
HAL Id: hal-04137686
https://hal.science/hal-04137686v1

Submitted on 30 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reversing The Meaning of Node Connectivity for
Content Placement in Networks of Caches

Junaid Ahmed Khan, Cedric Westphal, J.J. Garcia-Luna-Aceves, Yacine
Ghamri-Doudane

To cite this version:
Junaid Ahmed Khan, Cedric Westphal, J.J. Garcia-Luna-Aceves, Yacine Ghamri-Doudane. Reversing
The Meaning of Node Connectivity for Content Placement in Networks of Caches. 2020 International
Conference on Computing, Networking and Communications (ICNC), Feb 2020, Big Island, France.
pp.679-685, �10.1109/ICNC47757.2020.9049716�. �hal-04137686�

https://hal.science/hal-04137686v1
https://hal.archives-ouvertes.fr

Reversing The Meaning of Node Connectivity for
Content Placement in Networks of Caches

Junaid Ahmed Khan⇤, Cedric Westphal†, J.J. Garcia-Luna-Aceves‡, and Yacine Ghamri-Doudane§
⇤New York University, NY, USA

†Futurewei Technologies, Santa Clara, CA, USA
‡University of California, Santa Cruz, CA, USA
§L3i Lab, University of La Rochelle, France

junaid.khan@nyu.edu, cwestphal@gmail.com, jj@soe.ucsc.edu, yacine.ghamri@univ-lr.fr

Abstract— It is a widely accepted heuristic in content caching
to place the most popular content at the nodes that are the best
connected. The other common heuristic is somewhat contradic-
tory, as it places the most popular content at the edge, at the
caching nodes nearest the users. We contend that neither policy
is best suited for caching content in a network and propose a
simple alternative that places the most popular content at the
least connected node. Namely, we populate content first at the
nodes that have the lowest graph centrality over the network
topology. Here, we provide an analytical study of this policy over
some simple topologies that are tractable, namely regular grids
and trees. Our mathematical results demonstrate that placing
popular content at the least connected nodes outperforms the
aforementioned alternatives in typical conditions.

Keywords—Content Centric Networking, Content Caching, Con-

tent Offload, Centrality.

I. INTRODUCTION

Caching of content in a large distributed caching system
has relied on simple heuristics. Optimal cache and content
placement may be derived (see for instance [1–3] but these
solutions require knowledge of the overall demand vector
and network topology to solve some complex optimization
problems. As a consequence, simple heuristics have been relied
upon to place content in caches.

The two main heuristics are to place the most popular
content either at the edge (see, for instance [4]), or at the
most connected nodes (say, [5]). The intuition for the former
is that the popular content should be placed near the user. It
delivers more ”bang for the buck,” due to the distribution of
the popularity of the content request, that tends to drop down
quickly after the most popular pieces of content. The intuition
for the latter is that placing the most popular content at the
best connected nodes ensures that it will be available to others,
who are more likely to reach these nodes and thereby find the
content.

We contend that neither heuristic policy is best suited for
caching content in a network and present another simple policy
that places the most popular content at the nodes with the least
centrality. We denote this policy by LCHP, for Low Centrality
High Popularity. In this paper, we consider the mathematical
performance of LCHP on some simple topologies and demon-
strate that it offers better performance to the other policies,
namely a greedy placement of the most popular content at the

edge (similar to [4]) and the HCHP policy that places the High
Popularity content at the nodes with High Centrality.

Our objective is to demonstrate that other simple heuris-
tics should be considered, in Information-Centric Networks
in particular, to place the content in the caches. The main
contribution of the paper is to prove with analytical results
on the grid and the tree that LCHP outperforms greedy and
HCHP for content with a Zipf distribution for the popularity
with parameter less than 1.

The paper is organized as follows: Section II discusses the
related work; Section III presents the system model in which
LCHP is defined and Section IV describes LCHP in detail
and presents a novel centrality metric that we call Cache-
Connectivity Centrality (CCC) to allow nodes to compute
their own centralities. Section V considers the performance
of LCHP in an analytical manner on regular lattice and tree
topologies. Section VI presents the results of the analytical
evaluation. Section VII concludes our paper with some insights
into future directions.

II. RELATED WORK

Centrality is a graph metric that is used to identify the
most important nodes in a network. There are different ways
to compute such a measure: the degree of a node, the closeness,
the betweenness, the eigenvector centrality are common ones.

Finding epidemic nodes that spread diseases [6] is an
application in medical science, but it can be mapped to finding
the nodes most able to diffuse content in our context. Similarly,
Google’s PageRank [7] algorithm ranks the importance of a
specific content (here, a web-page) in an Internet search based
on the number of web links directed towards it. Medya et al.
[8] characterize centrality as an important network metric and
suggests modifications to the network structure to increase the
centrality of a set of nodes to improve performance.

Wei et al. [9] provide an extensive survey on different
socially-aware routing protocols for Delay Tolerant Networks
(DTNs) and investigates key centrality metrics. For example,
BubbleRap [10] and ML-SOR [11] use nodes with high cen-
trality score for data dissemination and routing in opportunistic
mobile social networks. Pantazoupoulos et al. [12] defined a
variant of typical betweenness centrality named as conditional
betweenness centrality (CBC) to place content. The authors
considered a subset of nodes with high CBC for content

caching. However, no solution is provided on which content
should be placed at each node. Chai et al. [5] proposed
centrality-based caching algorithm by exploiting the concept
of betweenness centrality to improve the caching gain. Wang
et al. [13] solve an optimization problem to find where to place
the content in order to minimize the cost of delivery. A solution
is provide to address how much cache should be allocated at
each node. By contrast, our target is to address which nodes
should cache which content in the network.

Rossi et al. [14] proposed to size the cache of different
nodes as a function of different centrality metrics such as
degree, betweenness, closeness, graph, and eccentricity. In
support with our findings below, they show little benefit of
using centrality to size caches. In a similar context, Yufei
et al. [15] use “control nodes” to cache content based on
betweeness centrality. Nguyen and Nakazato [16] proposed
a betweenness-centrality-based network coder placement for
peer-to-peer (P2P) content distribution. However, they do not
consider content placement; they use random linear network
coding at every coding node to assist content delivery.

Distributed caching in ICN is targeted by different stud-
ies [17]. Wang et al. [3] address the distribution of the cache
capacity across routers under a constrained total storage budget
for the network. They found that network topology and content
popularity are two important factors that affect where exactly
should cache capacity be placed. Yu et al. [18] looked at
pushing content to the edge to anticipate network congestion,
while Azimdoost et al. [19] computed the capacity of an ad-
hoc network of caches. As mentioned above, edge caching [4]
is a popular scheme in ICN. Optimal content placement can be
found [1, 2], but only approximations with a provable bound
are available for a distributed, dynamic context.

III. BACKGROUND AND ASSUMPTIONS

We consider a caching network such as an ICN/CCN or
network of caches. Each node request the content, either from
its neighbors, or from an origin server. We assume the content
is requested from a neighborhood that is at most h-hops away
from the requesting node, or from the origin server if not found
within the h-hop neighborhood. We assume that each node
contains a cache that can serve content to other nodes.

A. Connectivity Model

Formally, we assume a set of user nodes U = {u} can
retrieve content from nearby set of content caching nodes V =
{v}. If a user is unable to retrieve the content locally, it can
download it directly from the origin server.

The connectivity of nodes is modeled by a graph
G(V(t),Ev(t)), where V = {v} is the set of non-leaf nodes
and U = {u} is the set of users as leaf-nodes in the
network. We consider a dynamic network topology for nodes
to connected to different nodes at different times, where the
time instant t integrates the temporal network connectivity.
Ev(t) = {ejk(t) | vj , vk 2 V, j 6= k} is the set of edges ejk(t)
modeling the existence of a communication link between nodes
j and k at time instant t where such links are stable for a period
of time.

We assume that the nodes in the proximity model are aware
of each other within a given neighborhood, the node v can

connect to the nodes for up to h hops in the set Sv within an
acceptable delay. This is a pre-requisite to enable proximity
communication. For instance, beacons carrying the one-hop
neighborhood of a node enable each node to construct a two-
hop neighborhood (h = 2) of their proximity network.

B. Caching Model

We define the catalog of content to be X = {xj , j =
1, . . . , N} where xj is an indivisible content chunk in the
network, and N is the (potentially very large) number of pieces
of content. In the remaining of the paper, with no loss of
generality, we may consider an individual content chunk x.

Content chunk x 2 X availability at a node v is Ax
v 2

{1, 0} where Ax
v = 1 when content is cached at the node. The

probability of content x found in local cache v is pu,x,v , then
the probability to download from the origin server is pu,x,SP =
1�

P
v
pu,x,v , where SP represent service provider.

We consider varying content popularity at different times
where at a particular time instant t content chunks follow a
popularity distribution so that X = {x1, x2...} have proba-
bilities P = {px1 px2 ...} of being cached at a node with
px1 > px2 Users request content with a Zipf distribution,
⇢u,x = x�

|X|P

x0 6=x,x02X

1
x0

, where is the skewness parameter.

The content popularity set can be shared with the nodes
using three approaches: (i) offline method by the content
operator as a control message; (ii) local monitoring by the
nodes taking into account the number of user interests for the
content; (iii) as part of content header, using some signaling
mechanism. We assume the nodes use one of these methods
to assess the popularity of content.

We model a cost associated for user u to retrieve content
x as:

cu,x =

(
cu,x,v =

P
eu,v2Su

eu,v,

co � cu,x,v

Ax
v = 1

Ax
u = Ax

v = 0 (1)

where, cu,x,v is the cost for the node u to retrieve from a
local caching node v as the sum to edges to that node in its
Su neighborhood, co is the higher cost for u to download the
content x from the origin server.

IV. CENTRALITY-BASED CONTENT PLACEMENT

A. Computing Centrality

Typical centrality measures are: degree (the number of
directly connected nodes), DCv = |�v| = {v0 |evv0 2 Ev },
closeness (the average length of the shortest paths between the
node and all other nodes in the graph), CCv = 1P

v02Sv

d(v0v) ;

betweenness (the number of shortest paths between all pairs
of nodes in the graph going through a specific node), BWv =P
vs 6=v 6=vt

�vsvt (v)
�vsvt

and eigenvector centrality (a measure of node

influence in the network), etc. There exist several variants
of the above centralities adapted to different network topolo-
gies.However, some metrics are computationally intensive to

(a) LCHP, h=2 (b) HCHP, h=2 (c) LCHP, h=3 (d) HCHP, h=3

Figure 1: Example grid topology

calculate, or do not lend themselves to distributed implemen-
tation. Further, these centralities only take into account the
network connectivity but not the cache connectivity. Thus, in
order to allow nodes compute the respective centrality without
relying on an infrastructure network, we use here a centrality
metric using local (connectivity and caching) metrics. We
denote this centrality as follows.

Definition - Cache Connectivity Centrality (CCC):
It is the total amount of cache reachable within the h-hop
neighborhood Sv for a node v. CCCv =

P
8v2Sv

bv , where bv

is the buffer size for the node v.

For h = 1, this is related to the node degree. Indeed, if
all nodes provide the same amount of caching, it is exactly
proportional to the degree. Later, we consider h = 2 and
h = 3. It is a natural centrality metric, as nodes with higher
connectivity will have more neighbors and therefore more
connected caches, and therefore a higher CCC.

Using the node degree would be oblivious to the cache
capacity. For our purpose, a node is more ”central” if it has
access to a lot of caching capacity nearby. Being connected to
a lot of nodes with little or no cache would yield a high, say,
degree centrality, but would not help with content distribution.

There is little overhead to compute CCC in a distributed
manner, as the nodes in the network need to exchange beacons
for connectivity purpose. Nodes in the proximity network need
to advertise their presence to others. We assume that they insert
in this advertisement the information about their cache and
that of their neighbors. If nodes exchange their neighbors’
information, then the CCC for h = 2 is easily computed.
Nodes can also include their latest estimate of their CCC in
that advertisement, again with little overhead. The value of h
in the CCC should match the hop limit that we impose to
get the content from the proximity network (to maintain low
delays and prevent high congestion in the proximity network).

V. LCHP-BASED CONTENT PLACEMENT

We contend that most popular content should be placed
at the nodes with the lowest centrality. We denote the policy
that places the High Popularity content at Low Centrality
nodes as LCHP. The intuition is that these nodes will have
the most difficulty finding the content, due to their poor graph
connectivity, and therefore should be given priority for content
placement.

A. Theoretical Analysis on the Lattice

It is untractable to prove that LCHP is better than other
policies (in particular, ”HCHP” which places high popularity
content at the high centrality nodes, and ”greedy,” which
greedily fills up the cache with the most popular requests that
it receives) on a generic topology. We focus on this section on
a lattice topology, and in a tree topology in the next.

We assume a regular structured n ⇥ n grid topology with
set of users/leaf nodes U requesting for content set X from a
set of non-leaf caching nodes V. We also assume the interest
can be forwarded up to h hops distance. Namely, we assume
that each node is aware of the content cached within a h-
hop neighborhood, and if the request is a miss in this h-hop
neighborhood, it is sent to the origin server.

Considering the buffer availability as the centrality measure
such as in CCC, the most central node(s) are in the relative
center of the grid, we assume each policy begin placing content
either at the nodes with the lowest centrality (LCHP) or at the
highest centrality nodes in the grid (HCHP). This can be shown
in the Figure 1 where the numbered nodes 1, 2, 3.. represent
cached content popularity with px1 , px2 , px3 and so on.

For an arbitrary user node at the leaf/edge of the grid
(green node), the average distance (hops) to retrieve content
with popularity px1 , px2 , ..., in its respective h = 2 hop
neighborhood using LCHP placement is given as:

6

5
(px1

+ px2
+ px3

+ px4
+ px5) +

5

3
(px6

+ px7
+ px8

)+

2px9
+ co

X

k>9

pxk . (2)

This is because the interior nodes have higher centrality (in
the CCC sense, but also degree or betweenness) and therefore
the most popular content will be spread out at the edge of the
grid1.

Therefore the nearest content will be any of x1 through x5

and the distance to the content will be 0,1 or 2 hops. Averaging
over the five possible configurations yield the first term in
Eq (2). Similar reasoning on the second and third row give
the other two terms.

Similarly, using HCHP based placement, the content re-

1This is different from greedy, where each node at the edge of the grid
would cache content x1 since it is the most requested there.

trieval cost is:

6

5
(px5

+ px6
+ px7

+ px8
+ px9) +

5

3
(px2

+ px3
+ px4

)

+ 2px1
+ co

X

k>9

pxk . (3)

Further, using a greedy approach will place the most pop-
ular content at the edge node (next to the user leaf node), then
place the next popular content 1 hop away and the next most
popular content 2 hops away from the user node, the average
cost to retrieve content is given as px2 + 2px3 + co

P
j>3

pxj

where, co represents the cost to retrieve the content from the
origin server.

Now with the delay constraint bounded at h = 3 hops from
a leaf user, the cost to retrieve content placed using LCHP
based policy is:

12

7

7X

i=1

pxi +
11

5

12X

j=8

pxj +
8

3
(px13

+ px14
+ px15

)

+ 3px16
+ co

X

k>16

pxk , (4)

while using HCHP, the cost is:

12

7

16X

i=10

pxi +
11

5

9X

j=5

pxj +
8

3
(px2

+ px3
+ px4

)

+ 3px1
+ co

X

k>16

pxk , (5)

and using a greedy approach the cost is given as px2 +2px3
+

3px4 + co
P
k>4

pxk .

For a general case, the cost to retrieve content using LCHP
within h hops can be derived as:

h+1X

i=1

µi,h

mi+1,hX

j=mi,h+1

pj (6)

where µi,h is the average distance to the reachable nodes
within h-hops of the user on the i-th row and mi,h is the total
number of reachable nodes on the rows below. Namely,

µ1,h = h(h+ 1)/(2h+ 1)

µi,h = 1 + µi�1,h�1

µh,h = h (7)

and

m1,h = 0

m2,h = 2h+ 1

mi,h = mi�1,h + 2(h� i) + 1

mh,h = (2h+ 1)2 (8)

The general relation in Eq (6) can be used to obtain the
special cases of h = 2 and h = 3 in Equations (2) and Eq.(4)
respectively.

As the grid size n grows, boundary conditions (i.e. at the

corners/edge of the grid) become marginal and can be ignored,
and we can just consider the behavior of the policy on some
random edge nodes.

Similarly, one can derive a similar equation for HCHP. The
coefficient µi,h are identical as for LCHP, but the content is
ordered in the reverse order, with the least popular content
(p(2h+1)2�(2h+1), p(2h+1)2�2h, ...p(2h+1)2) on the bottom row.

B. Theoretical Analysis on a Regular Tree

A similar analysis can be performed on a regular tree. We
assume here a binary tree with depth d >> h, but the same
derivation can be provided on the n-ary tree.

For the binary tree, with LCHP, the content at the edge
nodes are again the ones with the lowest centrality (by CCC
metric, but also degree or betweenness as well). Therefore, the
highest popularity content will reside on the bottom row.

For h = 2, there are four nodes reachable within h hops,
so the caches will contain x1 through x4. The average distance
to the content is for LCHP:

(p1 + p2 + p3) + 2p4 + co
X

k>4

pxk (9)

For HCHP, it is:

(p2 + p3 + p4) + 2p1 + co
X

k>4

pxk (10)

For greedy, it is:

p2 + 2p3 + co
X

k>3

pxk (11)

Since p1 > p4, it is easy to see that LCHP outperforms
HCHP in this context. For greedy, it depends on the value of
p4 and co, namely the likelihood that a miss at p4 triggers a
request to the origin server and the cost of such a request.

For h = 3, we have:

p1 + p2 + 2(p3 + p4 + p5) + 3p6 + co
X

k>6

pxk LCHP (12)

p5 + p6 + 2(p2 + p3 + p4) + 3p1 + co
X

k>6

pxk HCHP (13)

p2 + 2p3 + 3p4 + co
X

k>4

pxk Greedy (14)

(15)

Generic cases can be derived as in the grid case as well for
h > 3 using the regularity of the topology and the monotonous
increase in the centrality when going up the tree from a leaf.

C. Distributed Content Placement

We present below a heuristic for a set of nodes to oppor-
tunistically cache content in a neighborhood.

Algorithm 1 is used for content placement by each node.
Node v first defines its h-hop neighborhood as the set Sv 2 V
and exchanges information regarding its cache size with the
nodes in Sv (Lines 4 and 5). Using the cache size information

in the neighborhood, it then computes and exchanges its
respective centrality CCCv (Line 9) with the nodes in Sv .
Each node compares its CCC with the other nodes in their Sv

and in case it has the lowest CCC, it initializes the placement
by caching the most popular content x from the content list X
in order to have access to the most popular content. In Line 7,
a node that has filled up its buffer already indicates so, and is
not considered as a candidate to be the lowest CCC node any
longer. The next lowest CCC node can then fill up its cache
by drawing on the next most popular content.

A popularity tag can be used for each content by the
operator where nodes can recognize content based on its tag,
i.e. most popular content tagged as popularity level 1, lesser
popular as level 2 and so on. For ease of explanation, assume
that the amount of content tagged with the same label is
comparable to the size of one cache, except for the tail of
the content that includes all the content that cannot be cached
at all.

Thus, for a node v in a neighborhood S with k nodes
having a lower centrality than CCCv , v will cache content
with the (k + 1)th popularity level content in its placement
policy. This content can be cached opportunistically (if the
user sees content with this tag, it keeps it) or the cache can
be populated with this content by the SP, say during periods
of low demand. We denote by XS the content cached in the
neighborhood S and by Xv the content cached at node v.

Line 11 of Algorithm 1 ensures that the occupied buffer
space bv does not surpass the total available node buffer
btv while XS < X allows the node to cache content with
decreasing popularity order (Line 12) as long as there exist
content to populate its cache until no more content are left to
cache. The node updates the amount of individually occupied
buffer space bv and Xv the set (list) of content it cached (Line
14). The content availability in the neighborhood S is updated
as shown in Line 15 and the set of content cached at the node
Xv are added to the set of contents in the neighborhood XS

(Line 16).

In order to achieve collaborative caching at the set of nodes
in the neighborhood, in the increasing order of node centrality
CCC, the other caching nodes in the neighborhood Sv perform
the same steps and cache content in its decreasing popularity
order. The algorithm converges until either there is no more
content left to cache or the corresponding nodes buffers are full
as mentioned in Line 11. In case when a node buffer is full,
it can exempt itself from the caching process. The nodes with
still buffer remaining repeat the process only now considering
the content that is not already placed in the neighborhood to
add in the unfilled caches.

VI. NUMERICAL RESULTS

A. Lattice

On the lattice topology, for a Zipf content popularity
distribution with = 1, N = 100 and h = 2 hops, i.e.,
px1 = 0.19, px2 = 0.10, px3 = 0.06, px4 = 0.05, px5 =
0.04, px6 = 0.03, etc., the cost (number of hops) to retrieve
content using LCHP is 0.71+co

P
k>9

pxk while using HCHP, the

cost is 0.91+ co
P
k>9

pxk , thus, LCHP costs less than HCHP in

Algorithm 1: Content Placement Algorithm at Node v
1: INPUT: S, X, P , h, bv , 8v 2 V
2: OUTPUT: XSv , Xv 2 X
3: for each node v do
4: Define its h-hop neighborhood Sv 2 V,
5: Exchange buffer size bv in Sv

6: Find CCCv

7: if buffer bv is full then
8: set CCCv to +1
9: end if

10: Exchange CCCv , 8v in Sv

11: if CCCv = argmin
v02S

(CCC), v0 6= v then

12: while (bv btv) or (XS < X) do
13: bv argmax

x2X,x/2XS

(px)

14: end while
15: Update bv, Xv

16: Ax
S Ax

S +Ax
v

17: XS XS [Xv

18: end if
19: end for
20: return Xv, XS

retrieving content for leaf users. The greedy placement policy
cost to retrieve content in this case is 0.22 + co

P
j>32

pxj , i.e.

retrieves all content with popularity lower than px3 from the
origin server.

Similarly, for a Zipf content popularity distribution with
 = 1 and h = 3 hops, the cost to retrieve content using LCHP
can be estimated as 1.22+ co

P
k>16

pxk while using HCHP, the

cost can be 1.63 + co
P
k>9

pxk , where greedy placement cost

is 0.35 + co
P
j>3

pxj , however the latter requests content with

popularity higher than px4 from the origin server.

Figure 2 compares LCHP and HCHP for the average cost
(hops) for retrieving content by an arbitrary leaf user, when
co is set to 5 (namely the origin server is 5 hops away; note
it has to be at least 3 and 4 hops away for the content to
be a miss in the h-hop neighborhood when h = 2 or h =
3). The cost for different Zipf skewness parameters is shown
for h = 2 and h = 3. However, irrespective of the variation
in the Zipf parameter or the delay bound conditions, LCHP
outperforms HCHP. For 1 (which is the typical case for
content distribution in the Internet), then LCHP outperforms
the other schemes.

B. Tree

On the tree topology (see Figure 3, for a Zipf content pop-
ularity distribution with = 1 and h = 2 hops and N = 100
objects, i.e., px1 = 0.19, px2 = 0.10, px3 = 0.06, px4 = 0.05
and pk>4 = 0.6, the cost to retrieve content using LCHP is
0.450+0.598co while using HCHP, the cost is 0.594+0.598co.
Thus, LCHP costs less than HCHP in retrieving content for leaf
users. The greedy placement policy cost to retrieve content
in this case is 0.22 + 0.65co, i.e. retrieves all content with
popularity lower than px4 from the origin server. This means
that for co > 4.6, LCHP is also better than greedy.

0.5 0.75 1 1.25 1.5

Zipf parameter

1.5

2

2.5

3

3.5

4

4.5

A
v

e
ra

g
e

 C
o

s
t

(h
o

p
s

)

LCHP, h=2

HCHP, h=2

Greedy, h=2

LCHP, h=3

HCHP, h=3

Greedy, h=3

Figure 2: Theoretical comparison of LCHP vs HCHP, grid
topology

Figure 3: Tree Topology and Placement for LCHP

For h = 3 hops, the cost of LCHP is 0.69+0.35co; the cost
of HCHP is 1.07+0.35co; the cost of ”greedy” is 0.37+0.60co.
The benefit of LCHP is clear versus HCHP, and against greedy
if the cost co is greater than 1.28. Of course, since the origin
server is at least h hops away, co > 3.

Figure 4 compares LCHP and HCHP for the average cost
(hops) for retrieving content by an arbitrary leaf user in the
tree topology. The cost for different Zipf skewness parameters
is show for h = 2 and h = 3. LCHP always outperforms
HCHP.

VII. CONCLUSIONS AND FUTURE WORK

This paper targeted the distributed content placement prob-
lem in an information-centric network or a network of caches.
We introduce a notion of centrality that takes into account
cache size, and propose a centrality-based content placement
policy, LCHP. Counter the common intuition of caching con-
tent at high centrality nodes or greedily at the edge, LCHP
starts placing the more popular content at low centrality nodes
since their caching resource needs to be better utilized to
compensate for the poor connectivity. We evaluated LCHP
along other caching policies using a mathematical analysis on
some simple yet illustrative regular topologies: on the grid and

0.5 0.75 1 1.25 1.5

Zipf parameter

2

2.5

3

3.5

4

4.5

A
v

e
ra

g
e

 C
o

s
t

(h
o

p
s

)

LCHP, h=2

HCHP, h=2

Greedy, h=2

LCHP, h=3

HCHP, h=3

Greedy, h=3

Figure 4: Theoretical comparison of LCHP vs HCHP, tree
topology

the binary tree. LCHP performs the best for Zipf parameter
with parameter less than one, which is the common situation in
Internet content distribution. This provides some sound basis to
further study LCHP on random topologies using simulations,
and for designing practical protocols. This is the target of
future work.

REFERENCES

[1] Stratis Ioannidis and Edmund Yeh. Adaptive caching networks with
optimality guarantees. In Proceedings of the 2016 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Science, SIGMETRICS ’16, pages 113–124, 2016.

[2] Stratis Ioannidis and Edmund Yeh. Jointly optimal routing and caching
for arbitrary network topologies. In Proceedings of the 4th ACM
Conference on Information-Centric Networking, ICN ’17, pages 77–87,
2017.

[3] Yonggong Wang, Zhenyu Li, Gareth Tyson, Steve Uhlig, and Gaogang
Xie. Design and evaluation of the optimal cache allocation for content-
centric networking. IEEE Transactions on Computers, 65(1):95–107,
2016.

[4] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi,
Teemu Koponen, Bruce Maggs, K.C. Ng, Vyas Sekar, and Scott Shenker.
Less pain, most of the gain: Incrementally deployable icn. In ACM
SIGCOMM, pages 147–158, 2013.

[5] Wei Koong Chai, Diliang He, Ioannis Psaras, and George Pavlou. Cache
“less for more” in Information-Centric Networks. In International
Conference on Research in Networking, pages 27–40. Springer, 2012.

[6] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev
Muchnik, H Eugene Stanley, and Hernán A Makse. Identification of
influential spreaders in complex networks. Nature Physics, 6(11):888–
893, 2010.

[7] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. 1999.

[8] S. Medya, A. Silva, A. Singh, P. Basu, and A. Swami. Maximizing
Coverage Centrality via Network Design: Extended Version. ArXiv e-
prints, 2017.

[9] Kaimin Wei, Xiao Liang, and Ke Xu. A survey of social-aware routing
protocols in delay tolerant networks: applications, taxonomy and design-
related issues. Communications Surveys & Tutorials, IEEE, 16(1):556–
578, 2014.

[10] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: Social-based
forwarding in delay-tolerant networks. Mobile Computing, IEEE Trans-
actions on, 10(11):1576–1589, 2011.

[11] A Socievole, E Yoneki, F De Rango, and J Crowcroft. Ml-sor: Message
routing using multi-layer social networks in opportunistic communica-
tions. Computer Networks, 81:201–219, 2015.

[12] Panagiotis Pantazopoulos, Ioannis Stavrakakis, Andrea Passarella, and
Marco Conti. Efficient social-aware content placement in opportunistic
networks. IFIP/IEEE WONS, pages 3–5, 2010.

[13] Yonggong Wang, Zhenyu Li, Gareth Tyson, Steve Uhlig, and Gaogang
Xie. Optimal cache allocation for content-centric networking. In 2013
21st IEEE International Conference on Network Protocols (ICNP), pages
1–10. IEEE, 2013.

[14] Dario Rossi, Giuseppe Rossini, et al. On sizing ccn content stores
by exploiting topological information. In INFOCOM Workshops, pages
280–285, 2012.

[15] Cui Yufei, Zhao Min, and Wu Muqing. A centralized control caching
strategy based on popularity and betweenness centrality in ccn. In Wire-
less Communication Systems (ISWCS), 2016 International Symposium
on, pages 286–291. IEEE, 2016.

[16] Dinh Nguyen and Hidenori Nakazato. Centrality-based network coder

placement for peer-to-peer content distribution. International Journal of
Computer Networks & Communications, 5(3):157, 2013.

[17] Vasilis Sourlas, Lazaros Gkatzikis, Paris Flegkas, and Leandros Tassi-
ulas. Distributed cache management in information-centric networks.
IEEE Transactions on Network and Service Management, 10(3):286–
299, 2013.

[18] Yu-Ting Yu, Francesco Bronzino, Ruolin Fan, Cedric Westphal, and
Mario Gerla. Congestion-aware edge caching for adaptive video stream-
ing in information-centric networks. In IEEE CCNC Conference, 2015.

[19] Bita Azimdoost, Cedric Westphal, and Hamid Sadjadpour. Fundamental
limits on throughput capacity in information-centric networks. IEEE
Transactions on Communications, 2016.

View publication stats

https://www.researchgate.net/publication/340299788

