
HAL Id: hal-04137654
https://hal.science/hal-04137654v1

Preprint submitted on 22 Jun 2023 (v1), last revised 22 Jul 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-implicit Particle-In-Cell methods embedding
sparse grid reconstructions

Clément Guillet

To cite this version:
Clément Guillet. Semi-implicit Particle-In-Cell methods embedding sparse grid reconstructions. 2023.
�hal-04137654v1�

https://hal.science/hal-04137654v1
https://hal.archives-ouvertes.fr


Semi-implicit Particle-In-Cell methods embedding
sparse grid reconstructions

C. Guillet†‡★
†Université de Toulouse; UPS, INSA, UT1, UTM,

Institut de Mathématiques de Toulouse,
‡LAPLACE, Université de Toulouse, CNRS, INPT, UPS,

118 Route de Narbonne, 31062 Toulouse, France
★ Corresponding author

June 14, 2023

Abstract
In this article, we introduce semi-implicit Particle-In-Cell (PIC) methods based on a dis-

cretization of the Vlasov-Maxwell system in the electrostatic regime and embedding sparse
grid reconstructions: the Semi-Implict Sparse-PIC (SISPIC) and Energy-Conserving Sparse-
PIC (ECSPIC) methods. These schemes are inspired by the Energy-Conserving Semi-Implicit
Method (ECSIM) introduced in [39]. The particle equations are linearized so that the parti-
cle response to the field can be computed by solving a linear system with a stiffness matrix.
The two methods feature the three following properties: the scheme is unconditionally stable
with respect to the plasma period; the finite grid instability is eliminated, allowing the user
to use any desired grid discretization; the statistical error is significantly reduced compared
to semi-implicit and explicit schemes with standard grid for the same number of particles.
The ECSPIC scheme conserves exactly the discrete total energy of the system but we have
experienced numerical instability related to the loss of the field energy non-negativity genuine
to the sparse grid combination technique. The SISPIC method is exempted from this instability
and is unconditionally stable with respect to the time and spatial discretization, but does not
conserve exactly the discrete total energy. The methods have been investigated on a series
of two dimensional test cases and gains in term of memory storage and computational time
compared to explicit and existing semi-implicit methods have been observed. These gains are
expected to be larger for three dimensional computations for which the full potential of sparse
grid reconstructions can be achieved.

Keywords Particle-In-Cell (PIC), semi-implicit, Plasma physics, sparse grids, electrostatic,
sparse grid combination technique, energy conserving

1 Introduction
Particle-In-Cell (PIC)method is one of themostwidely spread numericalmethod for the simulation
of kinetic plasmas [7, 22, 23, 29]. It is based on a discretization of the Vlasov-Maxwell system, or a
subset thereof for electrostatic regimes. Vlasov equation describes the evolution of the probability
density function of species of particles in the phase-space while Maxwell’s equations (Ampere
equation in this paper) characterize the evolution of the electromagnetic field. Ampere’s equation
is conducted by the moment of the particle distribution and Vlasov equation characteristics are
self-consistently determined by the field. It results in a tightly coupled non-linear system whose
solutions are proven to be challenging to determine. The specificity of PIC methods is the mixed
discretization, made of both an Eulerian grid for the moments of the particle distribution and
fields, in conjunction with individual Lagrangian particles in continuous phase space.
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The solutions of Vlasov-Maxwell equations verify some conservation properties, such as the
conservation of the total energy and momentum of the system. The charge continuity equation is
also a consequence of the Vlasov equations (moment of order 0). The question of conservation
of these physical quantities in numerical simulations has been very popular for years. Explicit
formulations of PIC methods, based on an explicit time integration of the characteristics of the
Vlasov equation, are usually momentum-conserving but not energy-conserving. Conversely, PIC
implementations based on an implicit formulation can be energy-conserving but not momentum-
conserving. The question whether a numerical scheme preserving both energy and momentum is
possible or not is addressed in [8].

Originally, and still in most applications, PIC implementations are based on an explicit time
discretization of the Vlasov equation, e.g. by means of a leap-frop scheme. An explicit time
integration benefits from simplicity of implementation, as well as a poor computational cost per
iteration. Nonetheless, explicit approaches suffer from temporal stability constraints, imposing
a limit on the time-step discretization, to resolve the fastest wave. In addition, these approaches
usually feature spatial stability constraints, manifested by numerical instabilities as aliasing or
finite grid instability [37, 35] occurring when the grid discretization (grid cell size) is equal to or
superior to the Debye length of the plasma. Therefore, the application of explicit approaches to
multidimensional problems, especially for three dimensional geometries or large plasma densities,
can be very computationally demanding and cumbersome.

In response to these issues, implicit formulations of PIC schemes have emerged [27] and
received a lot of attention, particularly thanks to their stability properties. Indeed, (semi-)implicit
PIC methods such as the implicit-moment method [9, 41], direct implicit method [38, 17, 33]
and their developments alleviate the numerical constraints, preserving stability with larger time-
steps and grid discretizations. Ideally, in implicit formulations, the particle equations and the
field equations shall be non-linearly coupled, requiring Newton or Picard iterations. Because of
solver efficiency limitations at the early development of implicit methods, linear approximations
have been favored at the expense of numerical approximations producing violation of the energy
conservation and resulting in significant artificial plasma heating or cooling. The methods using
a linearization of the particle-field coupling are named semi-implicit methods. Recently, a fully
implicit approach [14], based on Newton–Krylov methods, in which field-particle couplings are
converged to a tight nonlinear tolerance has been developed. In addition to the elimination of both
temporal and spatial stability constraints, the scheme offers valuable conservation properties, such
as the exact conservation of the discrete energy of the system and consistency with the charge
continuity equation. Nonetheless, the method requires the resolution of a non-linear system for the
particles and field, which can be very computationally expensive, especially for multidimensional
computations. A few years ago, a semi-implicit method preserving exactly the discrete total
energy of the system [39] has been developed. This Energy-Conserving Semi-Implicit Method
(ECSIM) retains the simplicity of explicit schemes, i.e. it advances the particles first and then the
fields without any iteration, and conserves discrete energy exactly. In this approach, the particle-
field coupling is partially linearized, meaning that a part of the particle response to the field is
computed thanks to a mass matrix, ensuring an exact discrete energy-conservation. Compared to
the previous semi-implicit methods, namely the implicit-moment method and the direct implicit
method, the particle pusher and the derivation of the field equation are different. The mover
does not require any inner iteration and its complexity is similar to that of explicit formulations.
Nonetheless, the field matrix presents a significantly more complex structure in comparison to
that of explicit schemes in order to conserve energy to round-off errors. The major advantage over
fully-implicit schemes is the reduced complexity of the algorithm, allowing development of the
method for three dimensional simulations. Since then, the method has been applied extensively
to large-scale kinetic simulations [46, 45, 13, 21]. However, the method is not consistent with the
charge continuity equation as the fully-implicit method does. Therefore the error of conservation,
or equivalently the consistency with the Gauss law for Vlasov-Ampere (VA) formulations, shall
be corrected throughout the simulation in order to avoid a non-physical evolution of the plasma.
Since then, developments addressing this charge continuity issue have been introduced. In [16],
a correction inspired of the Boris (∇ · E) correction, but operating on the particles instead of the
field in order to preserve energy conservation is proposed. The method uses local linearization
of the particle shape functions and requires the resolution of an under-determined system on the
particles with Lagrange multiplier method. Besides, a prediction-correction scheme [12] inspired
both of the ECSIM scheme and of a charge-conserving scheme based on an averaging of grid
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quantities over interpolated trajectories of particles has been proposed.
Particle-In-Cell schemes also contain a major weakness: the statistical error originating from

the sampling of the probability density function by a finite number of numerical particles. This
numerical noise decreases slowly with the increase of the average number of particles per cell,
scaling as the inverse square root of the mean number of particles per cell. Therefore, a large
number of particlesmay be required for some simulations, necessitating tremendous computational
resources. Noise reduction strategies aim at maintaining the accuracy of computations with a
reduced set of particles. They have therefore received a lot of attention with, for instance, variance
reduction methods such as the X 5 method [28] or the quiet start initialization procedure [44] as
well as filtering methods in either Fourier domain [7], wavelet domain [30], and micro-macro
decomposition [20, 19, 18].

Sparse grid reconstructions in PIC methods aim at reducing the statistical error resulting from
the particle sampling. Specifically, the particle distribution moments are computed on a hierarchy
of component grids with a coarse resolution. Compared to standard grids, the mean number of
particles per cell is larger for any of the component grids. This crucial feature offers either a
mitigation of the statistical noise or a decrease of the total number of numerical particles required
for a precision comparable to discretizations on a standard grid. The method has already been
applied to explicit PIC discretizations of the Vlasov-Poisson model in two dimensions [26], and
three dimensions [43, 42, 24, 25]. Substantial gains in term of memory consumption as well as
computational time have been pointed out, by two or three orders of magnitude in comparison to
approaches with standard grids. Besides, sparse grid reconstructions have proven to preserve exact
momentum conservation of explicit formulations. These observations call for the development of
an implicit formulation embedding sparse grid reconstructions with improved spatial and temporal
stability properties and, if possible, discrete total energy conservation.

The present paper is dedicated to the development of semi-implicit schemes embedding sparse
grid reconstructions. In this paper, we consider an electrostatic regime in which Maxwell’s
equations fall down to Ampere equation without magnetic field. The contribution of this paper is
the introduction of three new semi-implicit methods for PIC simulations.

First, a semi-implicit PIC scheme embedding sparse grid reconstruction (SISPIC-sg) and
based on an electrostatic Vlasov-(div)Ampere formulation is proposed. The method, inspired of
the ECSIM scheme [39], is based on a linearization of the equations so that the implicit particle
response to the electric field can be obtained by solving a linear system. The method features the
following properties:

• The scheme is unconditionally stable with respect to the plasma period: the time step can
be chosen irrespective to this value.

• The aliasing or finite grid instability is eliminated, allowing grid discretization without any
constraints related to the Debye length.

• The statistical error is significantly reduced compared to the ECSIM scheme and explicit
scheme carried out with a Cartesian grid of comparable resolution and the same number of
particles. The reduction of the statistical noise is achieved thanks to both the sparse grid
reconstructions and the Vlasov-(div)Ampere formulation. This is a valuable contribution
since, as a consequence of their usual Vlasov-Ampere formulation, semi-implicit methods
tends to create more statistical noise than explicit methods.

Second, the SISPIC method is extended to standard discretization (without sparse grid tech-
niques) so that the resulting scheme (SISPIC-std) conserves exactly the total energy of the system.
The SISIPIC-std scheme is very similar to the ECSIM scheme and can be considered as an ex-
tension of it to electrostatic regime. To our knowledge, all the ECSIM methods described in
the literature are based on Vlasov-Maxwell system and include a self-consistent magnetic field.
The aim here is to tackle the difficulty related to the computation of an electromagnetic field
free from any solenoïdal (or inductive) component. The schemes introduced here in (SISPIC-sg,
SISPIC-std) are genuinely consistent with this property: it does not require any posterior cleaning
procedure classically implemented in this context.

Finally, an energy-conserving semi-implicit schemewith sparse grid reconstructions (ECSPIC)
is derived. The scheme features all of the previous properties (of SISPIC-sg) and conserves
exactly the discrete total energy of the system for any discretization. Nonetheless, instabilities
have been experienced during the numerical investigations, explained by the lack of sparse grid
reconstructions to preserve the non-negativity of the solution.
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This paper is organized as follows. In section 2, the general framework of the article is
introduced: sparse grid reconstructions, Vlasov-(div)Ampere formulation and PIC methods. In
section 3, the SISPIC method is introduced and compared to existing semi-implicit methods
(direct implicit, moment implicit, ECSIM). Some insights of the gains provided by the method are
also discussed. In section 4, the ECSPIC method is introduced and its computational complexity,
memory requirements and properties (energy conservation, loss of non-negativity) are discussed.
Finally, in section 5, the methods are investigated and compared to existing methods (sparse and
standard explicit schemes, ECSIM) on two-dimensional classical test cases: Landau damping and
two-streams instability.

2 General framework
2.1 Notations
Let 3 ∈ N∗ be the dimension of the problem and let the spatial domain be the 3-dimensional pe-
riodic unit interval Ω = (R/Z)3 . For multi-indexes α = (U1, ..., U3) ∈ N3 and β = (V1, ..., V3) ∈
N3 , let us define order relations by:

α ≤ β ⇔ ∀8 ∈ {1, ...3} U8 ≤ V8 , (1)
α < β ⇔ α ≤ β and ∃ 8 ∈ {1, ..., 3} B.C. U8 < V8 , (2)

and introduce the notations:

αβ = (U1V1, ..., U3V3), α−1 =
1

U1...U3
. (3)

The l1 norm for a multi-index α ∈ N3 is also introduced:

|α|1 :=
3∑
8=1
|U8 |. (4)

2.2 Sparse grid reconstructions
In this section, the sparse grid notations are introduced in the framework of the so-called sparse
grid combination technique [31].

Definition 2.1 (Component indices). Let L= be a set of indices, called the component indices,
with respect to the discretization parameter = ∈ N and defined by:

L= :=
⋃

8∈È0,3−1É
L=,8 , L=,8 := {l ∈ N3 | |l|1 = = + 3 − 1 − 8, l ≥ 1}, (5)

Let us consider the family of d-dimensional anisotropic grids on the space domain indexed by
the component indices and called component grids:

Definition 2.2 (Component grids). The component grids are defined for l ∈ L= by:

Ωℎl :=
{
jℎl | j ∈ �ℎl

}
∈ Ω, �ℎl := È0, ℎ−1

;1
− 1É × ... × È0, ℎ−1

;3
− 1É ⊂ N3 , (6)

where:

ℎl := (ℎ;1 , ..., ℎ;3 ) ∈ R3 , ℎ; = 2−; for ; ∈ L= (7)

is called the grid discretization and corresponds to the cell grid width.
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The number of component grids is given by:

|L= | := Card(L=) =
3−1∑
8=0

(
= + 3 − 2 − 8

3 − 1

)
= $

(
| log ℎ= |3−1

)
, (8)

where
( 8
9

)
, for 8 ≥ 9 integers, is the binomial coefficient defined as:(

8

9

)
:=

8!
9!(8 − 9)! . (9)

Let us also consider a regular isotropic grid, named Cartesian grid, corresponding to a component
grid of level l = = · 1 with uniform discretization ℎ= for any direction:

Definition 2.3 (Cartesian grid). The Cartesian grid, denoted Ω(∞)
ℎ=

, is defined by:

Ω
(∞)
ℎ=

:=
{
jℎ= | j ∈ �ℎ=

}
⊂ Ω, �ℎ= := È0, ℎ−1

= − 1É3 ⊂ N3 . (10)

Let l ∈ L=, j ∈ �ℎl be multi-indexes associated to a component grid and consider basis
functions defined by tensor products of one-dimensional functions as follows:

,ℎl;j (x) := ,ℎl (x − jℎl) =
(
3⊗
8=1

,ℎ;8

)
(x − jℎl), ,ℎ; (G) := ,

(
ℎ−1
; (G)

)
, (11)

where ℎl is the (component) grid discretization and, is the so-called hat function defined:

, (G) = max (1 − |G | , 0) . (12)

These functions verify a partition of unity property:∑
j∈�ℎl

,ℎl;j (x) = 1. (13)

The space of 3-dimensional hat functions with respect to the component grid Ωℎl is denoted +ℎl
and defined by:

+ℎl := span{,ℎl;j | j ∈ �ℎl }, (14)

where {,ℎl;j | j ∈ �ℎl } is called the nodal basis of the space +ℎl and �ℎl the nodal basis index set.
Each function Eℎl ∈ +ℎl can be represented in the basis of +ℎl as follows:

Eℎl =
∑
j∈�ℎl

Ul,j,ℎl;j, (15)

where Ul,j are the coefficients of Eℎl in the nodal basis which are the nodal values of the function Eℎl
(because the basis functions are multi-linear). We introduce the space of 3-dimensional piecewise
linear functions with respect to the Cartesian grid:

+
(∞)
ℎ=

= span{,ℎn;j | j ∈ N3 | 0 ≤ j ≤ ℎ−1
n }. (16)

Eventually, for D a smooth function, we introduce the linear interpolation operators in nodal basis
associated to these spaces defined by:

I+ℎlD =
∑
j∈�ℎl

D(jℎl),ℎl;j, I+ (∞)
ℎ=

D =
∑
j∈�ℎ=

D(jℎ=),ℎ=;j. (17)
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2.2.1 Sparse grid combination technique
The sparse grid combination technique [32, 31, 11] is a method of interpolation using evaluations
of the function on the nodes of component grids. The sparse grid interpolant is obtained by a
linear combination of partial representations of the function on the component grids. Let D be a
function and Dℎl an approximation of this function in the space +ℎl (e.g. I+ℎlD), then a sparse grid
reconstruction is defined by linear combination of the contributions Dℎl of each component grid:

Dℎ= :=
∑
l∈L=

2lDℎl , where 2l = (−1)8
(
3 − 1
8

)
if l ∈ L=,8 . (18)

Under some assumptions on the component grid approximations [31], the error between the sparse
grid reconstruction and the solution scales as :

‖Dℎ= − D‖∞ = $
(
ℎ2
= | log ℎ= |3−1

)
. (19)

The combination technique is remarkable for the reduction of the number of interpolation nodes:

|Ω(∞)
ℎ=
| = $

(
ℎ−3=

)
,

∑
l∈L=
|Ωℎl | = $

(
ℎ−1
= | log ℎ= |3−1

)
, (20)

while achieving accuracy comparable to the standard interpolation (with a negligiblemultiplicative
term | log ℎ= |3−1). Indeed, for standard interpolation on the Cartesian grid with basis functions of
degree one, i.e. hat functions, the interpolation error scales as $

(
ℎ2
=

)
.

Remark 2.4. The sparse grid reconstruction of a non-negative function is not non-negative.

2.3 Electrostatic Vlasov-(div)Ampere (VdA) formulation
The semi-implicit PIC methods introduced in this paper are based on a discretization of Vlasov-
Ampere system in an electrostatic regime, assuming a vanishing magnetic field B = 0. In this
regime, the following Vlasov-Ampere (VA) formulation is considered:

(+�) :


m 5B

mC
(x, v, C) + v · ∇x 5B (x, v, C) +

@B

<B
E(x, C) · ∇v 5B (x, v, C) = 0,

∇ × E(x, C) = 0,

n0
mE
mC
(x, C) = −J(x, C).

(21)

The system is defined for (x, v, C) ∈ Ω × R3 × R+. In this problem, 5B (x, v, C) is the phase-space
distribution function attached to the species B; @B , <B are the corresponding charge and mass, n0
is the vacuum permittivity, E is the electric field and J is the plasma current density obtained from
the phase-space distribution of each species:

J(x, C) =
∑
B

JB (x, C) =
∑
B

@B

∫
v 5B (x, v, C)3v. (22)

The electric field is initialized with the Gauss law and requires the resolution of a Poisson equation
for the electric potential, denoted Φ:

E(x, 0) = −∇Φ(x, 0), −Y0ΔΦ(x, 0) = d(x, 0), (23)
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where d(x, 0) is the plasma charge density at initialization defined from the initial distribution of
each species:

d(x, C) =
∑
B

dB (x, C) =
∑
B

@B=B , =B =

∫
5B (x, v, C)3v. (24)

Remark 2.5. Provided that the charge continuity equation is verified:

md

mC
+∇ · J = 0, (25)

the Vlasov-Ampere formulation (21) is equivalent to a Vlasov-Poisson formulation:

(+%) :

m 5B

mC
(x, v, C) + v · ∇x 5B (x, v, C) +

@B

<B
E(x, C) · ∇v 5B (x, v, C) = 0,

−n0Δ2Φ(x, C) = d(x, C), E(x, C) = −∇Φ(x, C).
(26)

By considering the charge continuity equation (25), one can derive from the Ampere equation
an evolution equation for the electric potential Φ:

Y0
mΔΦ

mC
(x, C) =∇ · J(x, C). (27)

The equation can alternatively be obtained by considering the divergence of the Ampere equation
(third equation of the system (21)) and the Gauss law (n0∇ · E = d). From this equation, a
multi-dimensional electrostatic Vlasov-(div)Ampere formulation is considered:

(+3�) :


m 5B

mC
(x, v, C) + v · ∇x 5B (x, v, C) +

@B

<B
E(x, C) · ∇v 5B (x, v, C) = 0,

n0
mΔΦ

mC
(x, C) =∇ · J(x, C), E(x, C) = −∇Φ(x, C).

(28)

The formulation is equivalent to the first one (21) in multi-dimensions if the charge continuity
equation (or Gauss law) is verified. Indeed, since the electric field is derived from a potential, its
curl vanishes:

∇ × E = −∇ ×∇Φ = 0. (29)

In this article, our goal is to derive semi-implicit methods which are based on discretizations of
the (+3�) system.

2.4 PIC discretizations
The distribution of particles ( 5B) is represented by a collection of macro-particles. A macro-
particle, also called numerical particle, refers to a heap of physical particles of the same species
(electrons, ions, etc.). Let #B denotes the number of macro-particles attached to the species B and
# the total number of particles. The positions and velocities of a particle at time C are denoted
(x? (C), v? (C)), ? = 1, ..., #B being the index of the particles. We assume that all the numerical
particles of one species have the same weight, defined by the ratio of physical particles (=B) per
numerical particle (#B):

l =

∫
Ω
=B3x
#B

, (30)

and the same charge and mass:

@? = @Bl, <? = <Bl, ∀? = 1, ..., #B . (31)
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A shape function, denoted ,ℎ and defined in (11), is associated to the particles in order to
accumulate the particle properties (charge density, current density) onto the mesh. E.g. for a grid
with discretization ℎ, the current density accumulation is defined by:

Jℎ (x, C) :=
∑
B

JB,ℎ (x, C) :=
∑
B

1
ℎ3

#B∑
?=1

@?v? (C),ℎ (x − x? (C)), (32)

where the quantity 1/ℎ3 is the volume of the grid cells. The electric field is then computed on the
mesh with Ampere (or Poisson) equation and interpolated at the particles positions. Finally the
particles are advanced by considering the characteristics of Vlasov equation.

3 Semi-implicit PIC methods
3.1 Implicit formulation and linearization
Let ΔC be the step of the time discretization and let us denote a quantity by the superscript : ∈ N
the evaluation of this quantity at iteration ::

C: := :ΔC, x:? := x? (C: ), v:? := v? (C: ), etc. (33)

Let us introduce our implicit scheme used for time discretization of the electrostatic (+3�) system,
where the position is staggered half a time step with respect to the velocities and the fields as
follows: 

x:+
1
2

? = x:−
1
2

? + ΔCv:+
1
2

?

v:+1? = v:? + ΔC
@?

<?
E:+

1
2

ℎ

(
x:+

1
2

?

)
ΔℎΦ

:+1
ℎ − ΔℎΦ:ℎ =

ΔC

Y0
∇ℎ · J

:+ 1
2

ℎ

E:+1ℎ = −∇ℎΦ:+1ℎ

, : ∈ N. (34)

The spatial discretization, designated by the subscript ℎ which corresponds to the size of the grid
cells, is not detailed here and shall be precised later. The following averaged quantities have been
introduced:

v:+
1
2

? =
1
2

(
v:+1? + v:?

)
, E:+

1
2

ℎ

(
x:+

1
2

?

)
:=

1
2

[
E:+1ℎ

(
x:+

1
2

?

)
+ E:ℎ

(
x:+

1
2

?

)]
. (35)

The electric field is interpolated from the grid to the particle positions according to:

E:+1ℎ

(
x:+

1
2

?

)
=

(
I+ℎE:+1ℎ

) (
x:+

1
2

?

)
. (36)

The implicit current density is defined by:

J:+
1
2

ℎ
(x) = 1

ℎ3

∑
B

#B∑
?=1

@?v
:+ 1

2
? ,ℎ

(
x − x:+

1
2

?

)
. (37)

The scheme introduced in equation (34) is fully implicit because of the coupling between the
particles and the field. It requires the resolution of a non-linear system. Semi-implicit approaches,
such as the moment implicit method [9, 41], the direct implicit method [38, 34], etc. or the method
introduced here are based on a linearization of the equations. Nonetheless, the method introduced
in this paper is different from the direct implicit method (in which the shape function ,ℎ is
linearized using Taylor expansions) and the moment implicit method (in which the linearization
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is obtained from moment of the vlasov equation). The method is inspired of the ECSIM method
introduced in [39]. The linearization is obtained directly in the particle equations by updating the
position of the particles with a known velocity, i.e. the first equation in (34) becomes:

x:+
1
2

? = x:−
1
2

? + ΔC
2

[
v:? + ΔC

@?

<?
E:+

1
2

ℎ

(
x:+

1
2

?

)
+ v:?

]
(38)

= x:? + ΔCv:? +$
(
ΔC2

)
. (39)

As a result, the implicit model has become linear so that the implicit contribution of the electric
field (evaluated at the known particle position) may be obtained from the divergence of Ampere
equation (third equation of (34)) by solving a linear system. The particle equations are then:

x:+
1
2

? = x:−
1
2

? + ΔCv:?
v:+1? = v:? + ΔC

@?

<?
E:+

1
2

ℎ

(
x:+

1
2

?

)
, : ∈ N. (40)

3.2 Derivation of the Semi-Implicit Sparse-PIC (SISPIC) scheme
Let us now detail how the implicit contribution of the electric field can be obtained by solving a
linear system. The current density can be recast into two components, designated as the explicit
and the implicit (with ∼ notation) contributions:

J:+
1
2

ℎ
(x) = J:ℎ (x)︸︷︷︸

explicit

+ J̃:+1ℎ (x)︸  ︷︷  ︸
implicit

, (41)

which are defined by:

J:ℎ (x) =
1
ℎ3

∑
B

#B∑
?=1

@?v:?,ℎ

(
x − x:+

1
2

?

)
, (42)

J̃:+1ℎ (x) =
ΔC

ℎ3

∑
B

#B∑
?=1

@2
?

4<?

[
E:+1ℎ

(
x:+

1
2

?

)
+ E:ℎ

(
x:+

1
2

?

)]
,ℎ

(
x − x:+

1
2

?

)
. (43)

Let us now explicit the spatial discretization, i.e. define the notation ℎ. The two components
are discretized on different spatial meshes (this choice is discussed in section 3.4). The explicit
part is discretized on the set of component grids and combined onto the Cartesian grid with the
combination technique; the implicit component is discretized directly on the Cartesian grid. All
the details of the spatial discretization are given in the appendix A.1. The explicit contribution of
the current is defined on the Cartesian grid by:

J:
ℎ=;jH =

∑
l∈L=

2l
(
I+ℎl J

:
ℎl

)
(jH), (44)

where the notation jH , corresponding to the Cartesian grid index j ∈ �ℎ= , is introduced in the
appendix A.1 and refers to the grid nodes on the staggered Yee mesh. An explicit contribution of
the current is defined independently on each component grid by:

J:
ℎl;jH = ℎ

−1
l

∑
B

#B∑
?=1

@?v:?,ℎl;?jH , (45)
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where the following shortcut notation has been introduced:

,ℎl;?jH := ,ℎl

(
jHℎl − x

:+ 1
2

?

)
. (46)

ℎ−1
l is the volume of the component grid. The implicit contribution of the current is discretized

on the Cartesian grid and defined for each Cartesian grid index j ∈ �ℎ= , by:

J̃:+1ℎ=;jH =
ΔC

ℎ3=

∑
B

#B∑
?=1

@2
?

4<?

[
E:+1ℎ=

(
x:+

1
2

?

)
+ E:ℎ=

(
x:+

1
2

?

)]
,ℎ=;?jH . (47)

Let us recall that the electric field is interpolated at the particle positions according to:

E:+1ℎ=

(
x:+

1
2

?

)
=

∑
j∈�ℎ=

E:+1
ℎ=;jH,ℎ=;?jH , E:+1

ℎ=;jH = −∇ℎ=Φ
:+1
ℎ=;j, (48)

where the discrete gradient operator notation is introduced in appendix A.1. Introducing the
following notation:

,
ℎ=;jj′ = ,ℎ=;j′ j := ,ℎ= (j

′
ℎ= − jℎ=), (49)

and decomposing the electric potential onto the basis of + (∞)
ℎ=

:

Φ:+1ℎ=;j =
∑

j′ ∈�ℎ=

Φ:+1
ℎ=;j′

,
ℎ=;jj′ , (50)

the implicit contribution of the current can be recast into:

J̃:+1ℎ=;jH = −
ΔC

ℎ3=

∑
B

#B∑
?=1

@2
?

4<?

∑
j̃,j′ ∈�ℎ=

(
Φ:+1
ℎ=;j′
+Φ:

ℎ=;j′
)
∇ℎ=,ℎ=;j̃j′,ℎ=;?j̃H,ℎ=;?jH . (51)

Let us now introduce the discretization of the (div)Ampere equation on the Cartesian grid.
From equation (50) and applying the discrete Laplacian operator, one gets:∑

j′ ∈�ℎ=

(
Φ:+1
ℎ=;j′
−Φ:

ℎ=;j′
)
Δℎ=,ℎ=;jj′ =

ΔC

Y0
∇ℎ= · J

:+ 1
2

ℎ=;jH , (52)

where J:+1
ℎ=;jH is defined from equations (41), (44) and (51).

The contribution of the electric potential at time : + 1 can thus be obtained by solving a linear
system. The matrix corresponding to the linear system is called the stiffness matrix, because it
discretizes the Laplacian operator; it is denoted Sℎ= and is defined by:

Sℎ= = S
(1)
ℎ=
+ S(2)

ℎ=
, where ∀(j, j′) ∈ �ℎ= × �ℎ= (53)

(S(1)
ℎ=
)jj′ = Δℎ=,ℎ=;jj′ , (54)

(S(2)
ℎ=
)jj′ =

∑
B

#B∑
?=1

V?

∑
j̃∈�ℎ=

,ℎ=;?j̃H∇ℎ=,ℎ=;j̃j′ ·∇ℎ=,ℎ=;?jH , (55)

and V? = @2
?ΔC

2/(4Y0<?). Two stiffness matrices have been introduced: the first matrix corre-
sponds to the discretization of the Laplacian operator; the second matrix is the linear term of the
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particle response to the electric potential. Note that the stiffness matrix depends on the particle
positions, and thus is different from one iteration to another. Therefore it has to be computed at
each iteration.

Remark 3.1. The SISPIC scheme is second order accurate in time.

3.3 Comparison with the existing semi-implicit methods
3.3.1 Direct implicit
The motivation of this section is to situate the present method among the state-of-the-art of
the semi-implicit methods. In the direct implicit method [34], the particles are advanced to an
intermediate position and velocity using the known electric field in a PREPUSH step:

ṽ:+
1
2

? = v:−
1
2

? + ΔC
@?

<?
E:ℎ

(
x:?

)
x̃:+1? = x:? + ΔCṽ

:+ 1
2

?

, : ∈ N. (56)

Similarly to our approach, the sources in the fields equations are decomposed into an explicit
contribution and an implicit contribution:

J:+
1
2

ℎ
(x) = J:ℎ (x)︸︷︷︸

explicit

+ J̃:+1ℎ (x)︸  ︷︷  ︸
implicit

. (57)

The implicit contribution is different from our approach in that the linearization of the shape
function introduces two matrices, which are named implicit susceptibility matrices:

J̃:+1ℎ (x) = χ:ℎ (x) · E
:+1
ℎ (x̃

:+1
? ) − ΔC∇ × ξ:ℎ · E

:+1
ℎ (x̃

:+1
? ). (58)

The implicit susceptibility matrices are approximated by:

χ:ℎ (x) ≈
∑
B

ΔC

4
@B

<B
d:B,ℎ (x)α

:
B , ξ:ℎ (x) ≈

∑
B

ΔC

8
@B

<B
J:B,ℎ (x)α

:
B , (59)

where α:B is the rotation matrix [34, 47, 39]. It is defined from the magnetic field and falls down
to the identity matrix in the electrostatic regime. In the electrostatic version, the second implicit
susceptibility matrix is zero. These matrices can be read as a discretization of the continuous
quantity 3J/3C. Within the SISPIC scheme, a different discretization of this quantity than the
direct implicit method is proposed: the first term in equation (58) corresponding to:

χ:ℎ;j · E
:+1 (x:?) ≈

∑
j̃∈�ℎ

E:+
1
2

ℎ;j̃

∑
B

@B

4<B
ΔC

ℎ3

∑
?

,ℎ;?jH,ℎ;?j̃H , (60)

and the second term being neglected as a $
(
ΔC2

)
correction. After the advanced field has been

computed in the direct implicit method, the particles are advanced to the next time step in a
FINALPUSH step: 

x:+1? = x̃:+1? + ΔC
2

2
@?

<?
E:+1ℎ (x̃

:+1
? )

v:+
1
2

? = ṽ:+
1
2

? + ΔC
2
@?

<?
E:+1ℎ

(
x̃:+1?

) , : ∈ N. (61)
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3.3.2 Moment implicit
In the moment implicit method [41, 9], the non-linearity coupling the fields and the particles
equations is overcome by considering instead the resolution of a set of coupled fluid moment and
field equations. Indeed, thanks to a representation of the implicit sources of the field equations
using the moment equations instead of the particle equations directly, the non linear coupling is
approximated so that, once the field equations are solved within this approximation, the rest of the
steps can be completed directly without iterations. Specifically, in [47], the particle equations are
as follows: 

x:+1? = x:? +
ΔC

2

(
v:+1? + v:?

)
v:+1? = v:? + ΔC

@?

<?
E:+

1
2

ℎ

[
1
2

(
x:+1? + x:?

)] , : ∈ N. (62)

and the implicit current density, which is the source of the Ampere equation, is approximated by:

J:+
1
2

ℎ
(x) ≈

∑
B

α:B J:B,ℎ (x) −
ΔC

2
µ:B (x) · α:BE

:+ 1
2

ℎ
(x) − ΔC

2
∇ · �:

B (x), (63)

where α:B is the rotation matrix, �:
B is the rotationed pressure matrix and µ:B is defined as the

effective dielectric matrix which express the response of the electric field to the plasma current:

�:
B (x) =

1
ℎ3

#B∑
?=1

@?α
:
B v:?α:B v:?,ℎ (x − x:?), µ:B (x) =

−@Bd:B (x)
<B

α:B . (64)

The first term in the equation (63) corresponds to the explicit contribution of the current density
and the two last terms correspond to the implicit one, for which the SISPIC and the direct implicit
methods provide a different approximation.

3.3.3 ECSIM
The SISPIC method introduced in this paper is inspired by the ECSIM scheme [39]. The non-
linear coupling between the field and the particle equations is approximated directly in the particle
equations similarly for both methods. Let us emphasize the differences between the two methods:

• The first difference between the traditional ECSIM scheme [39] (as well as its extensions
[16, 12]) and our approach is the electrostatic regime. As a result, the formulation of
the problem is different between the two approaches and, within the SISPIC method, the
Ampere equation is substituted by the divergence of the Ampere equation. The resulting
electrostatic stiffness matrix contains terms depending on the product of the basis functions
discrete gradients (with larger supports than the basis functions) instead of products of
the basis functions theirselves within the ECSIM scheme (for which the matrix is more
similar to a mass matrix). Therefore the stiffness matrix of the SISPIC scheme has more
non-zeros entries (21 non-zero terms per row) than the mass matrices of the ECSIM scheme
(9 non-zero terms per row). In addition, there is no self-consistent magnetic field in our
approach and therefore the rotation matrix used in the traditional ECSIM scheme [39] does
not have to be computed. It results in an unique stiffness matrix to compute at each time
step, instead of 3E mass matrices (where E is the dimension of the velocity domain) for the
ECSIM scheme. In addition, the unknown for the electrostatic approach is scalar, so that the
size of the linear system is reduced by six in comparison to the ECSIM scheme (Φ versus
�G , �H , �I , �G , �H , �I). Note also that, contrary to the SISPIC approach, the electrostatic
condition ∇ × E is not verified in the ECSIM scheme.

• The second major difference between the two approaches is the embedding of the sparse
grid combination technique. Indeed, within the SISPIC scheme, the explicit contribution of
the current density is accumulated onto each component grid, and eventually combined onto
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the Cartesian grid. The motivation for this choice of discretization is related to complexity
issues and explained in the following section.

• Contrary to the ECSIM scheme and caused by the sparse grid reconstruction, the SISPIC
scheme does not conserve exactly the discrete total energy of the system. This is a conse-
quence of the choice of the interpolation basis functions which are different from the shape
functions used for the current density accumulation in the SISPIC scheme. Indeed, the
supports of the functions are either based on the Cartesian grid (for interpolation) or on the
component grids (for current accumulation).

3.4 Discussion on complexity
The size of the linear system, i.e. the size of the stiffness matrix, is related to the Cartesian grid
discretization and grows exponentially with the dimension of the problem; specifically, the number
of nodes of the linear system scales as $

(
ℎ−3= × ℎ−3=

)
. Nonetheless, thanks to the locality of the

shape functions,ℎ= , the stiffness matrix has many zero entries (21 non-zero terms per row), the
total number of non-zero terms of the stiffness matrix being:

=>= I4A> C4A<B = 21 ∗ 23=. (65)

It is widely known that PIC schemes contain a significant weakness: the statistical error
originating from the sampling of the distribution function by a limited number of numerical
particles. This numerical noise decreases slowly with the increase of the average number of
particles per cell (in$

(
1/
√
%2

)
, where %2 = #ℎ3= is the mean number of particles per cell. Within

the SISPIC method, the explicit contribution of the current density is accumulated onto the mesh
thanks to the sparse grid combination technique.
Proposition 3.2. Assuming enough smoothness on the solution J, the local error between the
explicit contribution of the current density and the solution can be recast into a grid-based error
and a particle sampling error (noise):

J:ℎ= − J = Bias(J:ℎ= )︸     ︷︷     ︸
grid-based error

+ V(J:ℎ= )︸   ︷︷   ︸
particle sampling error

, (66)

where Bias(J:ℎ= )

∞
≤ $

(
ℎ2
= | log ℎ= |3−1

)
,

V (
V(J:ℎ= )

) 1
2

∞
≤ $

(
| log ℎ= |3−1

(#ℎ=)
1
2

)
(67)

Proof. The proof is similar to the one provided for the charge density in [26]. �

These estimations shall be compared to the ones obtained for a standard accumulation onto
the Cartesian grid (without sparse grid technique):Bias(J:,BC3

ℎ=
)

∞
= $

(
ℎ2
=

)
,

V (
V(J:,BC3

ℎ=
)
) 1

2

∞
= $

((
1
#ℎ3=

) 1
2
)
. (68)

Specifically, the combination technique provides an accurate representation of the current
density approximated on a variety of grids with coarse discretizations: the component grids.
One crucial feature of the method is the large size of the component grid cells in comparison
to those of the Cartesian grid, resulting in a significant increase of the number of particles per
cell. This entails an improvement of the statistical resolution (reduced particle sampling error),
without increasing the overall number of particles. Practically, the total number of particles in
order to achieve a given statistical resolution is reduced in comparison to PIC schemes discretized
on standard mesh. As a result, the gain in term of memory footprint of the method compared to
standard implicit methods is manifest, particularity for three dimensional simulations with refined
mesh [24, 25].
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4 Extension to exact energy conservation
It has already been outlined that the SISPIC scheme does not conserve exactly the discrete total
energy of the system. Nonetheless, the SISPIC scheme can be extended to a specific configuration
for which the total energy is exactly conserved. Indeed, if the explicit contribution of the current
density is directly accumulated onto the Cartesian grid, then the scheme conserves exactly the
total energy. The scheme can thus be viewed as an electrostatic version of the ECSIM scheme.

The goal of this section is to derive a sparse grid SISPIC scheme conserving exactly the total
energy. Let us first introduce the discrete total energy of the system at time : defined from the
kinetic energy of the particles and the field energy:

E:T := E:K︸︷︷︸
kinetic energy

+ E:F︸︷︷︸
field energy

, (69)

which are defined by:

E:K :=
1
2

∑
B

#B∑
?=1

<?

(
v:?

)2
, E:F :=

n0
2

∑
j∈�ℎ=

(
E:ℎ=;j

)2
. (70)

In order to have exact conservation of the total energy, the method used to accumulate the current
density and the method used to interpolate the electric field at the particle positions shall be, in
a way, similar. Therefore, in our approach, the electric field shall be interpolated at the particle
positions with the sparse grid combination technique.

4.1 Derivation of the Energy-Conserving semi-implicit Sparse-PIC (EC-
SPIC) scheme

The method uses the same particle mover as the SISPIC scheme, in which the particle positions
are updated with a known velocity:

x:+
1
2

? = x:−
1
2

? + ΔCv:?
v:+1? = v:? + ΔC

@?

<?
E:+

1
2

ℎ=

(
x:+

1
2

?

)
, : ∈ N. (71)

In the above, the electric field reconstruction evaluated at the particle positions is constructed,
according to the combination technique, from the electric field contributions of all component
grids, averaged between time : and : + 1:

E:+
1
2

ℎ=

(
x:+

1
2

?

)
=

∑
l∈L=

2lI+ℎl

(
E:+

1
2

ℎl;jH

) (
x:+

1
2

?

)
, (72)

where E:+
1
2

ℎl;jH
=

1
2

(
E:+1
ℎl;jH + E

:
ℎl;jH

)
. (73)

We recall that the notation I+ℎl , introduced in equation (17), stands for the interpolation onto
the space associated to the component grid of discretization ℎl and spanned by basis functions
with support depending on ℎl. The electric field, derived from the electric potential according to
equation (48), is obtained from the implicit current density using the divergence of the Ampere
equation. This equation is discretized on each component grid according to the relation:∑

j′∈�ℎl

(
Φ:+1
ℎl;j′ −Φ

:
ℎl;j′

)
Δℎl,ℎl;jj′ =

ΔC

n0
∇ℎl · J

:+ 1
2

ℎl;jH
. (74)
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The current density is decomposed into an explicit contribution and an implicit contribution, both
defined on each component grid:

J:+
1
2

ℎl;jH
= J:

ℎl;jH︸︷︷︸
explicit

+ J̃:+1ℎl;jH︸︷︷︸
implicit

, ∀j ∈ �ℎl , (75)

by the relations:

J:
ℎl;jH =

∑
B

ℎ−1
l

#B∑
?=1

@?v:?,ℎl;?jH , (76)

J̃:+1ℎl;jH (x) =
∑
B

ℎ−1
l

#B∑
?=1

@2
?ΔC

2<?
E:+

1
2

ℎ=

(
x:+

1
2

?

)
,ℎl;?jH . (77)

Introducing the equation (72) in the last equation (77), using the decomposition introduced in
equation (50) and substituting them into the divergence of Ampere equation (74), the electric
potential at time : + 1 can be obtained by solving a linear system. The matrix of the linear system,
denoted by SL= , is named the global stiffness matrix and constructed by assembling local stiffness
matrices. The local stiffness matrices are defined for couples of component indices (l, l̃) ∈ L2

= by:

S
(1)
ℎl

:=
(
B
(1)
j,j′

)
(j,j′) ∈� 2

ℎl

, where B (1)j,j′ = Δℎl,ℎl;jj′

S
(2)
ℎl ,ℎl̃

:=
(
B
(2)
j,j′

)
(j,j′) ∈�ℎl×�ℎl̃

, where B (2)j,j′ =
∑
B

#B∑
?=1

V?

∑
j̃∈�ℎl̃

,ℎl̃;?j̃
H∇ℎl̃,ℎl̃;j̃j

′ ·∇ℎl,ℎl;?jH ,

and V? = @2
?ΔC

2/(4Y0<?). The first local matrix is a discretization of the Laplacian operator
on the component grid Ωℎl and shall be named the local Laplacian matrix. The local Laplacian
matrices are square, symmetric and of size depending on the number of nodes from the component
grid. The second local matrix, which shall be referred to as the local stiffness matrix, translates
the energy exchange between the particles and the field. Specifically, the local stiffness matrix
represents the effect on the electric potential (computed on the grid Ωℎl ) of the electric potential
(computed on the grid Ωℎl̃ ) response to the particles. The local stiffness matrices are rectangular
and of size depending on the number of nodes from each component grid in the couple. Let us
recall |L= | := �0A3 (L=) the number of component grids. There are |L= |2 local stiffness matrices
but note that only a few more than a half of them shall be computed thanks to the symmetry. Let
us numerate all the component grid levels L= = (l1, ..., l |L= |) and let Φ:L= (∇ℎl · J:L= resp.) be
a global vector corresponding to the electric potential (divergence of the current density resp.)
approximations on all the component grids at time : . From these local matrices, we construct by
blocks two global matrices, containing all the component grid contributions:

S
(1)
L=
=

©«

S
(1)
ℎl1

0 · · · 0

0 S
(1)
ℎl2
· · ·

...

...
. . .

. . .
...

0 · · · 0 S
(1)
ℎl|L= |

ª®®®®®®®¬
. (78)
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S
(2)
L=
=

©«

2l1ℎ
−1
l1 S
(2)
ℎl1 ,ℎl1

2l2ℎ
−1
l1 S
(2)
ℎl1 ,ℎl2

· · · 2l|L= | ℎ
−1
l1 S
(2)
ℎl1 ,ℎl|L= |

2l1ℎ
−1
l2 S
(2)
ℎl2 ,ℎl1

2l2ℎ
−1
l2 S
(2)
ℎl2 ,ℎl2

· · ·
...

...
. . .

. . .
...

2l1ℎ
−1
l|L= |
S
(2)
ℎl|L= |

,ℎl1
· · · 2l|L= |−1ℎ

−1
l|L= |
S
(2)
ℎl|L= |

,ℎl|L= |−1
2l|L= | ℎ

−1
l|L= |
S
(2)
ℎl|L= |

,ℎl|L= |

ª®®®®®®®¬
.

(79)

Two matrices are then constructed from these matrices:

SL= = S
(1)
L=
+ 1

2
S
(2)
L=
, S★L= = S

(1)
L=
− 1

2
"
(2)
L=
, (80)

which are square and of order:

$A34A (SL= ) = $A34A (S★L= ) =
3−1∑
A=0

2=+3−1−A
(
= + 3 − 2 − A

3 − 1

)
. (81)

Note that the two global matrices are not symmetric because the global stiffness matrix is not.
The system can thus be rewritten as a linear system:

SL=Φ
:+1
L=

=
ΔC

n0
∇ℎl · J:L= + S

★
L=
Φ:L= . (82)

In order to solve the linear system (82) and obtain the updated electric potential at time : + 1, the
local stiffness matrices need to be computed at each time step because of their dependence on the
position of the particles. The resulting global stiffness matrix (and global matrix) is then different
at each iteration.

Within the ECSPIC scheme, the electric field is decomposed into contributions which are
defined separately on the component grids; it is then reconstructed at the particle positions with
the sparse grid combination technique. The electric field is never defined on the Cartesian grid
so that the field energy definition in (70) is not relevant. Let us define the discrete field energy,
in the context of sparse grid reconstruction schemes, which is defined by the combination of the
electric field energy from all the component grids:

E:F :=
n0
2

∑
l∈L=

2lℎ
−1
l

∑
j∈�ℎl

(
E:ℎl;j

)2
. (83)

Proposition 4.1 (Exact energy conservation). The total energy of the system is exactly conserved,
i.e.

E:+1T = E:T . (84)

Proof of proposition 4.1. The difference in the particle kinetic energy between two consecutive
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steps : and : + 1 is expressed by:

E:+1K − E:K =
∑
B

#B∑
?=1

1
2
<?

[(
v:+1?

)2
−

(
v:?

)2
]

(85)

= ΔC
∑
B

#B∑
?=1

@?v:+1/2? E:+1/2
ℎ=

(
x:+1/2?

)
(86)

= ΔC
∑
B

#B∑
?=1

@?v:+1/2?

∑
l∈L=

2l
∑
j∈�ℎl

E:+1/2
ℎl;jH

,ℎl;?jH (87)

= ΔC
∑
l∈L=

2lℎ
−1
l

∑
j∈�ℎl

E:+1/2
ℎl;jH

· J:+1/2
ℎl;jH

. (88)

= −ΔC
∑
l∈L=

2lℎ
−1
l

∑
j∈�ℎl

∇ℎlΦ
:+1/2
ℎl;j · J

:+1/2
ℎl;jH

. (89)

In the above, the particle velocity equation in (34) has been used, as well as the definition
of the recombined electric field (72) and the current density (75)-(77). The last equation is
obtained because the electric field derives from the electric potential. From lemma A.1, a discrete
integration by parts on (89) yields:

E:+1K − E:K = ΔC
∑
l∈L=

2lℎ
−1
l

∑
j∈�ℎl

Φ
:+1/2
ℎl;j ∇ℎl · J

:+1/2
ℎl;jH

. (90)

Then, using the divergence of Ampere equation (74), the difference in the kinetic energy is equal
to:

E:+1K − E:K = −n0
∑
l∈L=

2lℎ
−1
l

∑
j∈�ℎl

Φ
:+1/2
ℎl;j ∇ℎl ·

(
E:+1
ℎl;jH − E

:
ℎl;jH

)
. (91)

Eventually, a discrete integration by parts (see lemma A.1) gives the result:

E:+1K − E:K = n0
∑
l∈L=

2lℎ
−1
l

∑
j∈�ℎl

∇ℎlΦ
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= −n0
∑
l∈L=
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·
(
E:+1
ℎl;jH − E

:
ℎl;jH

)
(93)

= −
(
E:+1F − E:F

)
. � (94)

Remark 4.2. The sparse grid discrete field energy, defined in equation (83) is not non-negative.

4.2 Discussion about complexity and non-negativity
The major difference with the SISPIC scheme is related to the embedding of sparse grid recon-
structions, not only restricted to the computation of the current density explicit contribution as in
SISPIC, but used also within the resolution of the linear system. It results in the computation of
numerous blocks (local stiffness matrices) to assemble the system matrix. In the SISPIC scheme,
an unique stiffness matrix shall be computed. The number of component grids and thus of stiffness
matrices to compute for the ECSPICmethod depends on the dimension and the grid discretization,
thus scaling as $

(
| log ℎ= |3−1) . The determination of a stiffness matrix can be expansive because

of the computation of the particle interactions requiring a loop spanning the particle population.
Nonetheless, the local stiffness matrices are less expensive to compute for sparse grid reconstruc-
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tions than for standard discretizations since the number of particles is significantly reduced and,
the array of a local stiffness matrix fits more easily in the cache memory of the CPU than the global
stiffness matrix for standard grids. As demonstrated in [24], a good cache memory management is
a capital feature increasing the performance of these kind of algorithms and enabling an efficient
parallelization.

Another significant difference between the two approaches introduced in this paper is the
profile of the global stiffness matrix. Indeed, one major advantage of the SISPIC scheme (and
ECSIM scheme) is the sparsity of the stiffness matrix. Because of the very localized support of
the basis functions (hat function with one grid cell width support), the number of non-zero terms
of the stiffness matrix is 21 per row (9 for the ECSIM scheme). We recall that the total number of
non-zero terms in the global matrix for the SISPIC method is:

=>= I4A> C4A<B = 21 ∗ 23=. (95)

Conversely, the matrix profile of the ECSPIC scheme is a bit more complex. The global matrix is
constructed by assembling blocks of local matrices, each corresponding to a couple of component
grids. For couples of the same component grids (corresponding to the diagonal blocks in the
global matrix), the profile of the local stiffness matrix is similar to the standard matrix one with
the same sparsity (only 21 non-zero terms per row). On the contrary, for couples of component
grids with different discretizations, the profile may not be sparse at all. E.g. consider a couple of
grids with levels l1 = (1, =) and l2 = (=, 1), for all grid nodes j1 ∈ �ℎl1 and j2 ∈ �ℎl2 the support of
the basis functions is not disjoint (see figure 1):

(D??(,ℎl1 ;j1 ) ∩ (D??(,ℎl2 ;j2 ) ≠ ∅. (96)

In that configuration, all the entries in the local stiffness matrix are non-zeros. Nonetheless, thanks

non-zero entry
zero entry

Figure 1: Support of basis functions for component grids and corresponding non-zero and zero
entries in the global stiffness matrix.

to the sparse grid properties, the size of the linear system, i.e. the order of the global stiffness
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matrix, is reduced in comparison to the SISPIC scheme:

$A34A (S) =


3−1∑
A=0

2=+3−1−A
(
= + 3 − 2 − A

3 − 1

)
(ECSPIC),

23= (SISPIC, ECSIM).
(97)

The scheme ensures an exact energy conservation, i.e. the change in the particle energy is
equal to the change in the field energy (see proposition 4.1). Usually, since these two quantities
are non-negative, this property guarantees some stability for the scheme. Indeed, if the two energy
contributions (particle and field) are non-negative, then, by induction, the following bounds hold:

E:K < E
0
T , E:F < E

0
T , ∀: ∈ N. (98)

Both the kinetic energy of the particles and the field energy are bounded by the initial total energy of
the system; i.e. the velocity of the particles and the electric field are bounded. Nonetheless, within
the ECSPIC scheme, the field energy, which is defined by the combination of the component grid
contributions, is not a non-negative quantity, the loss of non-negativity being a genuine property
of the combination technique (see remark 2.4). It results from this that numerical instabilities can
arise in some contexts. E.g. let us assume a decreasing non-negative field energy:

E:F < 0, E:F − E
:+1
F = [(:) > 0, ∀: ∈ N (99)

then the kinetic energy verifies:

E:K ≥ E
0
K +

:−1∑
8=0

[(8). (100)

Since the field energy is not non-negative, the quantities [(8) are not controlled and can be very
large, leading to an instability manifested by increasing particle velocities and electric field. Note
that if the field energy is non-negative, then

:−1∑
8=0

[(8) ≤ E0
F , (101)

and one recovers the bounds in (98).

5 Numerical results
In this section, the methods introduced in this paper are implemented in a sequential program
written in Fortran 90 and compared to each other in a series of numerical tests: a Landau damping
and a two-streams instability test cases. The SISPIC and ECSPIC schemes are investigated, as
well as their standard version (which are similar) which shall be named SISPIC-std, and compared
to existing PIC schemes. The PIC explicit scheme [26] is considered both with standard grid
(Ex-std) and sparse grid reconstructions (Ex-sg). The ECSIM scheme [39] is also considered as
a comparison. The simulations aim at demonstrating the conservation and stability properties of
the schemes introduced in this paper, as well as establishing the correctness of the methods in
different configurations. Although the benefits of sparse grid reconstruction methods have proven
to be significantly larger for three dimensional computations, the methods have been implemented
in two dimensions of space and three dimensions of velocity (2d-3v) for simplicity. The author
emphasizes on the large gap in term of computational time reduction gained thanks to sparse grid
reconstructions between two and three dimensional computations. Indeed, in two dimensional
simulations, sparse grid reconstructions for explicit schemes shows a slight reduction of the
computational times in comparison to standard grid methods [26], whereas the reduction has
proven to be substantial for three dimensional computations [24, 25]. This is a consequence of the
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significant particle sampling error difference between the sparse grid and the standard methods for
two dimensional and three dimensional computations illustrated by the equations (67) and (68).

The computational times reported in this section are not necessarily representative of the
exact efficiency of the methods since some of our implementations are known to not be optimal
(ECSIM, ECSPIC): e.g. the ECSIM and Ex-sg schemes have not been implemented with iterative
method but are expected to be more efficient than direct methods, especially for three dimensional
computations. The execution times reported are rather meant to give an indication of the order of
magnitude between the methods.�

The domain is a periodic squareΩ = (R/!Z)2, of dimension ! ∈ R∗+. Dimensionless variables
are considered, the reference length and time units being the Debye length and the plasma period,
defined by:

_� =
√
Y0)4/@4=0, l−1

? = 1/
√
@4=0/<4Y0. (102)

The electrons are considered immersed in a uniform, immobile, background of ions. Electron
mass, temperature and charge are normalized to one. Periodic boundary conditions are considered
for the particles and the field.

Throughout this section, we will refer to the mean number of particles per cell, denoted %2 ,
relating the amount of statistical noise in the simulation. For the standard methods, it depends on
the number of particles and the Cartesian grid discretization:

%2 = #ℎ
2
=. (103)

An equivalent quantity for sparse grid reconstruction methods can be defined by considering the
number of particles for all component grid cells [43]:

%2 = #ℎ= (3= − 1)−1 . (104)

The results are compared without any filtering methods for all schemes. Let us now introduce
the different diagnostics and error definitions. The momentum error in the simulation at iteration
: is measured by the sum of the momentum error vector:

ε:M :=

������ 3∑A=1

©«
∑
B

1
#B

#B∑
?=1

<Bv:? − <Bv0
?

<BE)

ª®¬A
������ , (105)

where E) :=
√

2@B)B/<B is the thermal velocity of the electrons. The total discrete energy error
at time iteration : is defined by:

ε:E :=

�������
3∑
A=1

©«
E:K + E

:
F −

(
E0
K + E

0
F

)
E0
K + E

0
F

ª®®¬A
������� , (106)

where E:K and E:F are the kinetic and field energy measured at time : .

5.1 Instability of the ECSPIC scheme
While performing numerical investigations on the ECSPIC scheme, we have experienced numer-
ical instabilities not observed with the SISPIC or the ECSIM method. The numerical instabilities

�All the following simulations are performed on a laptop equipped with Intel® Core™ i9-10885H CPU with 8 cores
@2.40 GHz sharing a L3 cache memory of 16MB and L1 cache memory of 32KB specific to each core. The Random-
Access Memory (RAM) size is 32GB. The compilers used for the hardware is the GNU Fortran version 9.4.0 with options
-cpp and optimizations -Ofast. All reported computational time are provided with frequency boost disabled. The linear
systems are solved either with LU decomposition method from the MUMPS [2] library or with GMRES iterative method
and algebraic multigrid preconditionner from the PETSc [3] library. In all the simulations, the tolerance of the iterative
GMRES method is chosen so that the residual error is around 10−15.
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are neither related to the time discretization nor the space discretization. We have found that it
might be instead related to the loss of the field energy non-negativity. Indeed, according to the
discussion in section 4.2, the reconstructed field energy is not guaranteed to be a non-negative
quantity, even though the field energy defined on each component grid is non-negative. This
is a drawback genuine to the combination technique: it does not preserve the non-negativity of
the solution. This triggers an instability: when the field energy becomes negative the particle
velocities increase to offset the loss in the field energy, preserving the system total energy (see
proposition 4.1). This formal analysis is echoed by numerical investigations. We have observed
that once the field energy is negative, it tends to become more and more negative, entailing the
particle velocities increase, leading to numerical instabilities.

The conclusions drawn from these features call for the investigations of semi-implicit sparse-
PIC methods that shall conserved a different discrete potential energy. This issue is left to a future
work.

5.2 Finite-grid instability
The so-called aliasing or finite grid instability, first studied in [37], is a common numerical
instability arising in PIC plasma simulations. It originates from the inconsistency between
the discrete Eulerian discretization of the fields on a grid and the continuous discretization of
Lagrangian particles in the phase-space [35].

This instability is manifested in simulations by a numerical heating of the plasma [7] related
to the numerical parameters. Since the aliasing introduces artificial heat in the system, it is also
characterized by a violation of the energy conservation. Usually in PIC simulations, the aliasing
instability is avoided by choosing a grid discretization equal to or smaller than the Debye length
(ℎ= ≤ _�), including for problems with scales of interest much larger than the Debye length.
For example, dense plasmas are well described by the quasi-neutral approximation in most of the
domain and the simulation of the plasma physics does not required grid cells smaller than the
Debye length. Therefore large gains could be obtained with coarse grid cells that do not resolve
the Debye length, especially for three dimensional computations.

Various methods and numerical schemes have been proposed to mitigate this instability,
including introducing grid interlacing [15], random jiggling [10], using higher order particle
shapes [5] or temporal/spatial filtering [40]. Besides, semi-implicit scheme with exact energy
conservation, such as the ECSIM scheme [39] have proven numerically to preserve the simulations
from aliasing.

Nonetheless, analysis of the aliasing instability is not straightforward. It has been conducted
linearly for stationary plasmas and specific schemes, such as the fully-implicit energy-conserving
scheme in [4]. For drifting plasma however, it has been shown that in principle the scheme is not
exempted from the instability, but that in practice the scheme is almost always freed from it. In
this section, we address to establish numerically that the introduced schemes do not feature finite
grid instability in classical configurations where the explicit discretizations does.

An initially Maxwellian and stable plasma is considered with the following distribution of
electron:

5 0
E (v) =

(
1
√
cE)

)3
4−‖v‖

2
2/E

2
) , (107)

where E) =
√

2)4@4/<4 is the thermal velocity of electrons and ‖v‖22 = E2
1 + E

2
2 + E

2
3. The size

of the domain is ! = 5c, 10c, 15c, 20c and the grid discretization is ℎ= = 2−5!. Some of these
configurations shall lead to the development of the finite-grid instability for the explicit schemes,
since the grid discretization is larger than the Debye length.

The first dimension of the particle phase space (G1, E1) is represented at time) = 100 on figure
2 for different schemes and configurations of the domain. The finite grid instability is visible for
the explicit schemes for the configurations in which the grid discretization is larger than the Debye
length: the velocities of the particles are increased entailing an increase of the system total energy
(initially the electric energy is equal to zero). This is a characterization of the numerical heating of
particles. The implicit schemes are preserved from the finite grid instability for all configurations.
The results for the ECSPIC scheme are not provided since the numerical instability discussed in
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the previous section prevents us to investigate the finite grid instability. The initially Maxwellian
velocity distribution is preserved at any time and for all configurations with the SISPIC-std and
SISPIC-sg schemes.

Figure 2: Finite-grid instability: representation of the phase space (G1, E1) of an initially
Maxwellian distribution of electron. %2 = 100, ΔC = 0.1 for the explicit schemes and ΔC = 1 for
the implicit schemes.

5.3 Landau damping
The first test case considered is the well-known Landau damping [1, 36]. When a plasma is slightly
perturbed from an equilibrum state, it returns to its equilibrium with an exponential damping. A
perturbation in the electron distribution of an equilibrium state is considered:

54 (x, v, 0) = 5 0
E (v) 5 0

G (x), (108)
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where the initial velocity distribution is Maxwellian, similar to the previous configuration defined
by equation (107), and the perturbation has the following form:

5 0
G (x) = (1 + U1cos (:1G1)) (1 + U2cos (:2G2)) . (109)

α is the magnitude and k is the period of the perturbation. The perturbation is considered uniform
in each dimension, i.e. :8 = : , : ∈ R and the domain size depends on the perturbation:

! =
2c
:
. (110)

By considering the roots of the dispersion function (Y(l, :) = 0), which is as follows:

1
Y0
Y(l, :) = 1 + 1

:2

(
1 + l
√

2:
/

(
l
√

2:

))
, (111)

one can find the damping rate of the plasma (=(l)) for given values of : ∈ R [7]. E.g. for : = 0.3,
the root with the largest imaginary part is l = ±1.1598 − 0.01268, etc.

Let us parametrize the perturbation with U1 = U2 = 0.05, : = 0.3 such that the domain size is
! = 20c/3. The time step is ΔC = 3, 1, 0.5, 0.1, 0.005, depending on the configurations and the
final time is ) = 100. The grid discretization is ℎ= = 2−5! so that the Debye length is resolved:
ℎ= ≈ 0.65_� and the number of particles per cell ranges from %2 = 100 to 1000.

The evolution of the electric field !2-norm in time is provided on figures 4 and 5 for different
configurations described in table 3. For the sparse grid reconstruction schemes, the electric field
!2-norm is computed on the Cartesian grid after combination of the field. The corresponding
evolution in time of the total energy and total momentum are represented on figure 6.

We observe on the left panel of figure 4 that the damping rate is not well reproduced for the
ECSIM and SISPIC-std schemes with %2 = 100. The damping rate is accurately reproduced
for the SISPIC-sg and ECSPIC schemes, despite the reduced total number of particles (more
than two times fewer particles for the sparse schemes in comparison to standard schemes with
equivalent %2). Nonetheless, around C ≈ 30, the recombined field energy of ECSPIC scheme
becomes negative and the instability described in section 5.1 is observed: the velocities of the
particles are significantly increased to balance the loss in the negative field energy. It results from
the nonphysical growth of the particle velocities yielding an increase of the electric field !2-norm
(computed after combination on the Cartesian grid, i.e. the quantity observed on the figure 4). As
a result of round-off errors, the total energy and total momentum are also increased.

On the right panel of figure 4, the SISPIC-sg scheme with %2 = 50 provides equivalent
results than the SISPIC-std scheme with %2 = 500 and slightly better than the ECSIM scheme
with %2 = 1000. These observations lead to two conclusions. First, the electrostatic Vlasov-
(div)Ampere formulation (in which the particle response to the field is computed on the potential
Φ) offers a reduction of the statistical noise in PIC discretizations compared to traditional Vlasov-
Ampere formulation (in which the particle response to the field is computed on the field E).
Second, the results point out the significant gain in term of statistical resolution for semi-implicit
methods embedding sparse grid reconstructions over standard semi-implicit methods. Indeed, the
SISPIC-sg simulation on figure 4 (right panel) is performed with roughly 25 times fewer particles
than the ECSIM simulation (with %2 = 1000) and 12 times fewer than the SISPIC-std simulation.

The SISPIC-sg scheme is compared to the explicit schemes on figure 5. On panel left, the
damping rate is more accurate for SISPIC-sg scheme with ΔC = 0.5, %2 = 100 than the explicit
schemes with time steps 2,10 and 20 times smaller (ΔC = 0.1, 0.05, 0.025), with %2 = 500. The
stability, according to the time discretization, is investigated on figure 5 (right panel). All of the
semi-implicit schemes, excepted the ECSPIC scheme, are stable for ΔC = 1, 3. As a comparison,
the explicit scheme, which is not unconditionally stable is represented with ΔC = 1.

The computational time of each step of an iteration and the total are provided in the table 7 for
the different schemes. The field solve computational time of the ECSIM scheme is about 5 times
larger than the SISPIC schemes one (with direct method) because the linear system is 6 times larger
(see section 3.3). The total computational time of the ECSIM is expected to be much smaller
with an iterative method, about six times larger than the SISPIC-std scheme. The difference
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Table 3: Landau damping: configurations of the simulations (figure 9), : = 0.05.

scheme ΔC ℎ= %2 # figure (color) comp. time
one iteration [s]

Ex-std 0.05 2−5 500 5.1E+05 5 (left) � 4.2E−02(×1)
Ex-sg 0.05 2−5 500 2.2E+05 5 (left) � 5.0E−02 (×1.2)*
ECSIM 0.5 2−5 1000 1.2E+06 4 (right) � 3.1E−00 (×73)*

SISPIC-std 0.5 2−5 500 5.1E+05 4 (right) � 7.4E−02 (×1.7)
SISPIC-sg 0.5 2−5 100 4.4E+04 4 (left) � 7.6E−02 (×1.8)
ECSPIC 0.5 2−5 100 4.4E+04 4 (left) � 5.1E−01 (×12)*

*the implementation is not optimal
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Figure 4: Landau damping: evolution of the electric field !2-norm ‖Eℎ= ‖!2 (on the Cartesian
grid) in time, : = 0.3, ΔC = 0.5 (cf. table 3).
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Figure 5: Landau damping: evolution of the electric field !2-norm ‖Eℎ= ‖!2 (on the Cartesian
grid) in time, : = 0.3 (cf. table 3).
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Figure 6: Landau damping: evolution of the total energy nE (C) and total momentum nM (C)
conservation error in time, : = 0.3. Semi-implicit: %2 = 100, ΔC = 0.5 (left panel); explicit:
%2 = 500, ΔC = 0.05 (right panel).

between SISPIC-std and SISPIC-sg is not significant here because the reduction of particles is
not large (roughly 2 times fewer particles). Nonetheless, as already observed in [26, 24], the
gains provided by sparse grid reconstructions are significantly larger for finer grid discretizations
and three dimensional computations so that the difference between SISPIC-std and SISPIC-sg
shall deepen in those configurations. For the configurations investigated here (equivalent %2),
the computational time of the SISPIC schemes are about 2 or 3 times larger than the explicit
schemes; the computational time of the ECSPIC scheme is 10 times larger than the explicit sparse
scheme. Note that the implementation of the mass matrix computation and linear system solve
with iterative method (use of more efficient PETSc objects) for ECSPIC is not optimal; e.g. with a
better implementation, the field solve computation time with iterative method shall be lower than
SISPIC (because the size of the system is smaller).

Table 7: Computational time (mean of 10 iterations) for the Landau damping simulations, : = 0.3,
%2 = 100, = = 5.

scheme total [s] compute matrix, field solve [s] charge accu- field inter-
(min) assembly [s] direct (LU) iterative (GMRES) mulation [s] polation [s]

Ex-std 2.5E−02 5.8E−04 1.0E−01 2.0E−02 2.0E−03 1.3E−03
Ex-sg 5.3E−02* 1.8E−05 3.1E−02 (not computed) 7.9E−03 1.4E−02

ECSIM 2.5E−00* 1.7E−01 2.4E−00 (not computed) 5.5E−03 6.5E−03
SISPIC-std 7.2E−02 4.6E−02 5.6E−01 1.7E−02 4.4E−03 2.3E−03
SISPIC-sg 7.6E−02 3.7E−02 5.8E−01 1.8E−02 1.7E−02 1.0E−03
ECSPIC 5.0E−01* 2.4E−01 2.0E−01 5.3E−01* 1.7E−02 2.8E−02

*the implementation is not optimal

5.4 Two-streams instability
The two-streams instability [6] configuration consists of two particle beams with opposite mean
velocities. The following Maxwellian distribution of electrons is considered:

54 (x, v, 0) = 5 0
E (v) 5 0

G (x), (112)
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where the perturbation has the same form than for the Landau damping and the initial velocity
distribution is Maxwellian with two beams:

5 0
E (v) =

(
1
√
cE)

)2 ©«4
−‖v−v0 ‖22
E2
) + 4

−‖v+v0 ‖22
E2
)

ª®¬ . (113)

v0 = (E0, 0) ∈ R2 is the mean velocity of the beams in opposite direction and the domain size is:

! =
2c
:
, (114)

where :8 = : ∈ R, for 8 = 1, 2. Depending on the values of : and E0, the configuration is stable or
unstable. Indeed, when two streams move through each other so that one wavelength is traveled in
one cycle of the plasma frequency, the perturbation of one stream is increased by the other stream
and the perturbation grows exponentially in time. The linear dispersion relation for this test case
is:

1
Y0
Y(l, k) = 1 −

l2
?

(l − k · v0)2
−

l2
?

(l + k · v0)2
. (115)

The four roots of the linear dispersion relation are [7]:

l = ±
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:2E2
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) 1
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] 1

2

, (116)

which can be imaginary, and lead to instability, for:

0 ≤ :E0
l?
≤
√

2. (117)

Let us parametrize the perturbation with U1 = U2 = 0.005, : = 0.05 such that the domain
size is ! = 40c. The mean velocity is E0 = 12, the time step is ΔC = 0.1 and the final time
) = 60, resulting in 600 iterations. The grid discretization is ℎ= = 2−5! for semi-implicit schemes
and ℎ= = 2−7! for explicit schemes so that the Debye length is resolved for explicit schemes:
ℎ= ' 0.98_� . The number of particles per cell is %2 = 100 or 500. The evolution of the electric
field !2-norm is provided on figure 9 for different configurations described in table 8.

Here again, the ECSPIC scheme is subject to the numerical instability related to the loss of
field energy non-negativity. The instability is triggered at the moment when the field energy
become negative (around C ≈ 18). The theoretical rate is well reproduced for both the explicit
and the semi-implicit schemes. The SISPIC schemes are significantly more efficient, in term of
computational time, than the explicit schemes, the execution time being 15 or 30 times smaller
than for the explicit scheme on standard grid. The ECSPIC scheme is slightly more efficient than
the explicit sparse grid scheme but we recall that the implementation is not optimal and gains may
be obtained with optimization on the computation of the mass matrix and the field solver with
iterative method, as well as the dimensionality of the problem.

Conclusion
In this paper, numerical methods based on an implicit discretization of the Vlasov-Maxwell system
in electrostatic regime and embedding sparse grid reconstructions have been introduced: the
SISPIC and ECSPIC schemes. These methods have been numerically experienced and compared
against existing semi-implicit (ECSIM) and explicit PIC methods. Sparse grid reconstructions
embedded in PIC discretizations offer a reduction of the memory cost of the method thanks to a
better control of the statistical noise which entails a decrease of the particle number. Indeed, we
have observed numerically that the number of particles required to obtain a given accuracy can
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Table 8: Configurations for the two-streams instability simulations (figure 9), : = 0.05.

scheme ΔC ℎ= %2 # figure (color) comp. time
one iteration [s]

Ex-std 0.1 2−7 500 8.2E+06 9 � 2.3E−00 (÷1)
Ex-sg 0.1 2−7 500 1.2E+06 9 � 1.0E−00 (÷2.3)*

SISPIC-std 0.1 2−5 500 5.1E+05 9 � 1.5E−01 (÷15.3)
SISPIC-sg 0.1 2−5 100 4.4E+04 9 � 7.5E−02 (÷30.6)
ECSPIC 0.1 2−5 100 4.4E+04 9 � 5.3E−01 (÷4.3)*

*the implementation is not optimal
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Figure 9: Two-streams instability: evolution
of the electric field !2-norm ‖Eℎ= ‖!2 (on the
Cartesian grid) in time, : = 0.05, ΔC = 0.1 (cf.
table 8).

27



be reduced by a factor of 25 with sparse grid semi-implicit schemes in comparison to standard
grid schemes. In addition, the methods are unconditionally stable with respect to the plasma
period so that the time step can be chosen irrespective to this value; and the finite grid instability
is eliminated, permitting to choose the mesh size according to the physic of interest rather than
the Debye length. Nonetheless, we have observed numerical instabilities related to the loss of the
field energy non-negativity in the ECSPIC scheme, these instabilities deteriorating significantly
the results in course of time. The SISPIC method is exempted from this instability and has
proven to be the most efficient method (compared to the explicit schemes, ECSPIC and ECSIM)
in term of memory footprint and computational times. The gains, observed on two dimensional
simulations, are expected to be larger with three dimensional geometries for which the reduction
of particles achieved by the sparse grid reconstruction is more significant (see figure 10, extracted
from [26]). Indeed, the full potential of the sparse grid reconstructionmethod can only be achieved
by three dimensional computations. This is strikingly illustrated by the plot of figure 10 relating
the memory footprint of the particle data for standard and sparse grid simulations to guarantee a
equivalent statistical noise.
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Figure 10: Memory footprint of the particle
data for standard and sparse grid simulations,
with 75 ≤ %2 ≤ 500.

We conclude our investigations upon semi-implicit schemes embedding sparse grid recon-
structions with the following considerations. The SISPIC methods is a good alternative to explicit
sparse-PIC schemes for configurations in which the time and space scales of interest are larger
than the plasma period or/and the Debye length. The use of sparse grid techniques shall offer
a significant reduction of the computational costs (memory footprint, computational time) for
three dimensional geometries. Nonetheless the derivation of a semi-implicit sparse-PIC method
conserving the discrete total energy is left to a future work.
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A Appendix
A.1 Spatial discretization
In this section, the spatial discretization of the physical quantities (electric field, charge current,
electric potential, etc.), as well as operators (gradient and divergence), on the component grids
are explicited in two and three dimensions.

Let us consider a component grid Ωℎl with grid discretization ℎl (or the Cartesian grid, i.e.
;8 = =, ∀8). The scalar quantities, such as the electric potential, are defined at the vertices of the
grid cells:

Φℎl;j = Φℎl;8, 9 ,: ∈ Ωℎl , where j = (8, 9 , :) ∈ �ℎl . (118)

The notation Φℎl;8, 9 ,: stands for the electric potential approximation at the grid node jℎl =
(8ℎ;1 , 9 ℎ;2 , :ℎ;3 ).

The field quantities, such as the electric field and current density, are defined on the centers
and vertices of the grid cells according to the Yee discretization [48]. The Yee discretization of a
component grid consists of 3 staggered component grids, ΩH1

ℎl
, ΩH2

ℎl
and ΩH3

ℎl
defined by:

Ω
H8
ℎl

:=
{
jH8 ℎl | j ∈ �ℎl

}
⊂ Ω, 8 = 1, ..., 3 (119)

and we introduce the notation jH for an index j ∈ �ℎl , defined by:

jH = (jH8 )8=1,...,3 , where jH8 = j + e8/2, (120)

where e8 ∈ N3 is the index whose value is 1 along the 8Cℎ coordinate and 0 elsewhere. Specifically,
in two and three dimensions, it falls down to:

jH =
(
(8 + 1/2, 9)
(8, 9 + 1/2)

)
if 3 = 2, jH =

( (8 + 1/2, 9 , :)
(8, 9 + 1/2, :)
(8, 9 , : + 1/2)

)
if 3 = 3. (121)

LetΩH
ℎl
= (ΩH8

ℎl
)8=1,...,3 denotes the staggered component grids. Then, the electric field and current

density discretizations are written as:

Eℎl;jH = (Eℎl;jH8 )8=1,...,3 ∈ ΩHℎl , Jℎl;jH = (Jℎl;jH8 )8=1,...,3 ∈ ΩHℎl . (122)

Let us introduce the discrete gradient, discrete divergence, and discrete Laplacian operators
defined on the component grids. The discrete gradient is defined from the regular grid to the
staggered grid; the discrete divergence from the staggered grid to the regular grid; and the discrete
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Laplacian from the regular grid to the regular grid by:(
∇ℎlΦℎl;j

)
ℎl;jH =

(
Φℎl;j+e8 −Φℎl;j

ℎ;8

)
8=1,...,3

, (123)

(
∇ℎl · Eℎl;jH

)
ℎl;j =

3∑
8=1

Eℎl;jH8 − Eℎl;jH8−e8
ℎ;8

, (124)(
ΔℎlΦℎl;j

)
ℎl;j = ∇ℎl · ∇ℎlΦℎl;j. (125)

The motivation for the introduction of the staggered discretization is to retain some properties of
the continuum gradient and divergent operators. Specifically, the discrete gradient and discrete
divergence operators shall verify a discrete integration by parts for exact conservation of energy.

LemmaA.1 (Discrete integration by parts). Let �ℎl;j be a scalar quantity defined on the component
gridΩℎl andB be a field quantity defined on the staggered component gridsΩH

ℎl
, then the following

discrete integration by parts holds:∑
j∈�ℎl

∇ℎl�ℎl;j · Bℎl;jH = −
∑
j∈�ℎl

�ℎl;j∇ℎl · Bℎl;jH (126)

Proof. The result is obtained with the periodicity of the component grids. �
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