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In this article, we introduce semi-implicit Particle-In-Cell (PIC) methods based on a discretization of the Vlasov-Maxwell system in the electrostatic regime and embedding sparse grid reconstructions: the Semi-Implict Sparse-PIC (SISPIC) and Energy-Conserving Sparse-PIC (ECSPIC) methods. These schemes are inspired by the Energy-Conserving Semi-Implicit Method (ECSIM) introduced in [39]. The particle equations are linearized so that the particle response to the field can be computed by solving a linear system with a stiffness matrix. The two methods feature the three following properties: the scheme is unconditionally stable with respect to the plasma period; the finite grid instability is eliminated, allowing the user to use any desired grid discretization; the statistical error is significantly reduced compared to semi-implicit and explicit schemes with standard grid for the same number of particles. The ECSPIC scheme conserves exactly the discrete total energy of the system but we have experienced numerical instability related to the loss of the field energy non-negativity genuine to the sparse grid combination technique. The SISPIC method is exempted from this instability and is unconditionally stable with respect to the time and spatial discretization, but does not conserve exactly the discrete total energy. The methods have been investigated on a series of two dimensional test cases and gains in term of memory storage and computational time compared to explicit and existing semi-implicit methods have been observed. These gains are expected to be larger for three dimensional computations for which the full potential of sparse grid reconstructions can be achieved.

Introduction

Particle-In-Cell (PIC) method is one of the most widely spread numerical method for the simulation of kinetic plasmas [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF][START_REF] Dawson | Particle simulation of plasmas[END_REF][START_REF] Degond | Asymptotic-preserving Particle-In-Cell methods for the Vlasov-Maxwell system near quasi-neutrality[END_REF][START_REF] Garrigues | Negative ion extraction via particle simulation for fusion: critical assessment of recent contributions[END_REF]. It is based on a discretization of the Vlasov-Maxwell system, or a subset thereof for electrostatic regimes. Vlasov equation describes the evolution of the probability density function of species of particles in the phase-space while Maxwell's equations (Ampere equation in this paper) characterize the evolution of the electromagnetic field. Ampere's equation is conducted by the moment of the particle distribution and Vlasov equation characteristics are self-consistently determined by the field. It results in a tightly coupled non-linear system whose solutions are proven to be challenging to determine. The specificity of PIC methods is the mixed discretization, made of both an Eulerian grid for the moments of the particle distribution and fields, in conjunction with individual Lagrangian particles in continuous phase space.

The solutions of Vlasov-Maxwell equations verify some conservation properties, such as the conservation of the total energy and momentum of the system. The charge continuity equation is also a consequence of the Vlasov equations (moment of order 0). The question of conservation of these physical quantities in numerical simulations has been very popular for years. Explicit formulations of PIC methods, based on an explicit time integration of the characteristics of the Vlasov equation, are usually momentum-conserving but not energy-conserving. Conversely, PIC implementations based on an implicit formulation can be energy-conserving but not momentumconserving. The question whether a numerical scheme preserving both energy and momentum is possible or not is addressed in [START_REF] Brackbill | On energy and momentum conservation in particle-in-cell plasma simulation[END_REF].

Originally, and still in most applications, PIC implementations are based on an explicit time discretization of the Vlasov equation, e.g. by means of a leap-frop scheme. An explicit time integration benefits from simplicity of implementation, as well as a poor computational cost per iteration. Nonetheless, explicit approaches suffer from temporal stability constraints, imposing a limit on the time-step discretization, to resolve the fastest wave. In addition, these approaches usually feature spatial stability constraints, manifested by numerical instabilities as aliasing or finite grid instability [START_REF] Langdon | Effects of the spatial grid in simulation plasmas[END_REF][START_REF] Huang | Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm[END_REF] occurring when the grid discretization (grid cell size) is equal to or superior to the Debye length of the plasma. Therefore, the application of explicit approaches to multidimensional problems, especially for three dimensional geometries or large plasma densities, can be very computationally demanding and cumbersome.

In response to these issues, implicit formulations of PIC schemes have emerged [START_REF] Denavit | Proceedings of the ninth conference on numerical simulation of plasmas[END_REF] and received a lot of attention, particularly thanks to their stability properties. Indeed, (semi-)implicit PIC methods such as the implicit-moment method [START_REF] Brackbill | An implicit method for electromagnetic plasma simulation in two dimensions[END_REF][START_REF] Rodney | Implicit moment particle simulation of plasmas[END_REF], direct implicit method [START_REF] Langdon | Direct implicit large time-step particle simulation of plasmas[END_REF][START_REF] Bruce I Cohen | Implicit time integration for plasma simulation[END_REF][START_REF] Dennis | Electromagnetic direct implicit plasma simulation[END_REF] and their developments alleviate the numerical constraints, preserving stability with larger timesteps and grid discretizations. Ideally, in implicit formulations, the particle equations and the field equations shall be non-linearly coupled, requiring Newton or Picard iterations. Because of solver efficiency limitations at the early development of implicit methods, linear approximations have been favored at the expense of numerical approximations producing violation of the energy conservation and resulting in significant artificial plasma heating or cooling. The methods using a linearization of the particle-field coupling are named semi-implicit methods. Recently, a fully implicit approach [START_REF] Chen | An energy-and charge-conserving, implicit, electrostatic particle-in-cell algorithm[END_REF], based on Newton-Krylov methods, in which field-particle couplings are converged to a tight nonlinear tolerance has been developed. In addition to the elimination of both temporal and spatial stability constraints, the scheme offers valuable conservation properties, such as the exact conservation of the discrete energy of the system and consistency with the charge continuity equation. Nonetheless, the method requires the resolution of a non-linear system for the particles and field, which can be very computationally expensive, especially for multidimensional computations. A few years ago, a semi-implicit method preserving exactly the discrete total energy of the system [START_REF] Lapenta | Exactly energy conserving semi-implicit particle in cell formulation[END_REF] has been developed. This Energy-Conserving Semi-Implicit Method (ECSIM) retains the simplicity of explicit schemes, i.e. it advances the particles first and then the fields without any iteration, and conserves discrete energy exactly. In this approach, the particlefield coupling is partially linearized, meaning that a part of the particle response to the field is computed thanks to a mass matrix, ensuring an exact discrete energy-conservation. Compared to the previous semi-implicit methods, namely the implicit-moment method and the direct implicit method, the particle pusher and the derivation of the field equation are different. The mover does not require any inner iteration and its complexity is similar to that of explicit formulations. Nonetheless, the field matrix presents a significantly more complex structure in comparison to that of explicit schemes in order to conserve energy to round-off errors. The major advantage over fully-implicit schemes is the reduced complexity of the algorithm, allowing development of the method for three dimensional simulations. Since then, the method has been applied extensively to large-scale kinetic simulations [START_REF] Tóth | Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere[END_REF][START_REF] Tóth | Scaling the Ion Inertial Length and Its Implications for Modeling Reconnection in Global Simulations[END_REF][START_REF] Chen | A multi-dimensional, energy-and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm[END_REF][START_REF] Lars | Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model[END_REF]. However, the method is not consistent with the charge continuity equation as the fully-implicit method does. Therefore the error of conservation, or equivalently the consistency with the Gauss law for Vlasov-Ampere (VA) formulations, shall be corrected throughout the simulation in order to avoid a non-physical evolution of the plasma. Since then, developments addressing this charge continuity issue have been introduced. In [START_REF] Chen | Gauss's Law satisfying Energy-Conserving Semi-Implicit Particle-in-Cell method[END_REF], a correction inspired of the Boris (∇ • E) correction, but operating on the particles instead of the field in order to preserve energy conservation is proposed. The method uses local linearization of the particle shape functions and requires the resolution of an under-determined system on the particles with Lagrange multiplier method. Besides, a prediction-correction scheme [START_REF] Campos | A semi-implicit electromagnetic FEM-PIC scheme with exact energy and charge conservation[END_REF] inspired both of the ECSIM scheme and of a charge-conserving scheme based on an averaging of grid quantities over interpolated trajectories of particles has been proposed.

Particle-In-Cell schemes also contain a major weakness: the statistical error originating from the sampling of the probability density function by a finite number of numerical particles. This numerical noise decreases slowly with the increase of the average number of particles per cell, scaling as the inverse square root of the mean number of particles per cell. Therefore, a large number of particles may be required for some simulations, necessitating tremendous computational resources. Noise reduction strategies aim at maintaining the accuracy of computations with a reduced set of particles. They have therefore received a lot of attention with, for instance, variance reduction methods such as the method [START_REF] Denton | {delta}f Algorithm[END_REF] or the quiet start initialization procedure [START_REF] Sydora | Low-noise electromagnetic and relativistic particle-in-cell plasma simulation models[END_REF] as well as filtering methods in either Fourier domain [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF], wavelet domain [START_REF] Gassama | Wavelet denoising for postprocessing of a 2D Particle -In -Cell code[END_REF], and micro-macro decomposition [START_REF] Crouseilles | 74205, 35042 Rennes cedex. An asymptotic preserving scheme based on a micro-macrodecomposition for Collisional Vlasov equations: diffusion and high-field scaling limits[END_REF][START_REF] Crestetto | 35042 RENNES. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles[END_REF][START_REF] Crestetto | A particle micro-macro decomposition based numerical scheme for collisional kinetic equations in the diffusion scaling[END_REF].

Sparse grid reconstructions in PIC methods aim at reducing the statistical error resulting from the particle sampling. Specifically, the particle distribution moments are computed on a hierarchy of component grids with a coarse resolution. Compared to standard grids, the mean number of particles per cell is larger for any of the component grids. This crucial feature offers either a mitigation of the statistical noise or a decrease of the total number of numerical particles required for a precision comparable to discretizations on a standard grid. The method has already been applied to explicit PIC discretizations of the Vlasov-Poisson model in two dimensions [START_REF] Deluzet | Sparse grid reconstructions for Particle-In-Cell methods[END_REF], and three dimensions [START_REF] Ricketson | Sparse grid techniques for particle-in-cell schemes[END_REF][START_REF] Muralikrishnan | Sparse grid-based adaptive noise reduction strategy for particle-in-cell schemes[END_REF][START_REF] Deluzet | Efficient parallelization for 3d-3v sparse grid particle-in-cell: shared memory architectures[END_REF][START_REF] Deluzet | Efficient parallelization for 3d-3v sparse grid particle-in-cell: Single gpu architectures[END_REF]. Substantial gains in term of memory consumption as well as computational time have been pointed out, by two or three orders of magnitude in comparison to approaches with standard grids. Besides, sparse grid reconstructions have proven to preserve exact momentum conservation of explicit formulations. These observations call for the development of an implicit formulation embedding sparse grid reconstructions with improved spatial and temporal stability properties and, if possible, discrete total energy conservation.

The present paper is dedicated to the development of semi-implicit schemes embedding sparse grid reconstructions. In this paper, we consider an electrostatic regime in which Maxwell's equations fall down to Ampere equation without magnetic field. The contribution of this paper is the introduction of three new semi-implicit methods for PIC simulations.

First, a semi-implicit PIC scheme embedding sparse grid reconstruction (SISPIC-sg) and based on an electrostatic Vlasov-(div)Ampere formulation is proposed. The method, inspired of the ECSIM scheme [START_REF] Lapenta | Exactly energy conserving semi-implicit particle in cell formulation[END_REF], is based on a linearization of the equations so that the implicit particle response to the electric field can be obtained by solving a linear system. The method features the following properties:

• The scheme is unconditionally stable with respect to the plasma period: the time step can be chosen irrespective to this value. • The aliasing or finite grid instability is eliminated, allowing grid discretization without any constraints related to the Debye length. • The statistical error is significantly reduced compared to the ECSIM scheme and explicit scheme carried out with a Cartesian grid of comparable resolution and the same number of particles. The reduction of the statistical noise is achieved thanks to both the sparse grid reconstructions and the Vlasov-(div)Ampere formulation. This is a valuable contribution since, as a consequence of their usual Vlasov-Ampere formulation, semi-implicit methods tends to create more statistical noise than explicit methods.

Second, the SISPIC method is extended to standard discretization (without sparse grid techniques) so that the resulting scheme (SISPIC-std) conserves exactly the total energy of the system. The SISIPIC-std scheme is very similar to the ECSIM scheme and can be considered as an extension of it to electrostatic regime. To our knowledge, all the ECSIM methods described in the literature are based on Vlasov-Maxwell system and include a self-consistent magnetic field. The aim here is to tackle the difficulty related to the computation of an electromagnetic field free from any solenoïdal (or inductive) component. The schemes introduced here in (SISPIC-sg, SISPIC-std) are genuinely consistent with this property: it does not require any posterior cleaning procedure classically implemented in this context.

Finally, an energy-conserving semi-implicit scheme with sparse grid reconstructions (ECSPIC) is derived. The scheme features all of the previous properties (of SISPIC-sg) and conserves exactly the discrete total energy of the system for any discretization. Nonetheless, instabilities have been experienced during the numerical investigations, explained by the lack of sparse grid reconstructions to preserve the non-negativity of the solution. This paper is organized as follows. In section 2, the general framework of the article is introduced: sparse grid reconstructions, Vlasov-(div)Ampere formulation and PIC methods. In section 3, the SISPIC method is introduced and compared to existing semi-implicit methods (direct implicit, moment implicit, ECSIM). Some insights of the gains provided by the method are also discussed. In section 4, the ECSPIC method is introduced and its computational complexity, memory requirements and properties (energy conservation, loss of non-negativity) are discussed. Finally, in section 5, the methods are investigated and compared to existing methods (sparse and standard explicit schemes, ECSIM) on two-dimensional classical test cases: Landau damping and two-streams instability.

General framework 2.1 Notations

Let ∈ N * be the dimension of the problem and let the spatial domain be the -dimensional periodic unit interval Ω = (R/Z) . For multi-indexes α = ( 1 , ..., ) ∈ N and β = ( 1 , ..., ) ∈ N , let us define order relations by:

α ≤ β ⇔ ∀ ∈ {1, ... } ≤ , (1) α < β ⇔ α ≤ β and ∃ ∈ {1, ..., } . . < , (2) 
and introduce the notations:

αβ = ( 1 1 , ..., ), α -1 = 1 1 ... . (3) 
The l 1 norm for a multi-index α ∈ N is also introduced:

|α| 1 := =1 | |. (4) 

Sparse grid reconstructions

In this section, the sparse grid notations are introduced in the framework of the so-called sparse grid combination technique [START_REF] Griebel | The combination technique for the sparse grid solution of pde's on multiprocessor machines[END_REF].

Definition 2.1 (Component indices). Let L be a set of indices, called the component indices, with respect to the discretization parameter ∈ N and defined by:

L := ∈ 0, -1 L , , L , := {l ∈ N | |l| 1 = + -1 -, l ≥ 1}, (5) 
Let us consider the family of d-dimensional anisotropic grids on the space domain indexed by the component indices and called component grids: Definition 2.2 (Component grids). The component grids are defined for l ∈ L by:

Ω ℎ l := jℎ l | j ∈ ℎ l ∈ Ω, ℎ l := 0, ℎ -1 1 -1 × ... × 0, ℎ -1 -1 ⊂ N , (6) 
where:

ℎ l := (ℎ 1 , ..., ℎ ) ∈ R , ℎ = 2 -for ∈ L (7)
is called the grid discretization and corresponds to the cell grid width.

The number of component grids is given by:

|L | := Card(L ) = -1 =0 + -2 - -1 = | log ℎ | -1 , (8) 
where , for ≥ integers, is the binomial coefficient defined as:

:= ! !( -)! . ( 9 
)
Let us also consider a regular isotropic grid, named Cartesian grid, corresponding to a component grid of level l = • 1 with uniform discretization ℎ for any direction:

Definition 2.3 (Cartesian grid). The Cartesian grid, denoted Ω (∞)
ℎ , is defined by:

Ω (∞) ℎ := jℎ | j ∈ ℎ ⊂ Ω, ℎ := 0, ℎ -1 -1 ⊂ N . ( 10 
)
Let l ∈ L , j ∈ ℎ l be multi-indexes associated to a component grid and consider basis functions defined by tensor products of one-dimensional functions as follows:

ℎ l ;j (x) := ℎ l (x -jℎ l ) = =1 ℎ (x -jℎ l ), ℎ ( ) := ℎ -1 ( ) , (11) 
where ℎ l is the (component) grid discretization and is the so-called hat function defined:

( ) = max (1 -| | , 0) . (12) 
These functions verify a partition of unity property:

j∈ ℎ l ℎ l ;j (x) = 1. ( 13 
)
The space of -dimensional hat functions with respect to the component grid Ω ℎ l is denoted ℎ l and defined by:

ℎ l := span{ ℎ l ;j | j ∈ ℎ l }, (14) 
where { ℎ l ;j | j ∈ ℎ l } is called the nodal basis of the space ℎ l and ℎ l the nodal basis index set. Each function ℎ l ∈ ℎ l can be represented in the basis of ℎ l as follows:

ℎ l = j∈ ℎ l l,j ℎ l ;j , (15) 
where l,j are the coefficients of ℎ l in the nodal basis which are the nodal values of the function ℎ l (because the basis functions are multi-linear). We introduce the space of -dimensional piecewise linear functions with respect to the Cartesian grid:

(∞) ℎ = span{ ℎ n ;j | j ∈ N | 0 ≤ j ≤ ℎ -1 n }. (16) 
Eventually, for a smooth function, we introduce the linear interpolation operators in nodal basis associated to these spaces defined by:

I ℎ l = j∈ ℎ l (jℎ l ) ℎ l ;j , I (∞) ℎ = j∈ ℎ (jℎ ) ℎ ;j . (17) 

Sparse grid combination technique

The sparse grid combination technique [START_REF] Griebel | A combination technique for the solution of sparse grid problems[END_REF][START_REF] Griebel | The combination technique for the sparse grid solution of pde's on multiprocessor machines[END_REF][START_REF] Bungartz | Pointwise Convergence Of The Combination Technique For Laplace's Equation[END_REF] is a method of interpolation using evaluations of the function on the nodes of component grids. The sparse grid interpolant is obtained by a linear combination of partial representations of the function on the component grids. Let be a function and ℎ l an approximation of this function in the space ℎ l (e.g. I ℎ l ), then a sparse grid reconstruction is defined by linear combination of the contributions ℎ l of each component grid:

ℎ := l∈L l ℎ l , where l = (-1) -1 if l ∈ L , . (18) 
Under some assumptions on the component grid approximations [START_REF] Griebel | The combination technique for the sparse grid solution of pde's on multiprocessor machines[END_REF], the error between the sparse grid reconstruction and the solution scales as :

ℎ -∞ = ℎ 2 | log ℎ | -1 . ( 19 
)
The combination technique is remarkable for the reduction of the number of interpolation nodes:

|Ω (∞) ℎ | = ℎ -, l∈L |Ω ℎ l | = ℎ -1 | log ℎ | -1 , (20) 
while achieving accuracy comparable to the standard interpolation (with a negligible multiplicative term | log ℎ | -1 ). Indeed, for standard interpolation on the Cartesian grid with basis functions of degree one, i.e. hat functions, the interpolation error scales as ℎ 2 .

Remark 2.4. The sparse grid reconstruction of a non-negative function is not non-negative.

Electrostatic Vlasov-(div)Ampere (VdA) formulation

The semi-implicit PIC methods introduced in this paper are based on a discretization of Vlasov-Ampere system in an electrostatic regime, assuming a vanishing magnetic field B = 0. In this regime, the following Vlasov-Ampere (VA) formulation is considered:

( ) :            (x, v, ) + v • ∇ x (x, v, ) + E(x, ) • ∇ v (x, v, ) = 0, ∇ × E(x, ) = 0, 0 E (x, ) = -J(x, ). (21) 
The system is defined for (x, v, ) ∈ Ω × R × R + . In this problem, (x, v, ) is the phase-space distribution function attached to the species ; , are the corresponding charge and mass, 0 is the vacuum permittivity, E is the electric field and J is the plasma current density obtained from the phase-space distribution of each species:

J(x, ) = J (x, ) = ∫ v (x, v, ) v. ( 22 
)
The electric field is initialized with the Gauss law and requires the resolution of a Poisson equation for the electric potential, denoted Φ:

E(x, 0) = -∇Φ(x, 0), -0 ΔΦ(x, 0) = (x, 0), (23) 
where (x, 0) is the plasma charge density at initialization defined from the initial distribution of each species:

(x, ) = (x, ) = , = ∫ (x, v, ) v. ( 24 
)
Remark 2.5. Provided that the charge continuity equation is verified:

+ ∇ • J = 0, ( 25 
)
the Vlasov-Ampere formulation ( 21) is equivalent to a Vlasov-Poisson formulation:

( ) :        (x, v, ) + v • ∇ x (x, v, ) + E(x, ) • ∇ v (x, v, ) = 0, -0 Δ 2 Φ(x, ) = (x, ), E(x, ) = -∇Φ(x, ). (26) 
By considering the charge continuity equation ( 25), one can derive from the Ampere equation an evolution equation for the electric potential Φ:

0 ΔΦ (x, ) = ∇ • J(x, ). (27) 
The equation can alternatively be obtained by considering the divergence of the Ampere equation (third equation of the system ( 21)) and the Gauss law ( 0 ∇ • E = ). From this equation, a multi-dimensional electrostatic Vlasov-(div)Ampere formulation is considered:

( ) :          (x, v, ) + v • ∇ x (x, v, ) + E(x, ) • ∇ v (x, v, ) = 0, 0 ΔΦ (x, ) = ∇ • J(x, ), E(x, ) = -∇Φ(x, ). (28) 
The formulation is equivalent to the first one [START_REF] Lars | Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model[END_REF] in multi-dimensions if the charge continuity equation (or Gauss law) is verified. Indeed, since the electric field is derived from a potential, its curl vanishes:

∇ × E = -∇ × ∇Φ = 0. (29) 
In this article, our goal is to derive semi-implicit methods which are based on discretizations of the ( ) system.

PIC discretizations

The distribution of particles ( ) is represented by a collection of macro-particles. A macroparticle, also called numerical particle, refers to a heap of physical particles of the same species (electrons, ions, etc.). Let denotes the number of macro-particles attached to the species and the total number of particles. The positions and velocities of a particle at time are denoted

(x ( ), v ( )), = 1, ...,
being the index of the particles. We assume that all the numerical particles of one species have the same weight, defined by the ratio of physical particles ( ) per numerical particle ( ):

= ∫ Ω x , (30) 
and the same charge and mass:

= , = , ∀ = 1, ..., . (31) 
A shape function, denoted ℎ and defined in [START_REF] Bungartz | Pointwise Convergence Of The Combination Technique For Laplace's Equation[END_REF], is associated to the particles in order to accumulate the particle properties (charge density, current density) onto the mesh. E.g. for a grid with discretization ℎ, the current density accumulation is defined by:

J ℎ (x, ) := J ,ℎ (x, ) := 1 ℎ =1 v ( ) ℎ (x -x ( )), (32) 
where the quantity 1/ℎ is the volume of the grid cells. The electric field is then computed on the mesh with Ampere (or Poisson) equation and interpolated at the particles positions. Finally the particles are advanced by considering the characteristics of Vlasov equation.

3 Semi-implicit PIC methods

Implicit formulation and linearization

Let Δ be the step of the time discretization and let us denote a quantity by the superscript ∈ N the evaluation of this quantity at iteration :

:= Δ , x := x ( ), v := v ( ), etc. (33) 
Let us introduce our implicit scheme used for time discretization of the electrostatic ( ) system, where the position is staggered half a time step with respect to the velocities and the fields as follows:

                   x + 1 2 = x -1 2 + Δ v + 1 2 v +1 = v + Δ E + 1 2 ℎ x + 1 2 Δ ℎ Φ +1 ℎ -Δ ℎ Φ ℎ = Δ 0 ∇ ℎ • J + 1 2 ℎ E +1 ℎ = -∇ ℎ Φ +1 ℎ , ∈ N. ( 34 
)
The spatial discretization, designated by the subscript ℎ which corresponds to the size of the grid cells, is not detailed here and shall be precised later. The following averaged quantities have been introduced:

v + 1 2 = 1 2 v +1 + v , E + 1 2 ℎ x + 1 2 := 1 2 E +1 ℎ x + 1 2 + E ℎ x + 1 2 . ( 35 
)
The electric field is interpolated from the grid to the particle positions according to:

E +1 ℎ x + 1 2 = I ℎ E +1 ℎ x + 1 2 . ( 36 
)
The implicit current density is defined by:

J + 1 2 ℎ (x) = 1 ℎ =1 v + 1 2 ℎ x -x + 1 2 . ( 37 
)
The scheme introduced in equation ( 34) is fully implicit because of the coupling between the particles and the field. It requires the resolution of a non-linear system. Semi-implicit approaches, such as the moment implicit method [START_REF] Brackbill | An implicit method for electromagnetic plasma simulation in two dimensions[END_REF][START_REF] Rodney | Implicit moment particle simulation of plasmas[END_REF], the direct implicit method [START_REF] Langdon | Direct implicit large time-step particle simulation of plasmas[END_REF][START_REF] Dennis | Electromagnetic direct implicit plasma simulation[END_REF], etc. or the method introduced here are based on a linearization of the equations. Nonetheless, the method introduced in this paper is different from the direct implicit method (in which the shape function ℎ is linearized using Taylor expansions) and the moment implicit method (in which the linearization is obtained from moment of the vlasov equation). The method is inspired of the ECSIM method introduced in [START_REF] Lapenta | Exactly energy conserving semi-implicit particle in cell formulation[END_REF]. The linearization is obtained directly in the particle equations by updating the position of the particles with a known velocity, i.e. the first equation in [START_REF] Dennis | Electromagnetic direct implicit plasma simulation[END_REF] becomes:

x

+ 1 2 = x -1 2 + Δ 2 v + Δ E + 1 2 ℎ x + 1 2 + v (38) = x + Δ v + Δ 2 . ( 39 
)
As a result, the implicit model has become linear so that the implicit contribution of the electric field (evaluated at the known particle position) may be obtained from the divergence of Ampere equation (third equation of ( 34)) by solving a linear system. The particle equations are then:

         x + 1 2 = x -1 2 + Δ v v +1 = v + Δ E + 1 2 ℎ x + 1 2 , ∈ N. ( 40 
)

Derivation of the Semi-Implicit Sparse-PIC (SISPIC) scheme

Let us now detail how the implicit contribution of the electric field can be obtained by solving a linear system. The current density can be recast into two components, designated as the explicit and the implicit (with ∼ notation) contributions:

J + 1 2 ℎ (x) = J ℎ (x) explicit + J +1 ℎ (x) implicit , (41) 
which are defined by:

J ℎ (x) = 1 ℎ =1 v ℎ x -x + 1 2 , (42) 
J +1 ℎ (x) = Δ ℎ =1 2 4 E +1 ℎ x + 1 2 + E ℎ x + 1 2 ℎ x -x + 1 2 . ( 43 
)
Let us now explicit the spatial discretization, i.e. define the notation ℎ. The two components are discretized on different spatial meshes (this choice is discussed in section 3.4). The explicit part is discretized on the set of component grids and combined onto the Cartesian grid with the combination technique; the implicit component is discretized directly on the Cartesian grid. All the details of the spatial discretization are given in the appendix A.1. The explicit contribution of the current is defined on the Cartesian grid by:

J ℎ ;j = l∈L l I ℎ l J ℎ l (j ), (44) 
where the notation j , corresponding to the Cartesian grid index j ∈ ℎ , is introduced in the appendix A.1 and refers to the grid nodes on the staggered Yee mesh. An explicit contribution of the current is defined independently on each component grid by:

J ℎ l ;j = ℎ -1 l =1 v ℎ l ; j , (45) 
where the following shortcut notation has been introduced:

ℎ l ; j := ℎ l j ℎ l -x + 1 2 . ( 46 
)
ℎ -1 l is the volume of the component grid. The implicit contribution of the current is discretized on the Cartesian grid and defined for each Cartesian grid index j ∈ ℎ , by:

J +1 ℎ ;j = Δ ℎ =1 2 4 E +1 ℎ x + 1 2 + E ℎ x + 1 2 ℎ ; j . ( 47 
)
Let us recall that the electric field is interpolated at the particle positions according to:

E +1 ℎ x + 1 2 = j∈ ℎ E +1 ℎ ;j ℎ ; j , E +1 ℎ ;j = -∇ ℎ Φ +1 ℎ ;j , (48) 
where the discrete gradient operator notation is introduced in appendix A.1. Introducing the following notation:

ℎ ;jj = ℎ ;j j := ℎ (j ℎ -jℎ ), (49) 
and decomposing the electric potential onto the basis of (∞) ℎ :

Φ +1 ℎ ;j = j ∈ ℎ Φ +1 ℎ ;j ℎ ;jj , (50) 
the implicit contribution of the current can be recast into:

J +1 ℎ ;j = - Δ ℎ =1 2 4 j,j ∈ ℎ Φ +1 ℎ ;j + Φ ℎ ;j ∇ ℎ ℎ ; jj ℎ ; j ℎ ; j . (51) 
Let us now introduce the discretization of the (div)Ampere equation on the Cartesian grid. From equation (50) and applying the discrete Laplacian operator, one gets:

j ∈ ℎ Φ +1 ℎ ;j -Φ ℎ ;j Δ ℎ ℎ ;jj = Δ 0 ∇ ℎ • J + 1 2 ℎ ;j , (52) 
where J +1 ℎ ;j is defined from equations ( 41), ( 44) and (51). The contribution of the electric potential at time + 1 can thus be obtained by solving a linear system. The matrix corresponding to the linear system is called the stiffness matrix, because it discretizes the Laplacian operator; it is denoted S ℎ and is defined by:

S ℎ = S (1) ℎ + S (2) ℎ , where ∀(j, j ) ∈ ℎ × ℎ (53) (S (1) ℎ ) jj = Δ ℎ ℎ ;jj , ( 54 
) (S (2) ℎ ) jj = =1 j∈ ℎ ℎ ; j ∇ ℎ ℎ ; jj • ∇ ℎ ℎ ; j , (55) 
and = 2 Δ 2 /(4 0 ). Two stiffness matrices have been introduced: the first matrix corresponds to the discretization of the Laplacian operator; the second matrix is the linear term of the particle response to the electric potential. Note that the stiffness matrix depends on the particle positions, and thus is different from one iteration to another. Therefore it has to be computed at each iteration.

Remark 3.1. The SISPIC scheme is second order accurate in time.

Comparison with the existing semi-implicit methods

Direct implicit

The motivation of this section is to situate the present method among the state-of-the-art of the semi-implicit methods. In the direct implicit method [START_REF] Dennis | Electromagnetic direct implicit plasma simulation[END_REF], the particles are advanced to an intermediate position and velocity using the known electric field in a PREPUSH step:

       ṽ + 1 2 = v -1 2 + Δ E ℎ x x +1 = x + Δ ṽ + 1 2 , ∈ N. ( 56 
)
Similarly to our approach, the sources in the fields equations are decomposed into an explicit contribution and an implicit contribution:

J + 1 2 ℎ (x) = J ℎ (x) explicit + J +1 ℎ (x) implicit . ( 57 
)
The implicit contribution is different from our approach in that the linearization of the shape function introduces two matrices, which are named implicit susceptibility matrices:

J +1 ℎ (x) = χ ℎ (x) • E +1 ℎ ( x +1 ) -Δ ∇ × ξ ℎ • E +1 ℎ ( x +1 ). (58) 
The implicit susceptibility matrices are approximated by:

χ ℎ (x) ≈ Δ 4 ,ℎ (x)α , ξ ℎ (x) ≈ Δ 8 J ,ℎ (x)α , ( 59 
)
where α is the rotation matrix [START_REF] Dennis | Electromagnetic direct implicit plasma simulation[END_REF][START_REF] Vu | Celest1d: an implicit, fully kinetic model for low-frequency, electromagnetic plasma simulation[END_REF][START_REF] Lapenta | Exactly energy conserving semi-implicit particle in cell formulation[END_REF]. It is defined from the magnetic field and falls down to the identity matrix in the electrostatic regime. In the electrostatic version, the second implicit susceptibility matrix is zero. These matrices can be read as a discretization of the continuous quantity J/ . Within the SISPIC scheme, a different discretization of this quantity than the direct implicit method is proposed: the first term in equation (58) corresponding to:

χ ℎ;j • E +1 (x ) ≈ j∈ ℎ E + 1 2 ℎ; j 4 Δ ℎ ℎ; j ℎ; j , (60) 
and the second term being neglected as a Δ 2 correction. After the advanced field has been computed in the direct implicit method, the particles are advanced to the next time step in a FINALPUSH step:

           x +1 = x +1 + Δ 2 2 E +1 ℎ ( x +1 ) v + 1 2 = ṽ + 1 2 + Δ 2 E +1 ℎ x +1 , ∈ N. (61) 

Moment implicit

In the moment implicit method [START_REF] Rodney | Implicit moment particle simulation of plasmas[END_REF][START_REF] Brackbill | An implicit method for electromagnetic plasma simulation in two dimensions[END_REF], the non-linearity coupling the fields and the particles equations is overcome by considering instead the resolution of a set of coupled fluid moment and field equations. Indeed, thanks to a representation of the implicit sources of the field equations using the moment equations instead of the particle equations directly, the non linear coupling is approximated so that, once the field equations are solved within this approximation, the rest of the steps can be completed directly without iterations. Specifically, in [START_REF] Vu | Celest1d: an implicit, fully kinetic model for low-frequency, electromagnetic plasma simulation[END_REF], the particle equations are as follows:

         x +1 = x + Δ 2 v +1 + v v +1 = v + Δ E + 1 2 ℎ 1 2 x +1 + x , ∈ N. ( 62 
)
and the implicit current density, which is the source of the Ampere equation, is approximated by:

J + 1 2 ℎ (x) ≈ α J ,ℎ (x) - Δ 2 µ (x) • α E + 1 2 ℎ (x) - Δ 2 ∇ • (x), ( 63 
)
where α is the rotation matrix, is the rotationed pressure matrix and µ is defined as the effective dielectric matrix which express the response of the electric field to the plasma current:

(x) = 1 ℎ =1 α v α v ℎ (x -x ), µ (x) = - (x) α . (64) 
The first term in the equation ( 63) corresponds to the explicit contribution of the current density and the two last terms correspond to the implicit one, for which the SISPIC and the direct implicit methods provide a different approximation.

ECSIM

The SISPIC method introduced in this paper is inspired by the ECSIM scheme [START_REF] Lapenta | Exactly energy conserving semi-implicit particle in cell formulation[END_REF]. The nonlinear coupling between the field and the particle equations is approximated directly in the particle equations similarly for both methods. Let us emphasize the differences between the two methods:

• The first difference between the traditional ECSIM scheme [START_REF] Lapenta | Exactly energy conserving semi-implicit particle in cell formulation[END_REF] (as well as its extensions [START_REF] Chen | Gauss's Law satisfying Energy-Conserving Semi-Implicit Particle-in-Cell method[END_REF][START_REF] Campos | A semi-implicit electromagnetic FEM-PIC scheme with exact energy and charge conservation[END_REF]) and our approach is the electrostatic regime. As a result, the formulation of the problem is different between the two approaches and, within the SISPIC method, the Ampere equation is substituted by the divergence of the Ampere equation. The resulting electrostatic stiffness matrix contains terms depending on the product of the basis functions discrete gradients (with larger supports than the basis functions) instead of products of the basis functions theirselves within the ECSIM scheme (for which the matrix is more similar to a mass matrix). Therefore the stiffness matrix of the SISPIC scheme has more non-zeros entries (21 non-zero terms per row) than the mass matrices of the ECSIM scheme (9 non-zero terms per row). In addition, there is no self-consistent magnetic field in our approach and therefore the rotation matrix used in the traditional ECSIM scheme [START_REF] Lapenta | Exactly energy conserving semi-implicit particle in cell formulation[END_REF] does not have to be computed. It results in an unique stiffness matrix to compute at each time step, instead of 3 mass matrices (where is the dimension of the velocity domain) for the ECSIM scheme. In addition, the unknown for the electrostatic approach is scalar, so that the size of the linear system is reduced by six in comparison to the ECSIM scheme (Φ versus , , , , , ). Note also that, contrary to the SISPIC approach, the electrostatic condition ∇ × E is not verified in the ECSIM scheme.

• The second major difference between the two approaches is the embedding of the sparse grid combination technique. Indeed, within the SISPIC scheme, the explicit contribution of the current density is accumulated onto each component grid, and eventually combined onto the Cartesian grid. The motivation for this choice of discretization is related to complexity issues and explained in the following section.

• Contrary to the ECSIM scheme and caused by the sparse grid reconstruction, the SISPIC scheme does not conserve exactly the discrete total energy of the system. This is a consequence of the choice of the interpolation basis functions which are different from the shape functions used for the current density accumulation in the SISPIC scheme. Indeed, the supports of the functions are either based on the Cartesian grid (for interpolation) or on the component grids (for current accumulation).

Discussion on complexity

The size of the linear system, i.e. the size of the stiffness matrix, is related to the Cartesian grid discretization and grows exponentially with the dimension of the problem; specifically, the number of nodes of the linear system scales as ℎ -× ℎ -. Nonetheless, thanks to the locality of the shape functions ℎ , the stiffness matrix has many zero entries (21 non-zero terms per row), the total number of non-zero terms of the stiffness matrix being:

= 21 * 2 . ( 65 
)
It is widely known that PIC schemes contain a significant weakness: the statistical error originating from the sampling of the distribution function by a limited number of numerical particles. This numerical noise decreases slowly with the increase of the average number of particles per cell (in 1/ √ , where = ℎ is the mean number of particles per cell. Within the SISPIC method, the explicit contribution of the current density is accumulated onto the mesh thanks to the sparse grid combination technique.

Proposition 3.2. Assuming enough smoothness on the solution J, the local error between the explicit contribution of the current density and the solution can be recast into a grid-based error and a particle sampling error (noise):

J ℎ -J = Bias(J ℎ ) grid-based error + V (J ℎ ) particle sampling error , ( 66 
)
where

Bias(J ℎ ) ∞ ≤ ℎ 2 | log ℎ | -1 , V V (J ℎ ) 1 2 ∞ ≤ | log ℎ | -1 ( ℎ ) 1 2 
(67)

Proof. The proof is similar to the one provided for the charge density in [START_REF] Deluzet | Sparse grid reconstructions for Particle-In-Cell methods[END_REF].

These estimations shall be compared to the ones obtained for a standard accumulation onto the Cartesian grid (without sparse grid technique):

Bias(J , ℎ ) ∞ = ℎ 2 , V V (J , ℎ ) 1 2 ∞ = 1 ℎ 1 2 . ( 68 
)
Specifically, the combination technique provides an accurate representation of the current density approximated on a variety of grids with coarse discretizations: the component grids. One crucial feature of the method is the large size of the component grid cells in comparison to those of the Cartesian grid, resulting in a significant increase of the number of particles per cell. This entails an improvement of the statistical resolution (reduced particle sampling error), without increasing the overall number of particles. Practically, the total number of particles in order to achieve a given statistical resolution is reduced in comparison to PIC schemes discretized on standard mesh. As a result, the gain in term of memory footprint of the method compared to standard implicit methods is manifest, particularity for three dimensional simulations with refined mesh [START_REF] Deluzet | Efficient parallelization for 3d-3v sparse grid particle-in-cell: shared memory architectures[END_REF][START_REF] Deluzet | Efficient parallelization for 3d-3v sparse grid particle-in-cell: Single gpu architectures[END_REF].

Extension to exact energy conservation

It has already been outlined that the SISPIC scheme does not conserve exactly the discrete total energy of the system. Nonetheless, the SISPIC scheme can be extended to a specific configuration for which the total energy is exactly conserved. Indeed, if the explicit contribution of the current density is directly accumulated onto the Cartesian grid, then the scheme conserves exactly the total energy. The scheme can thus be viewed as an electrostatic version of the ECSIM scheme.

The goal of this section is to derive a sparse grid SISPIC scheme conserving exactly the total energy. Let us first introduce the discrete total energy of the system at time defined from the kinetic energy of the particles and the field energy:

E T := E K kinetic energy + E F field energy , (69) 
which are defined by:

E K := 1 2 =1 v 2 , E F := 0 2 j∈ ℎ E ℎ ;j 2 . ( 70 
)
In order to have exact conservation of the total energy, the method used to accumulate the current density and the method used to interpolate the electric field at the particle positions shall be, in a way, similar. Therefore, in our approach, the electric field shall be interpolated at the particle positions with the sparse grid combination technique.

Derivation of the Energy-Conserving semi-implicit Sparse-PIC (EC-SPIC) scheme

The method uses the same particle mover as the SISPIC scheme, in which the particle positions are updated with a known velocity:

         x + 1 2 = x -1 2 + Δ v v +1 = v + Δ E + 1 2 ℎ x + 1 2 , ∈ N. (71) 
In the above, the electric field reconstruction evaluated at the particle positions is constructed, according to the combination technique, from the electric field contributions of all component grids, averaged between time and + 1:

E + 1 2 ℎ x + 1 2 = l∈L l I ℎ l E + 1 2 ℎ l ;j x + 1 2 , (72) 
where

E + 1 2 ℎ l ;j = 1 2 E +1 ℎ l ;j + E ℎ l ;j . ( 73 
)
We recall that the notation I ℎ l , introduced in equation ( 17), stands for the interpolation onto the space associated to the component grid of discretization ℎ l and spanned by basis functions with support depending on ℎ l . The electric field, derived from the electric potential according to equation [START_REF] Yee | Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[END_REF], is obtained from the implicit current density using the divergence of the Ampere equation. This equation is discretized on each component grid according to the relation:

j ∈ ℎ l Φ +1 ℎ l ;j -Φ ℎ l ;j Δ ℎ l ℎ l ;jj = Δ 0 ∇ ℎ l • J + 1 2 ℎ l ;j . ( 74 
)
The current density is decomposed into an explicit contribution and an implicit contribution, both defined on each component grid:

J + 1 2 ℎ l ;j = J ℎ l ;j explicit + J +1 ℎ l ;j implicit , ∀j ∈ ℎ l , (75) 
by the relations:

J ℎ l ;j = ℎ -1 l =1 v ℎ l ; j , (76) 
J +1 ℎ l ;j (x) = ℎ -1 l =1 2 Δ 2 E + 1 2 ℎ x + 1 2 ℎ l ; j . ( 77 
)
Introducing the equation (72) in the last equation (77), using the decomposition introduced in equation ( 50) and substituting them into the divergence of Ampere equation ( 74), the electric potential at time + 1 can be obtained by solving a linear system. The matrix of the linear system, denoted by S L , is named the global stiffness matrix and constructed by assembling local stiffness matrices. The local stiffness matrices are defined for couples of component indices (l, l) ∈ L 2 by:

S (1) ℎ l := (1) j,j (j,j ) ∈ 2 ℎ l
, where (1) j,j = Δ ℎ l ℎ l ;jj

S (2) ℎ l ,ℎ˜l := (2) j,j (j,j ) ∈ ℎ l × ℎ l , where (2) 
j,j = =1 j∈ ℎ l ℎ˜l; j ∇ ℎ˜l ℎ˜l; jj • ∇ ℎ l ℎ l ; j , and = 2 Δ 2 /(4 0 ). The first local matrix is a discretization of the Laplacian operator on the component grid Ω ℎ l and shall be named the local Laplacian matrix. The local Laplacian matrices are square, symmetric and of size depending on the number of nodes from the component grid. The second local matrix, which shall be referred to as the local stiffness matrix, translates the energy exchange between the particles and the field. Specifically, the local stiffness matrix represents the effect on the electric potential (computed on the grid Ω ℎ l ) of the electric potential (computed on the grid Ω ℎ˜l ) response to the particles. The local stiffness matrices are rectangular and of size depending on the number of nodes from each component grid in the couple. Let us recall |L | := (L ) the number of component grids. There are |L | 2 local stiffness matrices but note that only a few more than a half of them shall be computed thanks to the symmetry. Let us numerate all the component grid levels L = (l 1 , ..., l |L | ) and let Φ L (∇ ℎ l • J L resp.) be a global vector corresponding to the electric potential (divergence of the current density resp.) approximations on all the component grids at time . From these local matrices, we construct by blocks two global matrices, containing all the component grid contributions:

S (1) L = S (1) ℎ l 1 0 • • • 0 0 S (1) ℎ l 2 • • • . . . . . . . . . . . . . . . 0 • • • 0 S (1) ℎ l |L | . ( 78 
)
S (2) L = l 1 ℎ -1 l 1 S (2) ℎ l 1 ,ℎ l 1 l 2 ℎ -1 l 1 S (2) ℎ l 1 ,ℎ l 2 • • • l |L | ℎ -1 l 1 S (2) ℎ l 1 ,ℎ l |L | l 1 ℎ -1 l 2 S (2) ℎ l 2 ,ℎ l 1 l 2 ℎ -1 l 2 S (2) ℎ l 2 ,ℎ l 2 • • • . . . . . . . . . . . . . . . l 1 ℎ -1 l |L | S (2)
ℎ l |L | ,ℎ l 1 • • • l |L | -1 ℎ -1 l |L | S (2)
ℎ l |L | ,ℎ l |L |-1 l |L | ℎ -1 l |L | S (2)
ℎ l |L | ,ℎ l |L | . ( 79 
)
Two matrices are then constructed from these matrices:

S L = S (1) L + 1 2 S (2) L , S ★ L = S (1) L - 1 2 (2) L , (80) 
which are square and of order:

(S L ) = (S ★ L ) = -1 =0 2 + -1- + -2 - -1 . ( 81 
)
Note that the two global matrices are not symmetric because the global stiffness matrix is not.

The system can thus be rewritten as a linear system:

S L Φ +1 L = Δ 0 ∇ ℎ l • J L + S ★ L Φ L . (82) 
In order to solve the linear system (82) and obtain the updated electric potential at time + 1, the local stiffness matrices need to be computed at each time step because of their dependence on the position of the particles. The resulting global stiffness matrix (and global matrix) is then different at each iteration. Within the ECSPIC scheme, the electric field is decomposed into contributions which are defined separately on the component grids; it is then reconstructed at the particle positions with the sparse grid combination technique. The electric field is never defined on the Cartesian grid so that the field energy definition in (70) is not relevant. Let us define the discrete field energy, in the context of sparse grid reconstruction schemes, which is defined by the combination of the electric field energy from all the component grids:

E F := 0 2 l∈L l ℎ -1 l j∈ ℎ l E ℎ l ;j 2 . ( 83 
)
Proposition 4.1 (Exact energy conservation). The total energy of the system is exactly conserved, i.e.

E +1 T = E T . ( 84 
)
Proof of proposition 4.1. The difference in the particle kinetic energy between two consecutive steps and + 1 is expressed by:

E +1 K -E K = =1 1 2 v +1 2 -v 2 (85) = Δ =1 v +1/2 E +1/2 ℎ x +1/2 (86) = Δ =1 v +1/2 l∈L l j∈ ℎ l E +1/2 ℎ l ;j ℎ l ; j (87) = Δ l∈L l ℎ -1 l j∈ ℎ l E +1/2 ℎ l ;j • J +1/2 ℎ l ;j . ( 88 
) = -Δ l∈L l ℎ -1 l j∈ ℎ l ∇ ℎ l Φ +1/2 ℎ l ;j • J +1/2 ℎ l ;j . ( 89 
)
In the above, the particle velocity equation in [START_REF] Dennis | Electromagnetic direct implicit plasma simulation[END_REF] has been used, as well as the definition of the recombined electric field (72) and the current density ( 75)-( 77). The last equation is obtained because the electric field derives from the electric potential. From lemma A.1, a discrete integration by parts on (89) yields:

E +1 K -E K = Δ l∈L l ℎ -1 l j∈ ℎ l Φ +1/2 ℎ l ;j ∇ ℎ l • J +1/2 ℎ l ;j . (90) 
Then, using the divergence of Ampere equation ( 74), the difference in the kinetic energy is equal to:

E +1 K -E K = -0 l∈L l ℎ -1 l j∈ ℎ l Φ +1/2 ℎ l ;j ∇ ℎ l • E +1 ℎ l ;j -E ℎ l ;j . ( 91 
)
Eventually, a discrete integration by parts (see lemma A.1) gives the result:

E +1 K -E K = 0 l∈L l ℎ -1 l j∈ ℎ l ∇ ℎ l Φ +1/2 ℎ l ;j • E +1 ℎ l ;j -E ℎ l ;j (92) = -0 l∈L l ℎ -1 l j∈ ℎ l E +1/2 ℎ l ;j • E +1 ℎ l ;j -E ℎ l ;j (93) = -E +1 F -E F . ( 94 
)
Remark 4.2. The sparse grid discrete field energy, defined in equation ( 83) is not non-negative.

Discussion about complexity and non-negativity

The major difference with the SISPIC scheme is related to the embedding of sparse grid reconstructions, not only restricted to the computation of the current density explicit contribution as in SISPIC, but used also within the resolution of the linear system. It results in the computation of numerous blocks (local stiffness matrices) to assemble the system matrix. In the SISPIC scheme, an unique stiffness matrix shall be computed. The number of component grids and thus of stiffness matrices to compute for the ECSPIC method depends on the dimension and the grid discretization, thus scaling as | log ℎ | -1 . The determination of a stiffness matrix can be expansive because of the computation of the particle interactions requiring a loop spanning the particle population. Nonetheless, the local stiffness matrices are less expensive to compute for sparse grid reconstruc-tions than for standard discretizations since the number of particles is significantly reduced and, the array of a local stiffness matrix fits more easily in the cache memory of the CPU than the global stiffness matrix for standard grids. As demonstrated in [START_REF] Deluzet | Efficient parallelization for 3d-3v sparse grid particle-in-cell: shared memory architectures[END_REF], a good cache memory management is a capital feature increasing the performance of these kind of algorithms and enabling an efficient parallelization. Another significant difference between the two approaches introduced in this paper is the profile of the global stiffness matrix. Indeed, one major advantage of the SISPIC scheme (and ECSIM scheme) is the sparsity of the stiffness matrix. Because of the very localized support of the basis functions (hat function with one grid cell width support), the number of non-zero terms of the stiffness matrix is 21 per row (9 for the ECSIM scheme). We recall that the total number of non-zero terms in the global matrix for the SISPIC method is:

= 21 * 2 . ( 95 
)
Conversely, the matrix profile of the ECSPIC scheme is a bit more complex. The global matrix is constructed by assembling blocks of local matrices, each corresponding to a couple of component grids. For couples of the same component grids (corresponding to the diagonal blocks in the global matrix), the profile of the local stiffness matrix is similar to the standard matrix one with the same sparsity (only 21 non-zero terms per row). On the contrary, for couples of component grids with different discretizations, the profile may not be sparse at all. E.g. consider a couple of grids with levels l 1 = (1, ) and l 2 = ( , 1), for all grid nodes j 1 ∈ ℎ l 1 and j 2 ∈ ℎ l 2 the support of the basis functions is not disjoint (see figure 1):

( ℎ l 1 ;j 1 ) ∩ ( ℎ l 2 ;j 2 ) ≠ ∅. (96) 
In that configuration, all the entries in the local stiffness matrix are non-zeros. Nonetheless, thanks non-zero entry zero entry to the sparse grid properties, the size of the linear system, i.e. the order of the global stiffness matrix, is reduced in comparison to the SISPIC scheme:

(S) =          -1 =0 2 + -1- + -2 - -1 (ECSPIC), 2 (SISPIC, ECSIM). (97) 
The scheme ensures an exact energy conservation, i.e. the change in the particle energy is equal to the change in the field energy (see proposition 4.1). Usually, since these two quantities are non-negative, this property guarantees some stability for the scheme. Indeed, if the two energy contributions (particle and field) are non-negative, then, by induction, the following bounds hold:

E K < E 0 T , E F < E 0 T , ∀ ∈ N. (98) 
Both the kinetic energy of the particles and the field energy are bounded by the initial total energy of the system; i.e. the velocity of the particles and the electric field are bounded. Nonetheless, within the ECSPIC scheme, the field energy, which is defined by the combination of the component grid contributions, is not a non-negative quantity, the loss of non-negativity being a genuine property of the combination technique (see remark 2.4). It results from this that numerical instabilities can arise in some contexts. E.g. let us assume a decreasing non-negative field energy:

E F < 0, E F -E +1 F = ( ) > 0, ∀ ∈ N (99) 
then the kinetic energy verifies:

E K ≥ E 0 K + -1 =0 ( ). (100) 
Since the field energy is not non-negative, the quantities ( ) are not controlled and can be very large, leading to an instability manifested by increasing particle velocities and electric field. Note that if the field energy is non-negative, then

-1 =0 ( ) ≤ E 0 F , (101) 
and one recovers the bounds in (98).

Numerical results

In this section, the methods introduced in this paper are implemented in a sequential program written in Fortran 90 and compared to each other in a series of numerical tests: a Landau damping and a two-streams instability test cases. The SISPIC and ECSPIC schemes are investigated, as well as their standard version (which are similar) which shall be named SISPIC-std, and compared to existing PIC schemes. The PIC explicit scheme [START_REF] Deluzet | Sparse grid reconstructions for Particle-In-Cell methods[END_REF] is considered both with standard grid (Ex-std) and sparse grid reconstructions (Ex-sg). The ECSIM scheme [START_REF] Lapenta | Exactly energy conserving semi-implicit particle in cell formulation[END_REF] is also considered as a comparison. The simulations aim at demonstrating the conservation and stability properties of the schemes introduced in this paper, as well as establishing the correctness of the methods in different configurations. Although the benefits of sparse grid reconstruction methods have proven to be significantly larger for three dimensional computations, the methods have been implemented in two dimensions of space and three dimensions of velocity (2d-3v) for simplicity. The author emphasizes on the large gap in term of computational time reduction gained thanks to sparse grid reconstructions between two and three dimensional computations. Indeed, in two dimensional simulations, sparse grid reconstructions for explicit schemes shows a slight reduction of the computational times in comparison to standard grid methods [START_REF] Deluzet | Sparse grid reconstructions for Particle-In-Cell methods[END_REF], whereas the reduction has proven to be substantial for three dimensional computations [START_REF] Deluzet | Efficient parallelization for 3d-3v sparse grid particle-in-cell: shared memory architectures[END_REF][START_REF] Deluzet | Efficient parallelization for 3d-3v sparse grid particle-in-cell: Single gpu architectures[END_REF]. This is a consequence of the significant particle sampling error difference between the sparse grid and the standard methods for two dimensional and three dimensional computations illustrated by the equations ( 67) and (68). The computational times reported in this section are not necessarily representative of the exact efficiency of the methods since some of our implementations are known to not be optimal (ECSIM, ECSPIC): e.g. the ECSIM and Ex-sg schemes have not been implemented with iterative method but are expected to be more efficient than direct methods, especially for three dimensional computations. The execution times reported are rather meant to give an indication of the order of magnitude between the methods.

The domain is a periodic square Ω = (R/ Z) 2 , of dimension ∈ R * + . Dimensionless variables are considered, the reference length and time units being the Debye length and the plasma period, defined by:

= 0 / 0 , -1 = 1/ 0 / 0 . (102) 
The electrons are considered immersed in a uniform, immobile, background of ions. Electron mass, temperature and charge are normalized to one. Periodic boundary conditions are considered for the particles and the field. Throughout this section, we will refer to the mean number of particles per cell, denoted , relating the amount of statistical noise in the simulation. For the standard methods, it depends on the number of particles and the Cartesian grid discretization:

= ℎ 2 . ( 103 
)
An equivalent quantity for sparse grid reconstruction methods can be defined by considering the number of particles for all component grid cells [START_REF] Ricketson | Sparse grid techniques for particle-in-cell schemes[END_REF]:

= ℎ (3 -1) -1 . (104) 
The results are compared without any filtering methods for all schemes. Let us now introduce the different diagnostics and error definitions. The momentum error in the simulation at iteration is measured by the sum of the momentum error vector:

ε M := =1 1 =1 v -v 0 , (105) 
where := 2 / is the thermal velocity of the electrons. The total discrete energy error at time iteration is defined by:

ε E := =1 E K + E F -E 0 K + E 0 F E 0 K + E 0 F , (106) 
where E K and E F are the kinetic and field energy measured at time .

Instability of the ECSPIC scheme

While performing numerical investigations on the ECSPIC scheme, we have experienced numerical instabilities not observed with the SISPIC or the ECSIM method. The numerical instabilities

All the following simulations are performed on a laptop equipped with Intel ® Core ™ i9-10885H CPU with 8 cores @2.40 GHz sharing a L3 cache memory of 16MB and L1 cache memory of 32KB specific to each core. The Random-Access Memory (RAM) size is 32GB. The compilers used for the hardware is the GNU Fortran version 9.4.0 with options -cpp and optimizations -Ofast. All reported computational time are provided with frequency boost disabled. The linear systems are solved either with LU decomposition method from the MUMPS [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF] library or with GMRES iterative method and algebraic multigrid preconditionner from the PETSc [START_REF] Balay | PETSc Web page[END_REF] library. In all the simulations, the tolerance of the iterative GMRES method is chosen so that the residual error is around 10 -15 . are neither related to the time discretization nor the space discretization. We have found that it might be instead related to the loss of the field energy non-negativity. Indeed, according to the discussion in section 4.2, the reconstructed field energy is not guaranteed to be a non-negative quantity, even though the field energy defined on each component grid is non-negative. This is a drawback genuine to the combination technique: it does not preserve the non-negativity of the solution. This triggers an instability: when the field energy becomes negative the particle velocities increase to offset the loss in the field energy, preserving the system total energy (see proposition 4.1). This formal analysis is echoed by numerical investigations. We have observed that once the field energy is negative, it tends to become more and more negative, entailing the particle velocities increase, leading to numerical instabilities.

The conclusions drawn from these features call for the investigations of semi-implicit sparse-PIC methods that shall conserved a different discrete potential energy. This issue is left to a future work.

Finite-grid instability

The so-called aliasing or finite grid instability, first studied in [START_REF] Langdon | Effects of the spatial grid in simulation plasmas[END_REF], is a common numerical instability arising in PIC plasma simulations. It originates from the inconsistency between the discrete Eulerian discretization of the fields on a grid and the continuous discretization of Lagrangian particles in the phase-space [START_REF] Huang | Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm[END_REF].

This instability is manifested in simulations by a numerical heating of the plasma [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF] related to the numerical parameters. Since the aliasing introduces artificial heat in the system, it is also characterized by a violation of the energy conservation. Usually in PIC simulations, the aliasing instability is avoided by choosing a grid discretization equal to or smaller than the Debye length (ℎ ≤

), including for problems with scales of interest much larger than the Debye length. For example, dense plasmas are well described by the quasi-neutral approximation in most of the domain and the simulation of the plasma physics does not required grid cells smaller than the Debye length. Therefore large gains could be obtained with coarse grid cells that do not resolve the Debye length, especially for three dimensional computations.

Various methods and numerical schemes have been proposed to mitigate this instability, including introducing grid interlacing [START_REF] Liu Chen | Reduction of the grid effects in simulation plasmas[END_REF], random jiggling [10], using higher order particle shapes [START_REF] Birdsall | Plasma self-heating and saturation due to numerical instabilities[END_REF] or temporal/spatial filtering [START_REF] Lewis | A comparison of some particle-in-cell plasma simulation methods[END_REF]. Besides, semi-implicit scheme with exact energy conservation, such as the ECSIM scheme [START_REF] Lapenta | Exactly energy conserving semi-implicit particle in cell formulation[END_REF] have proven numerically to preserve the simulations from aliasing.

Nonetheless, analysis of the aliasing instability is not straightforward. It has been conducted linearly for stationary plasmas and specific schemes, such as the fully-implicit energy-conserving scheme in [START_REF] Barnes | Finite spatial-grid effects in energy-conserving particle-in-cell algorithms[END_REF]. For drifting plasma however, it has been shown that in principle the scheme is not exempted from the instability, but that in practice the scheme is almost always freed from it. In this section, we address to establish numerically that the introduced schemes do not feature finite grid instability in classical configurations where the explicit discretizations does.

An initially Maxwellian and stable plasma is considered with the following distribution of electron:

0 (v) = 1 √ 3 -v 2 2 / 2 , ( 107 
)
where = 2 / is the thermal velocity of electrons and v 2 2 = 2 1 + 2 2 + 2 3 . The size of the domain is = 5 , 10 , 15 , 20 and the grid discretization is ℎ = 2 -5 . Some of these configurations shall lead to the development of the finite-grid instability for the explicit schemes, since the grid discretization is larger than the Debye length.

The first dimension of the particle phase space ( 1 , 1 ) is represented at time = 100 on figure 2 for different schemes and configurations of the domain. The finite grid instability is visible for the explicit schemes for the configurations in which the grid discretization is larger than the Debye length: the velocities of the particles are increased entailing an increase of the system total energy (initially the electric energy is equal to zero). This is a characterization of the numerical heating of particles. The implicit schemes are preserved from the finite grid instability for all configurations. The results for the ECSPIC scheme are not provided since the numerical instability discussed in the previous section prevents us to investigate the finite grid instability. The initially Maxwellian velocity distribution is preserved at any time and for all configurations with the SISPIC-std and SISPIC-sg schemes. = 100, Δ = 0.1 for the explicit schemes and Δ = 1 for the implicit schemes.

Landau damping

The first test case considered is the well-known Landau damping [1,[START_REF] Krall | Principles of Plasma Physics[END_REF]. When a plasma is slightly perturbed from an equilibrum state, it returns to its equilibrium with an exponential damping. A perturbation in the electron distribution of an equilibrium state is considered: between SISPIC-std and SISPIC-sg is not significant here because the reduction of particles is not large (roughly 2 times fewer particles). Nonetheless, as already observed in [START_REF] Deluzet | Sparse grid reconstructions for Particle-In-Cell methods[END_REF][START_REF] Deluzet | Efficient parallelization for 3d-3v sparse grid particle-in-cell: shared memory architectures[END_REF], the gains provided by sparse grid reconstructions are significantly larger for finer grid discretizations and three dimensional computations so that the difference between SISPIC-std and SISPIC-sg shall deepen in those configurations. For the configurations investigated here (equivalent ), the computational time of the SISPIC schemes are about 2 or 3 times larger than the explicit schemes; the computational time of the ECSPIC scheme is 10 times larger than the explicit sparse scheme. Note that the implementation of the mass matrix computation and linear system solve with iterative method (use of more efficient PETSc objects) for ECSPIC is not optimal; e.g. with a better implementation, the field solve computation time with iterative method shall be lower than SISPIC (because the size of the system is smaller). 

(x, v, 0) = 0 (v) 0 (x), (108) 

Two-streams instability

The two-streams instability [START_REF] Birdsall | Interaction Between Two Electron Streams for Microwave Amplification[END_REF] configuration consists of two particle beams with opposite mean velocities. The following Maxwellian distribution of electrons is considered:

(x, v, 0) = 0 (v) 0 (x), (112) 
where the perturbation has the same form than for the Landau damping and the initial velocity distribution is Maxwellian with two beams:

0 (v) = 1 √ 2 -v-v 0 2 2 2 + -v+v 0 2 2 2 . ( 113 
) v 0 = ( 0 , 0) ∈ R 2
is the mean velocity of the beams in opposite direction and the domain size is:

= 2 , (114) 
where = ∈ R, for = 1, 2. Depending on the values of and 0 , the configuration is stable or unstable. Indeed, when two streams move through each other so that one wavelength is traveled in one cycle of the plasma frequency, the perturbation of one stream is increased by the other stream and the perturbation grows exponentially in time. The linear dispersion relation for this test case is:

1 0 ( , k) = 1 - 2 ( -k • v 0 ) 2 - 2 ( + k • v 0 ) 2 . ( 115 
)
The four roots of the linear dispersion relation are [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF]:

= ± 2 2 0 + 2 ± 4 2 2 0 + 2 1 2 1 2 , (116) 
which can be imaginary, and lead to instability, for:

0 ≤ 0 ≤ √ 2. ( 117 
)
Let us parametrize the perturbation with 1 = 2 = 0.005, = 0.05 such that the domain size is = 40 . The mean velocity is 0 = 12, the time step is Δ = 0.1 and the final time = 60, resulting in 600 iterations. The grid discretization is ℎ = 2 -5 for semi-implicit schemes and ℎ = 2 -7 for explicit schemes so that the Debye length is resolved for explicit schemes: ℎ 0.98 . The number of particles per cell is = 100 or 500. The evolution of the electric field 2 -norm is provided on figure 9 for different configurations described in table 8.

Here again, the ECSPIC scheme is subject to the numerical instability related to the loss of field energy non-negativity. The instability is triggered at the moment when the field energy become negative (around ≈ 18). The theoretical rate is well reproduced for both the explicit and the semi-implicit schemes. The SISPIC schemes are significantly more efficient, in term of computational time, than the explicit schemes, the execution time being 15 or 30 times smaller than for the explicit scheme on standard grid. The ECSPIC scheme is slightly more efficient than the explicit sparse grid scheme but we recall that the implementation is not optimal and gains may be obtained with optimization on the computation of the mass matrix and the field solver with iterative method, as well as the dimensionality of the problem.

Conclusion

In this paper, numerical methods based on an implicit discretization of the Vlasov-Maxwell system in electrostatic regime and embedding sparse grid reconstructions have been introduced: the SISPIC and ECSPIC schemes. These methods have been numerically experienced and compared against existing semi-implicit (ECSIM) and explicit PIC methods. Sparse grid reconstructions embedded in PIC discretizations offer a reduction of the memory cost of the method thanks to a better control of the statistical noise which entails a decrease of the particle number. Indeed, we have observed numerically that the number of particles required to obtain a given accuracy can Ex-std, hn=2 -7 , Δt=0.1 Pc=500 Ex-sg, hn=2 -7 , Δt=0.1 Pc=500 SISPIC-sg, hn=2 -5 , Δt=0.1 Pc=100 SISPIC-std, hn=2 -5 , Δt=0.1 Pc=500 ECSPIC, hn=2 -5 , Δt=0.1 Pc=100 theoretical rate theoretical rate 8).

be reduced by a factor of 25 with sparse grid semi-implicit schemes in comparison to standard grid schemes. In addition, the methods are unconditionally stable with respect to the plasma period so that the time step can be chosen irrespective to this value; and the finite grid instability is eliminated, permitting to choose the mesh size according to the physic of interest rather than the Debye length. Nonetheless, we have observed numerical instabilities related to the loss of the field energy non-negativity in the ECSPIC scheme, these instabilities deteriorating significantly the results in course of time. The SISPIC method is exempted from this instability and has proven to be the most efficient method (compared to the explicit schemes, ECSPIC and ECSIM) in term of memory footprint and computational times. The gains, observed on two dimensional simulations, are expected to be larger with three dimensional geometries for which the reduction of particles achieved by the sparse grid reconstruction is more significant (see figure 10, extracted from [START_REF] Deluzet | Sparse grid reconstructions for Particle-In-Cell methods[END_REF]). Indeed, the full potential of the sparse grid reconstruction method can only be achieved by three dimensional computations. This is strikingly illustrated by the plot of figure 10 relating the memory footprint of the particle data for standard and sparse grid simulations to guarantee a equivalent statistical noise. We conclude our investigations upon semi-implicit schemes embedding sparse grid reconstructions with the following considerations. The SISPIC methods is a good alternative to explicit sparse-PIC schemes for configurations in which the time and space scales of interest are larger than the plasma period or/and the Debye length. The use of sparse grid techniques shall offer a significant reduction of the computational costs (memory footprint, computational time) for three dimensional geometries. Nonetheless the derivation of a semi-implicit sparse-PIC method conserving the discrete total energy is left to a future work.
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 1 Figure 1: Support of basis functions for component grids and corresponding non-zero and zero entries in the global stiffness matrix.

Figure 2 :

 2 Figure 2: Finite-grid instability: representation of the phase space ( 1 , 1 ) of an initially Maxwellian distribution of electron.= 100, Δ = 0.1 for the explicit schemes and Δ = 1 for the implicit schemes.
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 4 Figure 4: Landau damping: evolution of the electric field 2 -norm E ℎ 2 (on the Cartesian grid) in time, = 0.3, Δ = 0.5 (cf. table3).

Figure 6 :

 6 Figure 6: Landau damping: evolution of the total energy E ( ) and total momentum M ( ) conservation error in time, = 0.3. Semi-implicit: = 100, Δ = 0.5 (left panel); explicit: = 500, Δ = 0.05 (right panel).

Figure 9 :

 9 Figure 9: Two-streams instability: evolution of the electric field 2 -norm E ℎ 2 (on the Cartesian grid) in time, = 0.05, Δ = 0.1 (cf. table8).

Figure 10 :

 10 Figure 10: Memory footprint of the particle data for standard and sparse grid simulations, with 75 ≤ ≤ 500.

Table 3 :

 3 Landau damping: configurations of the simulations (figure9), = 0.05.

	scheme	Δ		ℎ			figure (color)	comp. time one iteration [s]	
	Ex-std	0.05 2 -5	500 5.1E+05	5 (left)		4.2E-02(×1)	
	Ex-sg	0.05 2 -5	500 2.2E+05	5 (left)		5.0E-02 (×1.2) *	
	ECSIM	0.5 2 -5 1000 1.2E+06	4 (right)		3.1E-00 (×73) *	
	SISPIC-std 0.5 2 -5 500 5.1E+05	4 (right)		7.4E-02 (×1.7)	
	SISPIC-sg	0.5 2 -5 100 4.4E+04	4 (left)		7.6E-02 (×1.8)	
	ECSPIC	0.5 2 -5 100 4.4E+04	4 (left)		5.1E-01 (×12) *	
	* the implementation is not optimal									
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	Figure 5: Landau damping: evolution of the electric field 2 -norm E ℎ 2 (on the Cartesian
	grid) in time, = 0.3 (cf. table 3).								

Table 7 :

 7 Computational time (mean of 10 iterations) for the Landau damping simulations,

	= 0.3,

* the implementation is not optimal

Table 8 :

 8 Configurations for the two-streams instability simulations (figure9), = 0.05.

	scheme	Δ	ℎ				figure (color)	comp. time one iteration [s]
	Ex-std	0.1 2 -7 500 8.2E+06	9	2.3E-00 (÷1)
	Ex-sg	0.1 2 -7 500 1.2E+06	9	1.0E-00 (÷2.3) *
	SISPIC-std 0.1 2 -5 500 5.1E+05	9	1.5E-01 (÷15.3)
	SISPIC-sg 0.1 2 -5 100 4.4E+04	9	7.5E-02 (÷30.6)
	ECSPIC	0.1 2 -5 100 4.4E+04	9	5.3E-01 (÷4.3) *
				Evolution of L2-norm electric field
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where the initial velocity distribution is Maxwellian, similar to the previous configuration defined by equation (107), and the perturbation has the following form: 0 (x) = (1 + 1 cos ( 1 1 )) (1 + 2 cos ( 2 2 )) .

(109) α is the magnitude and k is the period of the perturbation. The perturbation is considered uniform in each dimension, i.e. = , ∈ R and the domain size depends on the perturbation:

By considering the roots of the dispersion function ( ( , ) = 0), which is as follows:

one can find the damping rate of the plasma ( ( )) for given values of ∈ R [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF]. E.g. for = 0.3, the root with the largest imaginary part is = ±1.1598 -0.0126 , etc. Let us parametrize the perturbation with 1 = 2 = 0.05, = 0.3 such that the domain size is = 20 /3. The time step is Δ = 3, 1, 0.5, 0.1, 0.005, depending on the configurations and the final time is = 100. The grid discretization is ℎ = 2 -5 so that the Debye length is resolved: ℎ ≈ 0.65 and the number of particles per cell ranges from = 100 to 1000. The evolution of the electric field 2 -norm in time is provided on figures 4 and 5 for different configurations described in table 3. For the sparse grid reconstruction schemes, the electric field 2 -norm is computed on the Cartesian grid after combination of the field. The corresponding evolution in time of the total energy and total momentum are represented on figure 6.

We observe on the left panel of figure 4 that the damping rate is not well reproduced for the ECSIM and SISPIC-std schemes with = 100. The damping rate is accurately reproduced for the SISPIC-sg and ECSPIC schemes, despite the reduced total number of particles (more than two times fewer particles for the sparse schemes in comparison to standard schemes with equivalent ). Nonetheless, around ≈ 30, the recombined field energy of ECSPIC scheme becomes negative and the instability described in section 5.1 is observed: the velocities of the particles are significantly increased to balance the loss in the negative field energy. It results from the nonphysical growth of the particle velocities yielding an increase of the electric field 2 -norm (computed after combination on the Cartesian grid, i.e. the quantity observed on the figure 4). As a result of round-off errors, the total energy and total momentum are also increased.

On the right panel of figure 4, the SISPIC-sg scheme with = 50 provides equivalent results than the SISPIC-std scheme with = 500 and slightly better than the ECSIM scheme with = 1000. These observations lead to two conclusions. First, the electrostatic Vlasov-(div)Ampere formulation (in which the particle response to the field is computed on the potential Φ) offers a reduction of the statistical noise in PIC discretizations compared to traditional Vlasov-Ampere formulation (in which the particle response to the field is computed on the field E). Second, the results point out the significant gain in term of statistical resolution for semi-implicit methods embedding sparse grid reconstructions over standard semi-implicit methods. Indeed, the SISPIC-sg simulation on figure 4 (right panel) is performed with roughly 25 times fewer particles than the ECSIM simulation (with = 1000) and 12 times fewer than the SISPIC-std simulation. The SISPIC-sg scheme is compared to the explicit schemes on figure 5. On panel left, the damping rate is more accurate for SISPIC-sg scheme with Δ = 0.5, = 100 than the explicit schemes with time steps 2,10 and 20 times smaller (Δ = 0.1, 0.05, 0.025), with = 500. The stability, according to the time discretization, is investigated on figure 5 (right panel). All of the semi-implicit schemes, excepted the ECSPIC scheme, are stable for Δ = 1, 3. As a comparison, the explicit scheme, which is not unconditionally stable is represented with Δ = 1.

The computational time of each step of an iteration and the total are provided in the table 7 for the different schemes. The field solve computational time of the ECSIM scheme is about 5 times larger than the SISPIC schemes one (with direct method) because the linear system is 6 times larger (see section 3.3). The total computational time of the ECSIM is expected to be much smaller with an iterative method, about six times larger than the SISPIC-std scheme. The difference

A Appendix

A.1 Spatial discretization

In this section, the spatial discretization of the physical quantities (electric field, charge current, electric potential, etc.), as well as operators (gradient and divergence), on the component grids are explicited in two and three dimensions.

Let us consider a component grid Ω ℎ l with grid discretization ℎ l (or the Cartesian grid, i.e. = , ∀ ). The scalar quantities, such as the electric potential, are defined at the vertices of the grid cells:

The notation Φ ℎ l ; , , stands for the electric potential approximation at the grid node jℎ l = ( ℎ 1 , ℎ 2 , ℎ 3 ).

The field quantities, such as the electric field and current density, are defined on the centers and vertices of the grid cells according to the Yee discretization [START_REF] Yee | Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[END_REF]. The Yee discretization of a component grid consists of staggered component grids, Ω 1 ℎ l , Ω 2 ℎ l and Ω 3 ℎ l defined by:

and we introduce the notation j for an index j ∈ ℎ l , defined by: j = (j ) =1,..., , where j

where e ∈ N is the index whose value is 1 along the ℎ coordinate and 0 elsewhere. Specifically, in two and three dimensions, it falls down to:

Let Ω ℎ l = (Ω ℎ l ) =1,..., denotes the staggered component grids. Then, the electric field and current density discretizations are written as:

Let us introduce the discrete gradient, discrete divergence, and discrete Laplacian operators defined on the component grids. The discrete gradient is defined from the regular grid to the staggered grid; the discrete divergence from the staggered grid to the regular grid; and the discrete Laplacian from the regular grid to the regular grid by:

The motivation for the introduction of the staggered discretization is to retain some properties of the continuum gradient and divergent operators. Specifically, the discrete gradient and discrete divergence operators shall verify a discrete integration by parts for exact conservation of energy.

Lemma A.1 (Discrete integration by parts). Let ℎ l ;j be a scalar quantity defined on the component grid Ω ℎ l and B be a field quantity defined on the staggered component grids Ω ℎ l , then the following discrete integration by parts holds:

Proof. The result is obtained with the periodicity of the component grids.