a
te

 (
P

e
rc

e
n

ta
g

e
)

CCC=2 Hops
CCC=3 Hops
Degree
Closeness
Betweenness
Eigenvector

(b) HiCHiP

5 10 20 30
Network Caches (Percentage)

0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 H

it
 R

a
te

 (
P

e
rc

e
n

ta
g

e
)

CCC=2 Hops
CCC=3 Hops
Degree
Closeness
Betweenness
Eigenvector

(c) LoCHiP

Figure 2: Average cache hit rate compared using different centrality schemes (Static Topology)

static and mobile nodes to form a proximity neighborhood.
A total duration of 1 hour of simulation is performed where
the temporal characteristics of the network are captured with
a granularity of 1 second. For the static topology evaluation,
we consider nodes connectivity graph at three instants from
the trace, i.e. at time = 0, 30 and 60 minutes, respectively.

A. Simulation Scenario
The simulation scenario implements an ad-hoc network with

two types of nodes: (a) Consumer or user nodes generating
interests with a frequency of 100 interests per second for
one hour randomly for content from a catalog containing 100
unique items, comprising 10, 000 interests/sec and (b) nodes
caching content as “provider” nodes in the ad-hoc network
with a uniform cache size. Each simulation is repeated 10
times with random seed for consumer interests generation
where results are obtained with 95% confidence intervals. The
aggregate user interests follow a Zipf distribution [29] with
 = 1 as the skewness parameter for the content popularity.
The interests propagation is limited to maximum h = 3 hops
in order to implement a local neighborhood scope as an upper
bound on the content reachability.

For the case of CCC, we consider two variants, h = 2 and
h = 3 hops as the local neighborhood limit. We compute CCC
on (i) h = 2 hops where highest centrality CCC node is the one
with the maximum amount of cache in its 2 hop neighborhood
as a practical centrality exchange between neighbors, and (ii)
h = 3 hops with the node with highest CCC is the one with the
maximum cache available to it in a distance of 3 hops. Thus,
in this later case, nodes farther than 3 hops are considered
unreachable to the end users (consumers). The nodes’s CCC
is shared with other nodes within the proximity network in
order to perform caching decisions locally.

The number of caches in the network are varied from 5%
to 30% since a subset of nodes can be enabled with caches in
a typical network. Thus, among the 2, 986 nodes, we consider
150, 300, 600 and 900 nodes as 5%, 10%, 20% and 30%
network caches respectively.

B. Results
1) Hit rate: Figure 2 shows the cache hit rate com-

puted on average of three static topologies. In Figure 2a we

compare the four approaches, our proposed centrality-based
LoCHiP approach, the centrality-based HiCHiP approach, the
non-centrality based LRU/Greedy approach, and the non-
collaborative approach. The set of nodes we consider vary
from 5% to 30% caching nodes in the network. We see
overall, that using LoCHiP results in high average cache
hit rate with a maximum of around 66% for 30% network
caches. It is followed by HiCHiP with maximum 56%, yet
another centrality-based approach. On the other hand, Greedy
non-centrality based caching of popular content at each node
resulted in a maximum of 31% cache hit rate for similar
number of network caches.

Furthermore, we evaluate both centrality-based approaches
HiCHiP and LoCHiP to find out which approach yields better
cache hits as shown in Figure 2b and 2c. For the case of
HiCHiP, the average cache hits by node is analyzed by varying
the number of nodes in the proximity network. CCC with
h = 2 hops provided a high hit rate due to content reachability
within 2 hops of consumer, while in CCC with h = 3
hops, the high centrality nodes are situated one hop farther
compared to high centrality nodes using CCC with h = 2
hops. Figure 2c show that the hit-rate by all centrality schemes
using LoCHiP is more than the case of HiCHiP, validating our
claim. However, we see variations among different centrality
schemes. This is due to the fact that most of centrality schemes
identified similar nodes as the low centrality nodes, thus
resulting in similar performance. We also notice that for the
case of CCC, h = 3 hop neighborhood yields better results
compared to other schemes since at most content is cached at
h = 3 hop distance from the consumer nodes. Though for the
case of 30% network cache, CCC with h = 2 hops dominates
with around 72% cache hits as it is more likely to find content
within 2 hops when there exists a high fraction of caching
nodes in the neighborhood.

Figure 3 depicts the cache hit rate for the dynamic topology
representing the existence of mobile nodes. The first observa-
tion from Figure 3a is that despite high mobility, particularly
in the case of vehicles in the network, LoCHiP outperforms all
other approaches. It achieves a hit rate of up to 48%, where
HiCHiP, with a maximum hit rate of 40% follows. Greedy
edge caching does not resulted a hit rate higher than 31%,
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Figure 3: Average hit rate compared using different centrality scheme (Dynamic Topology)
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Figure 4: Average hop count compared using different centrality schemes (Static Topology)

validates our claim that even in a dynamic topology, centrality-
based caching dominates where LoCHiP dominates.

On the other hand, for HiCHiP, Eigenvector centrality re-
sulted the best performance in terms of cache hits with a maxi-
mum of 43%, still yielding a lower performance than LoCHiP.
It is because LoCHiP privilege nodes with low connectivity,
however, such nodes are found to be more towards network
edge. Moreover, LoCHiP allows isolated nodes to cache con-
tent, thus providing access to content at nodes unreachable
from the most central part of the network. At the same time,
CCC=3 hops place content in 3-hop neighborhoods, thus,
ensuring interests are satisfied within 3 hops from the end
users.

2) Hop count: Figure 4 shows the average number of
hops the content traverses from the caching node to the con-
sumer. Figure 4a clearly shows that centrality-based LoCHiP
approach outperforms the one based on HiCHiP, the non-
centrality based and the non-collaborative approach. We see
an average hop count of 2 for LoCHiP where HiCHiP follows
with a slight improvement where the non-collaborative case
results in the worst performance with an average of 4.5 hops
as distance traversed, more than double of LoCHiP. Again the
obvious reason for this is that LoCHiP caches content at low
centrality nodes closer to consumer nodes which are rather
isolated in the network.

Figures 4b and 4c compare the average hop count for

centrality-based HiCHiP and LoCHiP respectively. We observe
that LoCHiP achieves better results. It is evident since content
is cached in 2 hop neighborhood, thus increasing the chance
of finding content within 3 hops from the consumer nodes.
Moreover, a decrease in hop count is noticed with increase
in network caches, though a slow decrease suggests that
increasing caching nodes provides less benefit and incurs cost.

VI. CONCLUSIONS AND FUTURE WORK

This paper targeted the distributed cache management prob-
lem at the network edge. A centrality-based content placement
policy, LoCHiP, is proposed for caching at the nodes near
end-users in the network. Counter the common intuition of
caching content at high centrality nodes, LoCHiP starts placing
popular content at low centrality nodes since their caching
resource needs to be well utilized to compensate for the poor
connectivity. Additionally, low centrality nodes are often at
the edge of the network, and therefore closer to the users. We
evaluated LoCHiP using large scale topologies from realistic
mobility trace containing 2, 986 nodes. It yielded up to 73%
cache hit-rate.

Future work includes the extension of the content retrieval
towards investigating the caching nodes behavior in delay
sensitive dynamic networks with multiple content providers
and focusing on mechanisms to avoid redundant content
downloads.



REFERENCES
[1] “Cisco visual networking index: Global mobile data traffic forecast

update, 2015-2020,” white paper - http://goo.gl/l77haj.”
[2] F. Rebecchi, M. D. De Amorim, V. Conan, A. Passarella, R. Bruno, and

M. Conti, “Data offloading techniques in cellular networks: a survey,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 580–603,
2015.

[3] “R. Gupta and N. Rastogi. LTE advanced: LIPA and SIPTO.
https://www.aricent.com/pdf/aricent lipa sipto whitepaper.pdf.”

[4] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, “Cache in the
air: exploiting content caching and delivery techniques for 5G systems,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139, 2014.

[5] J. Li, H. Chen, Y. Chen, Z. Lin, B. Vucetic, and L. Hanzo, “Pricing
and resource allocation via game theory for a small-cell video caching
system,” IEEE Journal on Selected Areas in Communications, 2016.

[6] K. Hamidouche, W. Saad, and M. Debbah, “Many-to-many matching
games for proactive social-caching in wireless small cell networks,” in
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), 2014 12th International Symposium on. IEEE, 2014.
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