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SEMI-IMPLICIT PARTICLE-IN-CELL METHODS EMBEDDING SPARSE GRID
RECONSTRUCTIONS

C. GUILLET∗

Abstract. In this article, we introduce semi-implicit Particle-In-Cell (PIC) methods based on a discretization
of the Vlasov-Maxwell system in the electrostatic regime and embedding sparse grid reconstructions: the Semi-
Implict Sparse-PIC (SISPIC-sg) scheme, its standard extension (SISPIC-std) and the Energy-Conserving Sparse-
PIC (ECSPIC) scheme. These schemes are inspired by the Energy-Conserving Semi-Implicit Method (ECSIM)
introduced in [39]. The particle equations are linearized so that the particle response to the field can be computed
by solving a linear system with a stiffness matrix. The methods feature the three following properties: the scheme
is unconditionally stable with respect to the plasma period; the finite grid instability is eliminated, allowing the
user to use any desired grid discretization; the statistical error is significantly reduced compared to semi-implicit
and explicit schemes with standard grid for the same number of particles. The ECSPIC scheme conserves exactly
the discrete total energy of the system but we have experienced numerical instability related to the loss of the field
energy non-negativity genuine to the sparse grid combination technique. The SISPIC methods are exempted from
this instability and is unconditionally stable with respect to the time and spatial discretization, but does not conserve
exactly the discrete total energy. The methods have been investigated on a series of two dimensional test cases and
gains in term of memory storage and computational time compared to explicit and existing semi-implicit methods
have been observed. These gains are expected to be larger for three dimensional computations for which the full
potential of sparse grid reconstructions can be achieved.
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1. Introduction. Particle-In-Cell (PIC) method is one of the most widely spread numer-
ical method for the simulation of kinetic plasmas [7, 22, 23, 29]. It is based on a discretization
of the Vlasov-Maxwell system, or a subset thereof for electrostatic regimes. Vlasov equation
describes the evolution of the probability density function of species of particles in the phase-
space while Maxwell’s equations (Ampere equation in this paper) characterize the evolution
of the electromagnetic field. Ampere’s equation is conducted by the moment of the particle
distribution and Vlasov equation characteristics are self-consistently determined by the field.
It results in a tightly coupled non-linear system whose solutions are proven to be challenging
to determine. The specificity of PIC methods is the mixed discretization, made of both an
Eulerian grid for the moments of the particle distribution and fields, in conjunction with
individual Lagrangian particles in continuous phase space.

The solutions of Vlasov-Maxwell equations verify some conservation properties, such
as the conservation of the total energy and momentum of the system. The charge conti-
nuity equation is also a consequence of the Vlasov equations (moment of order 0). The
question of conservation of these physical quantities in numerical simulations has been very
popular for years. Explicit formulations of PIC methods, based on an explicit time integra-
tion of the characteristics of the Vlasov equation, are usually momentum-conserving but not
energy-conserving. Conversely, PIC implementations based on an implicit formulation can be
energy-conserving but not momentum-conserving. The question whether a numerical scheme
preserving both energy and momentum is possible or not is addressed in [8].

Originally, and still in most applications, PIC implementations are based on an explicit
time discretization of the Vlasov equation, e.g. by means of a leap-frop scheme. An explicit
time integration benefits from simplicity of implementation, as well as a poor computational
cost per iteration. Nonetheless, explicit approaches suffer from temporal stability constraints,
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imposing a limit on the time-step discretization, to resolve the fastest wave. In addition, these
approaches usually feature spatial stability constraints, manifested by numerical instabilities as
aliasing or finite grid instability [37, 35] occurring when the grid discretization (grid cell size)
is equal to or superior to the Debye length of the plasma. Therefore, the application of explicit
approaches to multidimensional problems, especially for three dimensional geometries or
large plasma densities, can be very computationally demanding and cumbersome.

In response to these issues, implicit formulations of PIC schemes have emerged [27]
and received a lot of attention, particularly thanks to their stability properties. Indeed,
(semi-)implicit PIC methods such as the implicit-moment method [9, 41], direct implicit
method [38, 17, 33] and their developments alleviate the numerical constraints, preserving
stability with larger time-steps and grid discretizations. Ideally, in implicit formulations, the
particle equations and the field equations shall be non-linearly coupled, requiring Newton or
Picard iterations. Because of solver efficiency limitations at the early development of implicit
methods, linear approximations have been favored at the expense of numerical approximations
producing violation of the energy conservation and resulting in significant artificial plasma
heating or cooling. The methods using a linearization of the particle-field coupling are named
semi-implicit methods. Recently, a fully implicit approach [14], based on Newton–Krylov
methods, in which field-particle couplings are converged to a tight nonlinear tolerance has been
developed. In addition to the elimination of both temporal and spatial stability constraints, the
scheme offers valuable conservation properties, such as the exact conservation of the discrete
energy of the system and consistency with the charge continuity equation. Nonetheless, the
method requires the resolution of a non-linear system for the particles and field, which can
be very computationally expensive, especially for multidimensional computations. A few
years ago, a semi-implicit method preserving exactly the discrete total energy of the system
[39] has been developed. This Energy-Conserving Semi-Implicit Method (ECSIM) retains the
simplicity of explicit schemes, i.e. it advances the particles first and then the fields without any
iteration, and conserves discrete energy exactly. In this approach, the particle-field coupling is
partially linearized, meaning that a part of the particle response to the field is computed thanks
to a mass matrix, ensuring an exact discrete energy-conservation. Compared to the previous
semi-implicit methods, namely the implicit-moment method and the direct implicit method,
the particle pusher and the derivation of the field equation are different. The mover does
not require any inner iteration and its complexity is similar to that of explicit formulations.
Nonetheless, the field matrix presents a significantly more complex structure in comparison to
that of explicit schemes in order to conserve energy to round-off errors. The major advantage
over fully-implicit schemes is the reduced complexity of the algorithm, allowing development
of the method for three dimensional simulations. Since then, the method has been applied
extensively to large-scale kinetic simulations [46, 45, 13, 21]. However, the method is not
consistent with the charge continuity equation as the fully-implicit method does. Therefore
the error of conservation, or equivalently the consistency with the Gauss law for Vlasov-
Ampere (VA) formulations, shall be corrected throughout the simulation in order to avoid
a non-physical evolution of the plasma. Since then, developments addressing this charge
continuity issue have been introduced. In [16], a correction inspired of the Boris (∇ · E)
correction, but operating on the particles instead of the field in order to preserve energy
conservation is proposed. The method uses local linearization of the particle shape functions
and requires the resolution of an under-determined system on the particles with Lagrange
multiplier method. Besides, a prediction-correction scheme [12] inspired both of the ECSIM
scheme and of a charge-conserving scheme based on an averaging of grid quantities over
interpolated trajectories of particles has been proposed.

Particle-In-Cell schemes also contain a major weakness: the statistical error originating
from the sampling of the probability density function by a finite number of numerical particles.
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This numerical noise decreases slowly with the increase of the average number of particles
per cell, scaling as the inverse square root of the mean number of particles per cell. Therefore,
a large number of particles may be required for some simulations, necessitating tremendous
computational resources. Noise reduction strategies aim at maintaining the accuracy of
computations with a reduced set of particles. They have therefore received a lot of attention
with, for instance, variance reduction methods such as the 𝛿 𝑓 method [28] or the quiet start
initialization procedure [44] as well as filtering methods in either Fourier domain [7], wavelet
domain [30], and micro-macro decomposition [20, 19, 18].

Sparse grid reconstructions in PIC methods aim at reducing the statistical error resulting
from the particle sampling. Specifically, the particle distribution moments are computed on
a hierarchy of component grids with a coarse resolution. Compared to standard grids, the
mean number of particles per cell is larger for any of the component grids. This crucial
feature offers either a mitigation of the statistical noise or a decrease of the total number
of numerical particles required for a precision comparable to discretizations on a standard
grid. The method has already been applied to explicit PIC discretizations of the Vlasov-
Poisson model in two dimensions [26], and three dimensions [43, 42, 24, 25]. Substantial
gains in term of memory consumption as well as computational time have been pointed
out, by two or three orders of magnitude in comparison to approaches with standard grids.
Besides, sparse grid reconstructions have proven to preserve exact momentum conservation of
explicit formulations. These observations call for the development of an implicit formulation
embedding sparse grid reconstructions with improved spatial and temporal stability properties
and, if possible, discrete total energy conservation.

This paper focuses on the development of semi-implicit schemes incorporating sparse
grid reconstructions. Its contribution lies in the introduction of three new semi-implicit
methods (SISPIC-std, SISPIC-sg, ECSPIC) for PIC simulations, proposed as enhancements
over the ECSIM method and the explicit sparse-PIC method introduced in the key references
[39] and [26]. The schemes presented here are inspired by the ECSIM scheme and are based
on a linearization of the equations to obtain the implicit particle response to the electric field
by solving a linear system. All three schemes differ from the ECSIM scheme in that they
consider an electrostatic regime where Maxwell’s equations reduce to the Ampere equation
without a magnetic field. To our knowledge, all ECSIM methods described in the literature
are based on the Vlasov-Maxwell system and include a self-consistent magnetic field. The
aim here is to address the difficulty associated with computing an electromagnetic field free
from any solenoidal (or inductive) component. The schemes introduced here are based on
an electrostatic Vlasov-(div)Ampere formulation, ensuring they are genuinely consistent with
this property: they do not require any post-processing typically implemented in this context.
The resulting linear system in each of our approaches is constructed from one stiffness matrix
(instead of 3𝑣 mass matrices in ECSIM), and its size is reduced by 6 compared to the ECSIM
scheme since the unknowns are scalar. To summarize the various improvements and trade-offs
offered by the new schemes compared to ECSIM and the explicit sparse-PIC methods, we
provide Table 1 summarizing the following properties verified by the schemes:

𝑃1: The scheme is consistent with an electrostatic formulation.
𝑃2: The scheme is unconditionally stable with respect to the plasma period: the time step

can be chosen irrespective of this value.
𝑃3: Aliasing or finite grid instability is eliminated, allowing grid discretization without

constraints related to the Debye length.
𝑃4: The statistical error is significantly reduced compared to standard PIC schemes

carried out with a Cartesian grid of comparable resolution and the same number of
particles.

𝑃5: The discrete total energy of the system is exactly conserved for any discretization
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parameters.
𝑃6: The total momentum of the system is exactly conserved for any discretization pa-

rameters.
𝑃7: The scheme is exempt from numerical instabilities.

Table 1: Properties 𝑃1-𝑃7 of the newly introduced schemes (SISPIC-std, SISPIC-sg, ECSPIC)
and the reference schemes (explicit sparse-PIC [26], ECSIM [39]).

scheme 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7
explicit sparse-PIC ✓ × × ✓ × ✓ ×

ECSIM × ✓ ✓ × ✓ × ✓
SISPIC-std ✓ ✓ ✓ × ✓ × ✓
SISPIC-sg ✓ ✓ ✓ ✓ × × ✓
ECSPIC ✓ ✓ ✓ ✓ ✓ × ×

For 𝑃4, the reduction of statistical noise is achieved either through sparse grid reconstructions,
the Vlasov-(div)Ampere formulation, or both. This contribution is significant because, as
a consequence of their typical Vlasov-Ampere formulation, semi-implicit methods tend to
produce more statistical noise than explicit methods. 𝑃7 is not satisfied by the ECSPIC
scheme. Indeed, instabilities were observed during numerical investigations, attributed to the
absence of sparse grid reconstructions to maintain the non-negativity of the solution.

This paper is organized as follows. In section 2, the general framework of the article
is introduced: Vlasov-(div)Ampere formulation and PIC methods. In section 3, the sparse
grid reconstructions are introduced, as well as the SISPIC-sg method which is compared to
existing semi-implicit methods (direct implicit, moment implicit, ECSIM). Some insights
of the gains provided by the method are also discussed. In section 4, the SISPIC-std and
ECSPIC methods are introduced and the computational complexity, memory requirements
and properties (energy conservation, loss of non-negativity) of the latter are discussed. Finally,
in section 5, the methods are investigated and compared to existing methods (sparse and
standard explicit schemes, ECSIM) on two-dimensional classical test cases: Landau damping
and two-streams instability.

2. General framework.

2.1. Notations. Let 𝑑 ∈ N∗ be the dimension of the problem and let the spatial domain
be the 𝑑-dimensional periodic unit intervalΩ = (R/Z)𝑑 . For multi-indexesα = (𝛼1, ..., 𝛼𝑑) ∈
N𝑑 and β = (𝛽1, ..., 𝛽𝑑) ∈ N𝑑 , let us define order relations by:

α ≤ β ⇔ ∀𝑖 ∈ {1, ...𝑑} 𝛼𝑖 ≤ 𝛽𝑖 ,(2.1)
α < β ⇔ α ≤ β and ∃ 𝑖 ∈ {1, ..., 𝑑} 𝑠.𝑡. 𝛼𝑖 < 𝛽𝑖 ,(2.2)

and introduce the notations:

αβ = (𝛼1𝛽1, ..., 𝛼𝑑𝛽𝑑), α−1 =
1

𝛼1...𝛼𝑑

.(2.3)

The l1 norm for a multi-index α ∈ N𝑑 is also introduced:

|α|1 :=
𝑑∑︁
𝑖=1

|𝛼𝑖 |.(2.4)
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2.2. Electrostatic Vlasov-(div)Ampere (VdA) formulation. The semi-implicit PIC
methods introduced in this paper are based on a discretization of Vlasov-Ampere system in an
electrostatic regime, assuming a vanishing magnetic field B = 0. In this regime, the following
Vlasov-Ampere (VA) formulation is considered:

(𝑉𝐴) :


𝜕 𝑓𝑠

𝜕𝑡
(x, v, 𝑡) + v · ∇x 𝑓𝑠 (x, v, 𝑡) +

𝑞𝑠

𝑚𝑠

E(x, 𝑡) · ∇v 𝑓𝑠 (x, v, 𝑡) = 0,

∇ × E(x, 𝑡) = 0,

𝜖0
𝜕E
𝜕𝑡

(x, 𝑡) = −J(x, 𝑡).

(2.5)

The system is defined for (x, v, 𝑡) ∈ Ω×R𝑑×R+. In this problem, 𝑓𝑠 (x, v, 𝑡) is the phase-space
distribution function attached to the species 𝑠; 𝑞𝑠 , 𝑚𝑠 are the corresponding charge and mass,
𝜖0 is the vacuum permittivity, E is the electric field and J is the plasma current density obtained
from the phase-space distribution of each species:

J(x, 𝑡) =
∑︁
𝑠

J𝑠 (x, 𝑡) =
∑︁
𝑠

𝑞𝑠

∫
v 𝑓𝑠 (x, v, 𝑡)𝑑v.(2.6)

The electric field is initialized with the Gauss law and requires the resolution of a Poisson
equation for the electric potential, denoted Φ:

E(x, 0) = −∇Φ(x, 0), −𝜀0ΔΦ(x, 0) = 𝜌(x, 0),(2.7)

where 𝜌(x, 0) is the plasma charge density at initialization defined from the initial distribution
of each species:

𝜌(x, 𝑡) =
∑︁
𝑠

𝜌𝑠 (x, 𝑡) =
∑︁
𝑠

𝑞𝑠𝑛𝑠 , 𝑛𝑠 =

∫
𝑓𝑠 (x, v, 𝑡)𝑑v.(2.8)

Remark 2.1. Provided that the charge continuity equation is verified:

𝜕𝜌

𝜕𝑡
+∇ · J = 0,(2.9)

the Vlasov-Ampere formulation (2.5) is equivalent to a Vlasov-Poisson formulation:

(𝑉𝑃) :


𝜕 𝑓𝑠

𝜕𝑡
(x, v, 𝑡) + v · ∇x 𝑓𝑠 (x, v, 𝑡) +

𝑞𝑠

𝑚𝑠

E(x, 𝑡) · ∇v 𝑓𝑠 (x, v, 𝑡) = 0,

−𝜖0ΔΦ(x, 𝑡) = 𝜌(x, 𝑡), E(x, 𝑡) = −∇Φ(x, 𝑡).
(2.10)

By considering the charge continuity equation (2.9), one can derive from the Ampere equation
an evolution equation for the electric potential Φ:

𝜀0
𝜕ΔΦ

𝜕𝑡
(x, 𝑡) = ∇ · J(x, 𝑡).(2.11)

The equation can alternatively be obtained by considering the divergence of the Ampere
equation (third equation of the system (2.5)) and the Gauss law (𝜖0∇ · E = 𝜌). From this
equation, a multi-dimensional electrostatic Vlasov-(div)Ampere formulation is considered:

(𝑉𝑑𝐴) :


𝜕 𝑓𝑠

𝜕𝑡
(x, v, 𝑡) + v · ∇x 𝑓𝑠 (x, v, 𝑡) +

𝑞𝑠

𝑚𝑠

E(x, 𝑡) · ∇v 𝑓𝑠 (x, v, 𝑡) = 0,

𝜖0
𝜕ΔΦ

𝜕𝑡
(x, 𝑡) = ∇ · J(x, 𝑡), E(x, 𝑡) = −∇Φ(x, 𝑡).

(2.12)
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The formulation is equivalent to the first one (2.5) in multi-dimensions if the charge continuity
equation (or Gauss law) is verified. Indeed, since the electric field is derived from a potential,
its curl vanishes:

∇ × E = −∇ ×∇Φ = 0.(2.13)

In this article, our goal is to derive semi-implicit methods which are based on discretizations
of the (𝑉𝑑𝐴) system.

2.3. PIC discretizations. The distribution of particles ( 𝑓𝑠) is represented by a collection
of macro-particles. A macro-particle, also called numerical particle, refers to a heap of
physical particles of the same species (electrons, ions, etc.). Let 𝑁𝑠 denotes the number of
macro-particles attached to the species 𝑠 and 𝑁 the total number of particles. The positions
and velocities of a particle at time 𝑡 are denoted (x𝑝 (𝑡), v𝑝 (𝑡)), 𝑝 = 1, ..., 𝑁𝑠 being the index
of the particles. We assume that all the numerical particles of one species have the same
weight, defined by the ratio of physical particles (𝑛𝑠) per numerical particle (𝑁𝑠):

𝜔 =

∫
Ω
𝑛𝑠𝑑x
𝑁𝑠

,(2.14)

and the same charge and mass:

𝑞𝑝 = 𝑞𝑠𝜔, 𝑚𝑝 = 𝑚𝑠𝜔, ∀𝑝 = 1, ..., 𝑁𝑠 .(2.15)

A shape function, denoted 𝑊ℎ, dependent on the grid discretization parameter ℎ and defined
when the latter is specified, is associated to the particles in order to accumulate the particle
properties (charge density, current density) onto the mesh. The current density accumulation
is defined by:

Jℎ (x, 𝑡) :=
∑︁
𝑠

J𝑠,ℎ (x, 𝑡) :=
∑︁
𝑠

1
ℎ𝑑

𝑁𝑠∑︁
𝑝=1

𝑞𝑝v𝑝 (𝑡)𝑊ℎ (x − x𝑝 (𝑡)),(2.16)

where the quantity 1/ℎ𝑑 is the volume of the grid cells. The electric field is then computed
on the mesh with Ampere (or Poisson) equation and interpolated at the particles positions.
Finally the particles are advanced by considering the characteristics of Vlasov equation.

3. Semi-implicit PIC methods.

3.1. Implicit formulation and linearization. LetΔ𝑡 be the step of the time discretization
and let us denote a quantity by the superscript 𝑘 ∈ N the evaluation of this quantity at iteration
𝑘:

𝑡𝑘 := 𝑘Δ𝑡, x𝑘
𝑝 := x𝑝 (𝑡𝑘), v𝑘

𝑝 := v𝑝 (𝑡𝑘), etc.(3.1)

Let us introduce our implicit scheme used for time discretization of the electrostatic (𝑉𝑑𝐴)
system, where the position is staggered half a time step with respect to the velocities and the
fields as follows: 

x𝑘+ 1
2

𝑝 = x𝑘− 1
2

𝑝 + Δ𝑡v𝑘+ 1
2

𝑝

v𝑘+1
𝑝 = v𝑘

𝑝 + Δ𝑡
𝑞𝑝

𝑚𝑝

E𝑘+ 1
2

ℎ

(
x𝑘+ 1

2
𝑝

)
ΔℎΦ

𝑘+1
ℎ − ΔℎΦ

𝑘
ℎ =

Δ𝑡

𝜀0
∇ℎ · J𝑘+ 1

2
ℎ

E𝑘+1
ℎ

= −∇ℎΦ
𝑘+1
ℎ

, 𝑘 ∈ N.(3.2)
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The spatial discretization, designated by the subscript ℎ which corresponds to the size of
the grid cells, is not detailed here and shall be precised later. The operators ∇ℎ,∇ℎ·,Δℎ are
defined in the appendix (equations (A.6), (A.7) and (A.8)). The following averaged quantities
have been introduced:

v𝑘+ 1
2

𝑝 =
1
2

(
v𝑘+1
𝑝 + v𝑘

𝑝

)
, E𝑘+ 1

2
ℎ

(
x𝑘+ 1

2
𝑝

)
:=

1
2

[
E𝑘+1
ℎ

(
x𝑘+ 1

2
𝑝

)
+ E𝑘

ℎ

(
x𝑘+ 1

2
𝑝

)]
.(3.3)

The electric field is interpolated from the grid to the particle positions according to:

E𝑘+1
ℎ

(
x𝑘+ 1

2
𝑝

)
=

(
I𝑉ℎ

E𝑘+1
ℎ

) (
x𝑘+ 1

2
𝑝

)
.(3.4)

The interpolation operator I𝑉ℎ
is not explicitly defined at this point, as it depends on the grid

discretizations and will vary depending on the schemes introduced in the following sections.
The implicit current density is defined by:

J𝑘+ 1
2

ℎ
(x) = 1

ℎ𝑑

∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝑞𝑝v𝑘+ 1
2

𝑝 𝑊ℎ

(
x − x𝑘+ 1

2
𝑝

)
.(3.5)

The scheme introduced in equation (3.2) is fully implicit because of the coupling between
the particles and the field. It requires the resolution of a non-linear system. Semi-implicit
approaches, such as the moment implicit method [9, 41], the direct implicit method [38, 34],
etc. or the method introduced here are based on a linearization of the equations. Nonetheless,
the method introduced in this paper is different from the direct implicit method (in which the
shape function 𝑊ℎ is linearized using Taylor expansions) and the moment implicit method
(in which the linearization is obtained from moment of the vlasov equation). The method is
inspired of the ECSIM method introduced in [39]. The linearization is obtained directly in
the particle equations by updating the position of the particles with a known velocity, i.e. the
first equation in (3.2) becomes:

x𝑘+ 1
2

𝑝 = x𝑘− 1
2

𝑝 + Δ𝑡

2

[
v𝑘
𝑝 + Δ𝑡

𝑞𝑝

𝑚𝑝

E𝑘+ 1
2

ℎ

(
x𝑘+ 1

2
𝑝

)
+ v𝑘

𝑝

]
(3.6)

= x𝑘
𝑝 + Δ𝑡v𝑘

𝑝 +𝑂

(
Δ𝑡2

)
.(3.7)

As a result, the implicit model has become linear so that the implicit contribution of the
electric field (evaluated at the known particle position) may be obtained from the divergence
of Ampere equation (third equation of (3.2)) by solving a linear system. The particle equations
are then: 

x𝑘+ 1
2

𝑝 = x𝑘− 1
2

𝑝 + Δ𝑡v𝑘
𝑝

v𝑘+1
𝑝 = v𝑘

𝑝 + Δ𝑡
𝑞𝑝

𝑚𝑝

E𝑘+ 1
2

ℎ

(
x𝑘+ 1

2
𝑝

)
, 𝑘 ∈ N.(3.8)

3.2. Sparse grid reconstructions. In this section, the sparse grid notations are intro-
duced in the framework of the so-called sparse grid combination technique [31].

Definition 3.1 (Component indices). Let L𝑛 be a set of indices, called the component
indices, with respect to the discretization parameter 𝑛 ∈ N and defined by:

L𝑛 :=
⋃

𝑖∈⟦0,𝑑−1⟧
L𝑛,𝑖 , L𝑛,𝑖 := {l ∈ N𝑑 | |l|1 = 𝑛 + 𝑑 − 1 − 𝑖, l ≥ 1},(3.9)
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Let us consider the family of d-dimensional anisotropic grids on the space domain indexed by
the component indices and called component grids:

Definition 3.2 (Component grids). The component grids are defined for l ∈ L𝑛 by:

Ωℎl :=
{
jℎl | j ∈ 𝐼ℎl

}
∈ Ω, 𝐼ℎl := ⟦0, ℎ−1

𝑙1
− 1⟧ × ... × ⟦0, ℎ−1

𝑙𝑑
− 1⟧ ⊂ N𝑑 ,(3.10)

where:

ℎl := (ℎ𝑙1 , ..., ℎ𝑙𝑑 ) ∈ R𝑑 , ℎ𝑙 = 2−𝑙 for 𝑙 ∈ L𝑛(3.11)

is called the grid discretization and corresponds to the cell grid width.
The number of component grids is given by:

|L𝑛 | := Card(L𝑛) =
𝑑−1∑︁
𝑖=0

(
𝑛 + 𝑑 − 2 − 𝑖

𝑑 − 1

)
= 𝑂

(
| log ℎ𝑛 |𝑑−1

)
,(3.12)

where
( 𝑖
𝑗

)
, for 𝑖 ≥ 𝑗 integers, is the binomial coefficient defined as:(

𝑖

𝑗

)
:=

𝑖!
𝑗!(𝑖 − 𝑗)! .(3.13)

Let us also consider a regular isotropic grid, named Cartesian grid, corresponding to a
component grid of level l = 𝑛 · 1 with uniform discretization ℎ𝑛 for any direction:

Definition 3.3 (Cartesian grid). The Cartesian grid, denoted Ω
(∞)
ℎ𝑛

, is defined by:

Ω
(∞)
ℎ𝑛

:=
{
jℎ𝑛 | j ∈ 𝐼ℎ𝑛

}
⊂ Ω, 𝐼ℎ𝑛 := ⟦0, ℎ−1

𝑛 − 1⟧𝑑 ⊂ N𝑑 .(3.14)

Let l ∈ L𝑛, j ∈ 𝐼ℎl be multi-indexes associated to a component grid and consider basis
functions defined by tensor products of one-dimensional functions as follows:

𝑊ℎl;j (x) := 𝑊ℎl (x − jℎl) =
(

𝑑⊗
𝑖=1

𝑊ℎ𝑙𝑖

)
(x − jℎl), 𝑊ℎ𝑙 (𝑥) := 𝑊

(
ℎ−1
𝑙 (𝑥)

)
,(3.15)

where ℎl is the (component) grid discretization and 𝑊 is the so-called hat function defined:

𝑊 (𝑥) = max (1 − |𝑥 | , 0) .(3.16)

These functions verify a partition of unity property:∑︁
j∈𝐼ℎl

𝑊ℎl;j (x) = 1.(3.17)

The space of 𝑑-dimensional hat functions with respect to the component grid Ωℎl is denoted
𝑉ℎl and defined by:

𝑉ℎl := span{𝑊ℎl;j | j ∈ 𝐼ℎl },(3.18)

where {𝑊ℎl;j | j ∈ 𝐼ℎl } is called the nodal basis of the space 𝑉ℎl and 𝐼ℎl the nodal basis index
set. Each function 𝑣ℎl ∈ 𝑉ℎl can be represented in the basis of 𝑉ℎl as follows:

𝑣ℎl =
∑︁
j∈𝐼ℎl

𝛼l,j𝑊ℎl;j,(3.19)
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where𝛼l,j are the coefficients of 𝑣ℎl in the nodal basis which are the nodal values of the function
𝑣ℎl (because the basis functions are multi-linear). We introduce the space of 𝑑-dimensional
piecewise linear functions with respect to the Cartesian grid:

𝑉
(∞)
ℎ𝑛

= span{𝑊ℎn;j | j ∈ N𝑑 | 0 ≤ j ≤ ℎ−1
n }.(3.20)

Eventually, for 𝑢 a smooth function, we introduce the linear interpolation operators in nodal
basis associated to these spaces defined by:

I𝑉ℎl
𝑢 =

∑︁
j∈𝐼ℎl

𝑢(jℎl)𝑊ℎl;j, I
𝑉

(∞)
ℎ𝑛

𝑢 =
∑︁

j∈𝐼ℎ𝑛

𝑢(jℎ𝑛)𝑊ℎ𝑛;j.(3.21)

3.2.1. Sparse grid combination technique. The sparse grid combination technique
[32, 31, 11] is a method of interpolation using evaluations of the function on the nodes of
component grids. The sparse grid interpolant is obtained by a linear combination of partial
representations of the function on the component grids. Let 𝑢 be a function and 𝑢ℎl an
approximation of this function in the space 𝑉ℎl (e.g. I𝑉ℎl

𝑢), then a sparse grid reconstruction
is defined by linear combination of the contributions 𝑢ℎl of each component grid:

𝑢ℎ𝑛 :=
∑︁
l∈L𝑛

𝑐l𝑢ℎl , where 𝑐l = (−1)𝑖
(
𝑑 − 1
𝑖

)
if l ∈ L𝑛,𝑖 .(3.22)

Under some assumptions on the component grid approximations [31], the error between the
sparse grid reconstruction and the solution scales as :

∥𝑢ℎ𝑛 − 𝑢∥∞ = 𝑂

(
ℎ2
𝑛 | log ℎ𝑛 |𝑑−1

)
.(3.23)

The combination technique is remarkable for the reduction of the number of interpolation
nodes:

|Ω(∞)
ℎ𝑛

| = 𝑂

(
ℎ−𝑑𝑛

)
,

∑︁
l∈L𝑛

|Ωℎl | = 𝑂

(
ℎ−1
𝑛 | log ℎ𝑛 |𝑑−1

)
,(3.24)

while achieving accuracy comparable to the standard interpolation (with a negligible mul-
tiplicative term | log ℎ𝑛 |𝑑−1). Indeed, for standard interpolation on the Cartesian grid with
basis functions of degree one, i.e. hat functions, the interpolation error scales as 𝑂

(
ℎ2
𝑛

)
.

Remark 3.4. The sparse grid reconstruction of a non-negative function is not non-
negative.

3.3. Derivation of the Semi-Implicit Sparse-PIC (SISPIC-sg) scheme. Let us now
detail how the implicit contribution of the electric field can be obtained by solving a linear
system. The current density can be recast into two components, designated as the explicit and
the implicit (with ∼ notation) contributions:

J𝑘+ 1
2

ℎ
(x) = J𝑘

ℎ (x)︸︷︷︸
explicit

+ J̃𝑘+1
ℎ (x)︸  ︷︷  ︸
implicit

,(3.25)

which are defined by:

J𝑘
ℎ (x) =

1
ℎ𝑑

∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝑞𝑝v𝑘
𝑝𝑊ℎ

(
x − x𝑘+ 1

2
𝑝

)
,(3.26)

J̃𝑘+1
ℎ (x) = Δ𝑡

ℎ𝑑

∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝑞2
𝑝

4𝑚𝑝

[
E𝑘+1
ℎ

(
x𝑘+ 1

2
𝑝

)
+ E𝑘

ℎ

(
x𝑘+ 1

2
𝑝

)]
𝑊ℎ

(
x − x𝑘+ 1

2
𝑝

)
.(3.27)
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Let us now explicit the spatial discretization, i.e. define the notation ℎ. In this article,
we introduce three distinct schemes. They vary depending on the discretization of each of
the explicit and implicit components of the current density. Specifically, if both components
are discretized on the Cartesian grid, as defined in equation (3.14), the scheme is termed
SISPIC-std. If the two components are discretized on the set of component grids, as defined
in equation (3.10), the scheme is referred to as ECSPIC. Finally, if they are discretized on
different spatial meshes, the resulting scheme is named SISPIC-sg. We first introduce the
latter, while the other two schemes will be presented in section 4. The choice of this approach
is motivated by a tradeoff between the computational advantages offered by component grid
discretizations (better statistical resolution and fewer grid nodes) and the stability resulting
from discretizing the implicit component on a single grid. This latter reason is discussed
in more detail in section 4.2. Within the SISPIC-sg scheme, the explicit part of the current
density is discretized on the set of component grids and combined onto the Cartesian grid with
the combination technique; the implicit component is discretized directly on the Cartesian
grid. All the details of the spatial discretization are given in the appendix A.1. The explicit
contribution of the current is defined on the Cartesian grid by:

J𝑘
ℎ𝑛;j𝑦 =

∑︁
l∈L𝑛

𝑐l

(
I𝑉ℎl

J𝑘
ℎl

)
(j𝑦),(3.28)

where the notation j𝑦 , corresponding to the Cartesian grid index j ∈ 𝐼ℎ𝑛 , is introduced in the
appendix A.1 and refers to the grid nodes on the staggered Yee mesh. An explicit contribution
of the current is defined independently on each component grid by:

J𝑘
ℎl;j𝑦 = ℎ−1

l

∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝑞𝑝v𝑘
𝑝𝑊ℎl;𝑝j𝑦 ,(3.29)

where the following shortcut notation has been introduced:

𝑊ℎl;𝑝j𝑦 := 𝑊ℎl

(
j𝑦ℎl − x𝑘+ 1

2
𝑝

)
.(3.30)

ℎ−1
l is the volume of the component grid. The implicit contribution of the current is discretized

on the Cartesian grid and defined for each Cartesian grid index j ∈ 𝐼ℎ𝑛 , by:

J̃𝑘+1
ℎ𝑛;j𝑦 =

Δ𝑡

ℎ𝑑𝑛

∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝑞2
𝑝

4𝑚𝑝

[
E𝑘+1
ℎ𝑛

(
x𝑘+ 1

2
𝑝

)
+ E𝑘

ℎ𝑛

(
x𝑘+ 1

2
𝑝

)]
𝑊ℎ𝑛;𝑝j𝑦 .(3.31)

Let us recall that the electric field is interpolated at the particle positions according to:

E𝑘+1
ℎ𝑛

(
x𝑘+ 1

2
𝑝

)
=

∑︁
j∈𝐼ℎ𝑛

E𝑘+1
ℎ𝑛;j𝑦𝑊ℎ𝑛;𝑝j𝑦 , E𝑘+1

ℎ𝑛;j𝑦 = −∇ℎ𝑛Φ
𝑘+1
ℎ𝑛;j,(3.32)

where the discrete gradient operator notation is introduced in appendix A.1. Introducing the
following notation:

𝑊
ℎ𝑛;jj′ = 𝑊

ℎ𝑛;j′ j := 𝑊ℎ𝑛 (j
′
ℎ𝑛 − jℎ𝑛),(3.33)

and decomposing the electric potential onto the basis of 𝑉 (∞)
ℎ𝑛

:

Φ𝑘+1
ℎ𝑛;j =

∑︁
j′ ∈𝐼ℎ𝑛

Φ𝑘+1
ℎ𝑛;j′

𝑊
ℎ𝑛;jj′ ,(3.34)
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the implicit contribution of the current can be recast into:

J̃𝑘+1
ℎ𝑛;j𝑦 = −Δ𝑡

ℎ𝑑𝑛

∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝑞2
𝑝

4𝑚𝑝

∑︁
j̃,j′ ∈𝐼ℎ𝑛

(
Φ𝑘+1

ℎ𝑛;j′
+Φ𝑘

ℎ𝑛;j′
)
∇ℎ𝑛𝑊ℎ𝑛;j̃j′𝑊ℎ𝑛;𝑝j̃𝑦𝑊ℎ𝑛;𝑝j𝑦 .(3.35)

Let us now introduce the discretization of the (div)Ampere equation on the Cartesian
grid. From equation (3.34) and applying the discrete Laplacian operator, one gets:∑︁

j′ ∈𝐼ℎ𝑛

(
Φ𝑘+1

ℎ𝑛;j′
−Φ𝑘

ℎ𝑛;j′
)
Δℎ𝑛𝑊ℎ𝑛;jj′ =

Δ𝑡

𝜀0
∇ℎ𝑛 · J𝑘+ 1

2
ℎ𝑛;j𝑦 ,(3.36)

where J𝑘+1
ℎ𝑛;j𝑦 is defined from equations (3.25), (3.28) and (3.35).

The contribution of the electric potential at time 𝑘 + 1 can thus be obtained by solving
a linear system. The matrix corresponding to the linear system is called the stiffness matrix,
because it discretizes the Laplacian operator; it is denoted Sℎ𝑛 and is defined by:

Sℎ𝑛 = S
(1)
ℎ𝑛

+ S(2)
ℎ𝑛

, where ∀(j, j′ ) ∈ 𝐼ℎ𝑛 × 𝐼ℎ𝑛(3.37)

(S(1)
ℎ𝑛

)jj′ = Δℎ𝑛𝑊ℎ𝑛;jj′ ,(3.38)

(S(2)
ℎ𝑛

)jj′ =
∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝛽𝑝

∑︁
j̃∈𝐼ℎ𝑛

𝑊ℎ𝑛;𝑝j̃𝑦∇ℎ𝑛𝑊ℎ𝑛;j̃j′ ·∇ℎ𝑛𝑊ℎ𝑛;𝑝j𝑦 ,(3.39)

and 𝛽𝑝 = 𝑞2
𝑝Δ𝑡

2/(4𝜀0𝑚𝑝). Two stiffness matrices have been introduced: the first matrix
corresponds to the discretization of the Laplacian operator; the second matrix is the linear
term of the particle response to the electric potential. Note that the stiffness matrix depends
on the particle positions, and thus is different from one iteration to another. Therefore it has
to be computed at each iteration.

Remark 3.5. The SISPIC-sg scheme is second order accurate in time.

3.4. Comparison with the existing semi-implicit methods.

3.4.1. Direct implicit. The motivation of this section is to situate the present method
among the state-of-the-art of the semi-implicit methods. In the direct implicit method [34],
the particles are advanced to an intermediate position and velocity using the known electric
field in a PREPUSH step:

ṽ𝑘+ 1
2

𝑝 = v𝑘− 1
2

𝑝 + Δ𝑡
𝑞𝑝

𝑚𝑝

E𝑘
ℎ

(
x𝑘
𝑝

)
x̃𝑘+1
𝑝 = x𝑘

𝑝 + Δ𝑡ṽ𝑘+ 1
2

𝑝

, 𝑘 ∈ N.(3.40)

Similarly to our approach, the sources in the fields equations are decomposed into an
explicit contribution and an implicit contribution:

J𝑘+ 1
2

ℎ
(x) = J𝑘

ℎ (x)︸︷︷︸
explicit

+ J̃𝑘+1
ℎ (x)︸  ︷︷  ︸
implicit

.(3.41)

The implicit contribution is different from our approach in that the linearization of the shape
function introduces two matrices, which are named implicit susceptibility matrices:

J̃𝑘+1
ℎ (x) = χ𝑘

ℎ (x) · E𝑘+1
ℎ (x̃𝑘+1

𝑝 ) − Δ𝑡∇ × ξ𝑘ℎ · E𝑘+1
ℎ (x̃𝑘+1

𝑝 ).(3.42)
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The implicit susceptibility matrices are approximated by:

χ𝑘
ℎ (x) ≈

∑︁
𝑠

Δ𝑡

4
𝑞𝑠

𝑚𝑠

𝜌𝑘𝑠,ℎ (x)α
𝑘
𝑠 , ξ𝑘ℎ (x) ≈

∑︁
𝑠

Δ𝑡

8
𝑞𝑠

𝑚𝑠

J𝑘
𝑠,ℎ (x)α

𝑘
𝑠 ,(3.43)

where α𝑘
𝑠 is the rotation matrix [34, 47, 39]. It is defined from the magnetic field and

falls down to the identity matrix in the electrostatic regime. In the electrostatic version, the
second implicit susceptibility matrix is zero. These matrices can be read as a discretization
of the continuous quantity 𝑑J/𝑑𝑡. Within the SISPIC-sg scheme, a different discretization
of this quantity than the direct implicit method is proposed: the first term in equation (3.42)
corresponding to:

χ𝑘
ℎ;j · E𝑘+1 (x𝑘

𝑝) ≈
∑︁
j̃∈𝐼ℎ

E𝑘+ 1
2

ℎ;j̃

∑︁
𝑠

𝑞𝑠

4𝑚𝑠

Δ𝑡

ℎ𝑑

∑︁
𝑝

𝑊ℎ;𝑝j𝑦𝑊ℎ;𝑝j̃𝑦 ,(3.44)

and the second term being neglected as a 𝑂
(
Δ𝑡2

)
correction. After the advanced field has

been computed in the direct implicit method, the particles are advanced to the next time step
in a FINALPUSH step:

x𝑘+1
𝑝 = x̃𝑘+1

𝑝 + Δ𝑡2

2
𝑞𝑝

𝑚𝑝

E𝑘+1
ℎ (x̃𝑘+1

𝑝 )

v𝑘+ 1
2

𝑝 = ṽ𝑘+ 1
2

𝑝 + Δ𝑡

2
𝑞𝑝

𝑚𝑝

E𝑘+1
ℎ

(
x̃𝑘+1
𝑝

) , 𝑘 ∈ N.(3.45)

3.4.2. Moment implicit. In the moment implicit method [41, 9], the non-linearity cou-
pling the fields and the particles equations is overcome by considering instead the resolution
of a set of coupled fluid moment and field equations. Indeed, thanks to a representation of
the implicit sources of the field equations using the moment equations instead of the particle
equations directly, the non linear coupling is approximated so that, once the field equations
are solved within this approximation, the rest of the steps can be completed directly without
iterations. Specifically, in [47], the particle equations are as follows:

x𝑘+1
𝑝 = x𝑘

𝑝 + Δ𝑡

2

(
v𝑘+1
𝑝 + v𝑘

𝑝

)
v𝑘+1
𝑝 = v𝑘

𝑝 + Δ𝑡
𝑞𝑝

𝑚𝑝

E𝑘+ 1
2

ℎ

[
1
2

(
x𝑘+1
𝑝 + x𝑘

𝑝

)] , 𝑘 ∈ N.(3.46)

and the implicit current density, which is the source of the Ampere equation, is approximated
by:

J𝑘+ 1
2

ℎ
(x) ≈

∑︁
𝑠

α𝑘
𝑠J𝑘

𝑠,ℎ (x) −
Δ𝑡

2
µ𝑘
𝑠 (x) · α𝑘

𝑠E𝑘+ 1
2

ℎ
(x) − Δ𝑡

2
∇ · 𝚷𝑘

𝑠 (x),(3.47)

where α𝑘
𝑠 is the rotation matrix, 𝚷𝑘

𝑠 is the rotationed pressure matrix and µ𝑘
𝑠 is defined as

the effective dielectric matrix which express the response of the electric field to the plasma
current:

𝚷𝑘
𝑠 (x) =

1
ℎ𝑑

𝑁𝑠∑︁
𝑝=1

𝑞𝑝α
𝑘
𝑠v𝑘

𝑝α
𝑘
𝑠v𝑘

𝑝𝑊ℎ (x − x𝑘
𝑝), µ𝑘

𝑠 (x) =
−𝑞𝑠𝜌𝑘𝑠 (x)

𝑚𝑠

α𝑘
𝑠 .(3.48)

The first term in the equation (3.47) corresponds to the explicit contribution of the current
density and the two last terms correspond to the implicit one, for which the SISPIC-sg and
the direct implicit methods provide a different approximation.
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3.4.3. ECSIM. The SISPIC-sg method introduced in this paper is inspired by the EC-
SIM scheme [39]. The non-linear coupling between the field and the particle equations is
approximated directly in the particle equations similarly for both methods. Let us emphasize
the differences between the two methods:

• The first difference between the traditional ECSIM scheme [39] (as well as its ex-
tensions [16, 12]) and our approach is the electrostatic regime. As a result, the
formulation of the problem is different between the two approaches and, within the
SISPIC-sg method, the Ampere equation is substituted by the divergence of the Am-
pere equation. The resulting electrostatic stiffness matrix contains terms depending
on the product of the basis functions discrete gradients (with larger supports than
the basis functions) instead of products of the basis functions theirselves within the
ECSIM scheme (for which the matrix is more similar to a mass matrix). Therefore
the stiffness matrix of the SISPIC-sg scheme has more non-zeros entries (21 non-
zero terms per row) than the mass matrices of the ECSIM scheme (9 non-zero terms
per row). In addition, there is no self-consistent magnetic field in our approach and
therefore the rotation matrix used in the traditional ECSIM scheme [39] does not
have to be computed. It results in an unique stiffness matrix to compute at each time
step, instead of 3𝑣 mass matrices (where 𝑣 is the dimension of the velocity domain)
for the ECSIM scheme. In addition, the unknown for the electrostatic approach is
scalar, so that the size of the linear system is reduced by six in comparison to the
ECSIM scheme (Φ versus 𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧 , 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧). Note also that, contrary to the
SISPIC-sg approach, the electrostatic condition ∇ × E is not verified in the ECSIM
scheme.

• The second major difference between the two approaches is the embedding of the
sparse grid combination technique. Indeed, within the SISPIC-sg scheme, the explicit
contribution of the current density is accumulated onto each component grid, and
eventually combined onto the Cartesian grid. The motivation for this choice of
discretization is related to complexity issues and explained in the following section.

• Contrary to the ECSIM scheme and caused by the sparse grid reconstruction, the
SISPIC-sg scheme does not conserve exactly the discrete total energy of the system.
This is a consequence of the choice of the interpolation basis functions which are
different from the shape functions used for the current density accumulation in the
SISPIC-sg scheme. Indeed, the supports of the functions are either based on the
Cartesian grid (for interpolation) or on the component grids (for current accumula-
tion).

3.5. Discussion on complexity. The size of the linear system, i.e. the size of the
stiffness matrix, is related to the Cartesian grid discretization and grows exponentially with
the dimension of the problem; specifically, the number of nodes of the linear system scales as
𝑂

(
ℎ−𝑑𝑛 × ℎ−𝑑𝑛

)
. Nonetheless, thanks to the locality of the shape functions 𝑊ℎ𝑛 , the stiffness

matrix has many zero entries (21 non-zero terms per row), the total number of non-zero terms
of the stiffness matrix being:

𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑡𝑒𝑟𝑚𝑠 = 21 ∗ 2𝑑𝑛.(3.49)

It is widely known that PIC schemes contain a significant weakness: the statistical error
originating from the sampling of the distribution function by a limited number of numerical
particles. This numerical noise decreases slowly with the increase of the average number of
particles per cell (in 𝑂

(
1/
√
𝑃𝑐

)
, where 𝑃𝑐 = 𝑁ℎ𝑑𝑛 is the mean number of particles per cell.

Within the SISPIC-sg method, the explicit contribution of the current density is accumulated
onto the mesh thanks to the sparse grid combination technique.
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Proposition 3.6. Assuming enough smoothness on the solution J, the local error between
the explicit contribution of the current density and the solution can be recast into a grid-based
error and a particle sampling error (noise):

J𝑘
ℎ𝑛

− J = Bias(J𝑘
ℎ𝑛
)︸     ︷︷     ︸

grid-based error

+ V(J𝑘
ℎ𝑛
)︸   ︷︷   ︸

particle sampling error

,(3.50)

where 


Bias(J𝑘
ℎ𝑛
)




∞
≤ 𝑂

(
ℎ2
𝑛 | log ℎ𝑛 |𝑑−1

)
,





V (
V(J𝑘

ℎ𝑛
)
) 1

2





∞
≤ 𝑂

(
| log ℎ𝑛 |𝑑−1

(𝑁ℎ𝑛)
1
2

)
(3.51)

Proof. The proof is similar to the one provided for the charge density in [26].
These estimations shall be compared to the ones obtained for a standard accumulation

onto the Cartesian grid (without sparse grid technique):


Bias(J𝑘,𝑠𝑡𝑑

ℎ𝑛
)




∞
= 𝑂

(
ℎ2
𝑛

)
,





V (
V(J𝑘,𝑠𝑡𝑑

ℎ𝑛
)
) 1

2





∞
= 𝑂

((
1

𝑁ℎ𝑑𝑛

) 1
2
)
.(3.52)

Specifically, the combination technique provides an accurate representation of the current
density approximated on a variety of grids with coarse discretizations: the component grids.
One crucial feature of the method is the large size of the component grid cells in comparison
to those of the Cartesian grid, resulting in a significant increase of the number of particles
per cell. This entails an improvement of the statistical resolution (reduced particle sampling
error), without increasing the overall number of particles. Practically, the total number of
particles in order to achieve a given statistical resolution is reduced in comparison to PIC
schemes discretized on standard mesh. As a result, the gain in term of memory footprint
of the method compared to standard implicit methods is manifest, particularity for three
dimensional simulations with refined mesh [24, 25].

4. Extension to exact energy conservation: SISPIC-std, ECSPIC schemes. It has
already been noted that the SISPIC-sg scheme does not exactly conserve the discrete total
energy of the system. Nonetheless, it can be adapted to a specific configuration in which the
total energy is conserved exactly. Specifically, if the explicit contribution of the current density
is directly accumulated onto the Cartesian grid (i.e., both the explicit and implicit contributions
of the current density are discretized on the Cartesian grid), then the scheme conserves total
energy exactly. However, it no longer benefits from the sparse grid discretization. This
scheme can thus be regarded as an electrostatic version of the ECSIM scheme and is termed
SISPIC-std.

The goal of this section is to derive a sparse grid scheme conserving exactly the total
energy. Let us first introduce the discrete total energy of the system at time 𝑘 defined from
the kinetic energy of the particles and the field energy:

E𝑘
T := E𝑘

K︸︷︷︸
kinetic energy

+ E𝑘
F︸︷︷︸

field energy

,(4.1)

which are defined by:

E𝑘
K :=

1
2

∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝑚𝑝

(
v𝑘
𝑝

)2
, E𝑘

F :=
𝜖0
2

∑︁
j∈𝐼ℎ𝑛

(
E𝑘
ℎ𝑛;j

)2
.(4.2)
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In order to have exact conservation of the total energy, the method used to accumulate the
current density and the method used to interpolate the electric field at the particle positions
shall be, in a way, similar. Therefore, in our approach, the electric field shall be interpolated
at the particle positions with the sparse grid combination technique.

4.1. Derivation of the Energy-Conserving semi-implicit Sparse-PIC (ECSPIC) scheme.
The method uses the same particle mover as the SISPIC-sg scheme, in which the particle po-
sitions are updated with a known velocity:

x𝑘+ 1
2

𝑝 = x𝑘− 1
2

𝑝 + Δ𝑡v𝑘
𝑝

v𝑘+1
𝑝 = v𝑘

𝑝 + Δ𝑡
𝑞𝑝

𝑚𝑝

E𝑘+ 1
2

ℎ𝑛

(
x𝑘+ 1

2
𝑝

)
, 𝑘 ∈ N.(4.3)

In the above, the electric field reconstruction evaluated at the particle positions is constructed,
according to the combination technique, from the electric field contributions of all component
grids, averaged between time 𝑘 and 𝑘 + 1:

E𝑘+ 1
2

ℎ𝑛

(
x𝑘+ 1

2
𝑝

)
=

∑︁
l∈L𝑛

𝑐lI𝑉ℎl

(
E𝑘+ 1

2
ℎl;j𝑦

) (
x𝑘+ 1

2
𝑝

)
,(4.4)

where E𝑘+ 1
2

ℎl;j𝑦
=

1
2

(
E𝑘+1
ℎl;j𝑦 + E𝑘

ℎl;j𝑦
)
.(4.5)

We recall that the notation I𝑉ℎl
, introduced in equation (3.21), stands for the interpolation

onto the space associated to the component grid of discretization ℎl and spanned by basis
functions with support depending on ℎl. The electric field, derived from the electric potential
according to equation (3.32), is obtained from the implicit current density using the divergence
of the Ampere equation. This equation is discretized on each component grid according to
the relation: ∑︁

j′∈𝐼ℎl

(
Φ𝑘+1

ℎl;j′ −Φ𝑘
ℎl;j′

)
Δℎl𝑊ℎl;jj′ =

Δ𝑡

𝜖0
∇ℎl · J𝑘+ 1

2
ℎl;j𝑦

.(4.6)

The current density is decomposed into an explicit contribution and an implicit contribution,
both defined on each component grid:

J𝑘+ 1
2

ℎl;j𝑦
= J𝑘

ℎl;j𝑦︸︷︷︸
explicit

+ J̃𝑘+1
ℎl;j𝑦︸︷︷︸

implicit

, ∀j ∈ 𝐼ℎl ,(4.7)

by the relations:

J𝑘
ℎl;j𝑦 =

∑︁
𝑠

ℎ−1
l

𝑁𝑠∑︁
𝑝=1

𝑞𝑝v𝑘
𝑝𝑊ℎl;𝑝j𝑦 ,(4.8)

J̃𝑘+1
ℎl;j𝑦 (x) =

∑︁
𝑠

ℎ−1
l

𝑁𝑠∑︁
𝑝=1

𝑞2
𝑝Δ𝑡

2𝑚𝑝

E𝑘+ 1
2

ℎ𝑛

(
x𝑘+ 1

2
𝑝

)
𝑊ℎl;𝑝j𝑦 .(4.9)

Introducing the equation (4.4) in the last equation (4.9), using the decomposition introduced
in equation (3.34) and substituting them into the divergence of Ampere equation (4.6), the
electric potential at time 𝑘 + 1 can be obtained by solving a linear system. The matrix of
the linear system, denoted by SL𝑛 , is named the global stiffness matrix and constructed by
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assembling local stiffness matrices. The local stiffness matrices are defined for couples of
component indices (l, l̃) ∈ L2

𝑛 by:

S
(1)
ℎl

:=
(
𝑠
(1)
j,j′

)
(j,j′ ) ∈𝐼2

ℎl

, where 𝑠
(1)
j,j′ = Δℎl𝑊ℎl;jj′

S
(2)
ℎl ,ℎl̃

:=
(
𝑠
(2)
j,j′

)
(j,j′ ) ∈𝐼ℎl×𝐼ℎl̃

, where 𝑠
(2)
j,j′ =

∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝛽𝑝

∑︁
j̃∈𝐼ℎl̃

𝑊ℎl̃;𝑝j̃𝑦∇ℎl̃𝑊ℎl̃;j̃j
′ ·∇ℎl𝑊ℎl;𝑝j𝑦 ,

and 𝛽𝑝 = 𝑞2
𝑝Δ𝑡

2/(4𝜀0𝑚𝑝). The first local matrix is a discretization of the Laplacian operator
on the component gridΩℎl and shall be named the local Laplacian matrix. The local Laplacian
matrices are square, symmetric and of size depending on the number of nodes from the
component grid. The second local matrix, which shall be referred to as the local stiffness
matrix, translates the energy exchange between the particles and the field. Specifically, the
local stiffness matrix represents the effect on the electric potential (computed on the grid
Ωℎl ) of the electric potential (computed on the grid Ωℎl̃ ) response to the particles. The local
stiffness matrices are rectangular and of size depending on the number of nodes from each
component grid in the couple. Let us recall |L𝑛 | := 𝐶𝑎𝑟𝑑 (L𝑛) the number of component
grids. There are |L𝑛 |2 local stiffness matrices but note that only a few more than a half of them
shall be computed thanks to the symmetry. Let us numerate all the component grid levels
L𝑛 = (l1, ..., l |L𝑛 | ) and let Φ𝑘

L𝑛
(∇ℎl ·J𝑘

L𝑛
resp.) be a global vector corresponding to the electric

potential (divergence of the current density resp.) approximations on all the component grids
at time 𝑘 . From these local matrices, we construct by blocks two global matrices, containing
all the component grid contributions:

S
(1)
L𝑛

=

©­­­­­­­«

S
(1)
ℎl1

0 · · · 0

0 S
(1)
ℎl2

· · ·
...

...
. . .

. . .
...

0 · · · 0 S
(1)
ℎl|L𝑛 |

ª®®®®®®®¬
.(4.10)

S
(2)
L𝑛

=

©­­­­­­­­«

𝑐l1ℎ
−1
l1 S

(2)
ℎl1 ,ℎl1

𝑐l2ℎ
−1
l1 S

(2)
ℎl1 ,ℎl2

· · · 𝑐l|L𝑛 | ℎ
−1
l1 S

(2)
ℎl1 ,ℎl|L𝑛 |

𝑐l1ℎ
−1
l2 S

(2)
ℎl2 ,ℎl1

𝑐l2ℎ
−1
l2 S

(2)
ℎl2 ,ℎl2

· · ·
...

...
. . .

. . .
...

𝑐l1ℎ
−1
l|L𝑛 |
S
(2)
ℎl|L𝑛 | ,ℎl1

· · · 𝑐l|L𝑛 |−1ℎ
−1
l|L𝑛 |
S
(2)
ℎl|L𝑛 | ,ℎl|L𝑛 |−1

𝑐l|L𝑛 | ℎ
−1
l|L𝑛 |
S
(2)
ℎl|L𝑛 | ,ℎl|L𝑛 |

ª®®®®®®®®¬
.

(4.11)

Two matrices are then constructed from these matrices:

SL𝑛 = S
(1)
L𝑛

+ 1
2
S
(2)
L𝑛

, S★L𝑛 = S
(1)
L𝑛

− 1
2
𝑀

(2)
L𝑛

,(4.12)

which are square and of order:

𝑂𝑟𝑑𝑒𝑟 (SL𝑛 ) = 𝑂𝑟𝑑𝑒𝑟 (S★L𝑛 ) =
𝑑−1∑︁
𝑟=0

2𝑛+𝑑−1−𝑟
(
𝑛 + 𝑑 − 2 − 𝑟

𝑑 − 1

)
.(4.13)
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Note that the two global matrices are not symmetric because the global stiffness matrix is not.
The system can thus be rewritten as a linear system:

SL𝑛Φ
𝑘+1
L𝑛

=
Δ𝑡

𝜖0
∇ℎl · J𝑘

L𝑛
+ S★L𝑛Φ

𝑘
L𝑛
.(4.14)

In order to solve the linear system (4.14) and obtain the updated electric potential at time 𝑘 +1,
the local stiffness matrices need to be computed at each time step because of their dependence
on the position of the particles. The resulting global stiffness matrix (and global matrix) is
then different at each iteration.

Within the ECSPIC scheme, the electric field is decomposed into contributions which are
defined separately on the component grids; it is then reconstructed at the particle positions with
the sparse grid combination technique. The electric field is never defined on the Cartesian grid
so that the field energy definition in (4.2) is not relevant. Let us define the discrete field energy,
in the context of sparse grid reconstruction schemes, which is defined by the combination of
the electric field energy from all the component grids:

E𝑘
F :=

𝜖0
2

∑︁
l∈L𝑛

𝑐lℎ
−1
l

∑︁
j∈𝐼ℎl

(
E𝑘
ℎl;j

)2
.(4.15)

Proposition 4.1 (Exact energy conservation). The total energy of the system is exactly
conserved, i.e.

E𝑘+1
T = E𝑘

T .(4.16)

Proof of proposition 4.1. The difference in the particle kinetic energy between two consecutive
steps 𝑘 and 𝑘 + 1 is expressed by:

E𝑘+1
K − E𝑘

K =
∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

1
2
𝑚𝑝

[(
v𝑘+1
𝑝

)2
−

(
v𝑘
𝑝

)2
]

(4.17)

= Δ𝑡
∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝑞𝑝v𝑘+1/2
𝑝 E𝑘+1/2

ℎ𝑛

(
x𝑘+1/2
𝑝

)
(4.18)

= Δ𝑡
∑︁
𝑠

𝑁𝑠∑︁
𝑝=1

𝑞𝑝v𝑘+1/2
𝑝

∑︁
l∈L𝑛

𝑐l
∑︁
j∈𝐼ℎl

E𝑘+1/2
ℎl;j𝑦

𝑊ℎl;𝑝j𝑦(4.19)

= Δ𝑡
∑︁
l∈L𝑛

𝑐lℎ
−1
l

∑︁
j∈𝐼ℎl

E𝑘+1/2
ℎl;j𝑦

· J𝑘+1/2
ℎl;j𝑦

.(4.20)

= −Δ𝑡
∑︁
l∈L𝑛

𝑐lℎ
−1
l

∑︁
j∈𝐼ℎl

∇ℎlΦ
𝑘+1/2
ℎl;j · J𝑘+1/2

ℎl;j𝑦
.(4.21)

In the above, the particle velocity equation in (3.2) has been used, as well as the definition
of the recombined electric field (4.4) and the current density (4.7)-(4.9). The last equation
is obtained because the electric field derives from the electric potential. From lemma A.1, a
discrete integration by parts on (4.21) yields:

E𝑘+1
K − E𝑘

K = Δ𝑡
∑︁
l∈L𝑛

𝑐lℎ
−1
l

∑︁
j∈𝐼ℎl

Φ
𝑘+1/2
ℎl;j ∇ℎl · J𝑘+1/2

ℎl;j𝑦
.(4.22)
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Then, using the divergence of Ampere equation (4.6), the difference in the kinetic energy is
equal to:

E𝑘+1
K − E𝑘

K = −𝜖0
∑︁
l∈L𝑛

𝑐lℎ
−1
l

∑︁
j∈𝐼ℎl

Φ
𝑘+1/2
ℎl;j ∇ℎl ·

(
E𝑘+1
ℎl;j𝑦 − E𝑘

ℎl;j𝑦
)
.(4.23)

Eventually, a discrete integration by parts (see lemma A.1) gives the result:

E𝑘+1
K − E𝑘

K = 𝜖0
∑︁
l∈L𝑛

𝑐lℎ
−1
l

∑︁
j∈𝐼ℎl

∇ℎlΦ
𝑘+1/2
ℎl;j ·

(
E𝑘+1
ℎl;j𝑦 − E𝑘

ℎl;j𝑦
)

(4.24)

= −𝜖0
∑︁
l∈L𝑛

𝑐lℎ
−1
l

∑︁
j∈𝐼ℎl

E𝑘+1/2
ℎl;j𝑦

·
(
E𝑘+1
ℎl;j𝑦 − E𝑘

ℎl;j𝑦
)

(4.25)

= −
(
E𝑘+1
F − E𝑘

F

)
. □(4.26)

Remark 4.2. The sparse grid discrete field energy, defined in equation (4.15) is not non-
negative.

4.2. Discussion about complexity and non-negativity. The major difference with the
SISPIC-sg scheme is related to the embedding of sparse grid reconstructions, not only re-
stricted to the computation of the current density explicit contribution as in SISPIC-sg, but
used also within the resolution of the linear system. It results in the computation of numerous
blocks (local stiffness matrices) to assemble the system matrix. In the SISPIC-sg scheme,
an unique stiffness matrix shall be computed. The number of component grids and thus of
stiffness matrices to compute for the ECSPIC method depends on the dimension and the grid
discretization, thus scaling as 𝑂

(
| log ℎ𝑛 |𝑑−1) . The determination of a stiffness matrix can be

expansive because of the computation of the particle interactions requiring a loop spanning
the particle population. Nonetheless, the local stiffness matrices are less expensive to compute
for sparse grid reconstructions than for standard discretizations since the number of particles
is significantly reduced and, the array of a local stiffness matrix fits more easily in the cache
memory of the CPU than the global stiffness matrix for standard grids. As demonstrated in
[24], a good cache memory management is a capital feature increasing the performance of
these kind of algorithms and enabling an efficient parallelization.

Another significant difference between the two approaches introduced in this paper is the
profile of the global stiffness matrix. Indeed, one major advantage of the SISPIC-sg scheme
(and ECSIM scheme) is the sparsity of the stiffness matrix. Because of the very localized
support of the basis functions (hat function with one grid cell width support), the number of
non-zero terms of the stiffness matrix is 21 per row (9 for the ECSIM scheme’s mass matrix).
We recall that the total number of non-zero terms in the global matrix for the SISPIC-sg
method is:

𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑡𝑒𝑟𝑚𝑠 = 21 ∗ 2𝑑𝑛.(4.27)

Conversely, the matrix profile of the ECSPIC scheme is a bit more complex. The global
matrix is constructed by assembling blocks of local matrices, each corresponding to a couple
of component grids. For couples of the same component grids (corresponding to the diagonal
blocks in the global matrix), the profile of the local stiffness matrix is similar to the standard
matrix one with the same sparsity (only 21 non-zero terms per row). On the contrary, for
couples of component grids with different discretizations, the profile may not be sparse at
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all. E.g. consider a couple of grids with levels l1 = (1, 𝑛) and l2 = (𝑛, 1), for all grid nodes
j1 ∈ 𝐼ℎl1

and j2 ∈ 𝐼ℎl2
the support of the basis functions is not disjoint (see figure 1):

𝑆𝑢𝑝𝑝(𝑊ℎl1 ;j1 ) ∩ 𝑆𝑢𝑝𝑝(𝑊ℎl2 ;j2 ) ≠ ∅.(4.28)

In that configuration, all the entries in the local stiffness matrix are non-zeros. Nonetheless,

non-zero entry
zero entry

Fig. 1: Support of basis functions for component grids and corresponding non-zero and zero
entries in the global stiffness matrix.

thanks to the sparse grid properties, the size of the linear system, i.e. the order of the global
stiffness matrix, is reduced in comparison to the SISPIC schemes:

𝑂𝑟𝑑𝑒𝑟 (S) =


𝑑−1∑︁
𝑟=0

2𝑛+𝑑−1−𝑟
(
𝑛 + 𝑑 − 2 − 𝑟

𝑑 − 1

)
(ECSPIC),

2𝑑𝑛 (SISPIC-sg, SISPIC-std, ECSIM).

(4.29)

The scheme ensures an exact energy conservation, i.e. the change in the particle energy
is equal to the change in the field energy (see proposition 4.1). Usually, since these two
quantities are non-negative, this property guarantees some stability for the scheme. Indeed,
if the two energy contributions (particle and field) are non-negative, then, by induction, the
following bounds hold:

E𝑘
K < E0

T , E𝑘
F < E0

T , ∀𝑘 ∈ N.(4.30)

Both the kinetic energy of the particles and the field energy are bounded by the initial
total energy of the system; i.e. the velocity of the particles and the electric field are bounded.
Nonetheless, within the ECSPIC scheme, the field energy, which is defined by the combination
of the component grid contributions, is not a non-negative quantity, the loss of non-negativity
being a genuine property of the combination technique (see remark 3.4). It results from
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this that numerical instabilities can arise in some contexts. E.g. let us assume a decreasing
negative field energy:

E𝑘
F < 0, E𝑘

F − E𝑘+1
F = 𝜂(𝑘) > 0, ∀𝑘 ∈ N(4.31)

then the kinetic energy verifies:

E𝑘
K ≥ E0

K +
𝑘−1∑︁
𝑖=0

𝜂(𝑖).(4.32)

Since the field energy is not non-negative, the quantities 𝜂(𝑖) are not controlled and can be
very large, leading to an instability manifested by increasing particle velocities and electric
field. Note that if the field energy is non-negative, then

𝑘−1∑︁
𝑖=0

𝜂(𝑖) ≤ E0
F ,(4.33)

and one recovers the bounds in (4.30).

5. Numerical results. In this section, the methods introduced in this paper are imple-
mented in a sequential program written in Fortran 90 and compared to each other in a series
of numerical tests: a Landau damping and a two-streams instability test cases. The SISPIC-sg
and ECSPIC schemes are investigated, as well as their standard version (which are similar)
which shall be named SISPIC-std, and compared to existing PIC schemes. The PIC explicit
scheme [26] is considered both with standard grid (Ex-std) and sparse grid reconstructions
(Ex-sg). The ECSIM scheme [39] is also considered as a comparison. The simulations
aim at demonstrating the conservation and stability properties of the schemes introduced in
this paper, as well as establishing the correctness of the methods in different configurations.
Although the benefits of sparse grid reconstruction methods have proven to be significantly
larger for three dimensional computations, the methods have been implemented in two dimen-
sions of space and three dimensions of velocity (2d-3v) for simplicity. The author emphasizes
on the large gap in term of computational time reduction gained thanks to sparse grid re-
constructions between two and three dimensional computations. Indeed, in two dimensional
simulations, sparse grid reconstructions for explicit schemes shows a slight reduction of the
computational times in comparison to standard grid methods [26], whereas the reduction has
proven to be substantial for three dimensional computations [24, 25]. This is a consequence
of the significant particle sampling error difference between the sparse grid and the standard
methods for two dimensional and three dimensional computations illustrated by the equations
(3.51) and (3.52).

The computational times reported in this section are not necessarily representative of
the exact efficiency of the methods since some of our implementations are known to not be
optimal (ECSIM, ECSPIC): e.g. the ECSIM and Ex-sg schemes have not been implemented
with iterative method but are expected to be more efficient than direct methods, especially for
three dimensional computations. The execution times reported are rather meant to give an
indication of the order of magnitude between the methods.†

†All the following simulations are performed on a laptop equipped with Intel® Core™ i9-10885H CPU with 8
cores @2.40 GHz sharing a L3 cache memory of 16MB and L1 cache memory of 32KB specific to each core. The
Random-Access Memory (RAM) size is 32GB. The compilers used for the hardware is the GNU Fortran version
9.4.0 with options -cpp and optimizations -Ofast. All reported computational time are provided with frequency boost
disabled. The linear systems are solved either with LU decomposition method from the MUMPS [2] library or with
GMRES iterative method and algebraic multigrid preconditionner from the PETSc [3] library. In all the simulations,
the tolerance of the iterative GMRES method is chosen so that the residual error is around 10−15.
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The domain is a periodic square Ω = (R/𝐿Z)2, of dimension 𝐿 ∈ R∗+. Dimensionless
variables are considered, the reference length and time units being the Debye length and the
plasma period, defined by:

𝜆𝐷 =
√︁
𝜀0𝑇𝑒/𝑞𝑒𝑛0, 𝜔−1

𝑝 = 1/
√︁
𝑞𝑒𝑛0/𝑚𝑒𝜀0.(5.1)

The electrons are considered immersed in a uniform, immobile, background of ions. Electron
mass, temperature and charge are normalized to one. Periodic boundary conditions are
considered for the particles and the field.

Throughout this section, we will refer to the mean number of particles per cell, denoted
𝑃𝑐, relating the amount of statistical noise in the simulation. For the standard methods, it
depends on the number of particles and the Cartesian grid discretization:

𝑃𝑐 = 𝑁ℎ2
𝑛.(5.2)

An equivalent quantity for sparse grid reconstruction methods can be defined by considering
the number of particles for all component grid cells [43]:

𝑃𝑐 = 𝑁ℎ𝑛 (3𝑛 − 1)−1 .(5.3)

The results are compared without any filtering methods for all schemes. Let us now
introduce the different diagnostics and error definitions. The momentum error in the simulation
at iteration 𝑘 is measured by the sum of the momentum error vector:

ε𝑘M :=

������ 𝑑∑︁
𝑟=1

©­«
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𝑠

1
𝑁𝑠
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𝑝 − 𝑚𝑠v0

𝑝

𝑚𝑠𝑣𝑇

ª®¬𝑟
������ ,(5.4)

where 𝑣𝑇 :=
√︁

2𝑞𝑠𝑇𝑠/𝑚𝑠 is the thermal velocity of the electrons. The total discrete energy
error at time iteration 𝑘 is defined by:

ε𝑘E :=

�������
𝑑∑︁

𝑟=1

©­­«
E𝑘
K + E𝑘

F −
(
E0
K + E0

F

)
E0
K + E0

F

ª®®¬𝑟
������� ,(5.5)

where E𝑘
K and E𝑘

F are the kinetic and field energy measured at time 𝑘 .

5.1. Instability of the ECSPIC scheme. While performing numerical investigations
on the ECSPIC scheme, we have experienced numerical instabilities not observed with the
SISPIC or the ECSIM methods. The numerical instabilities are neither related to the time
discretization nor the space discretization. We have found that it might be instead related to
the loss of the field energy non-negativity. Indeed, according to the discussion in section 4.2,
the reconstructed field energy is not guaranteed to be a non-negative quantity, even though
the field energy defined on each component grid is non-negative. This is a drawback genuine
to the combination technique: it does not preserve the non-negativity of the solution. This
triggers an instability: when the field energy becomes negative the particle velocities increase
to offset the loss in the field energy, preserving the system total energy (see proposition 4.1).
This formal analysis is echoed by numerical investigations. We have observed that once the
field energy is negative, it tends to become more and more negative, entailing the particle
velocities increase, leading to numerical instabilities.

The conclusions drawn from these features call for the investigations of semi-implicit
sparse-PIC methods that shall conserved a different discrete potential energy. This issue is
left to a future work.
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5.2. Finite-grid instability. The so-called aliasing or finite grid instability, first studied
in [37], is a common numerical instability arising in PIC plasma simulations. It originates
from the inconsistency between the discrete Eulerian discretization of the fields on a grid and
the continuous discretization of Lagrangian particles in the phase-space [35].

This instability is manifested in simulations by a numerical heating of the plasma [7]
related to the numerical parameters. Since the aliasing introduces artificial heat in the system,
it is also characterized by a violation of the energy conservation. Usually in PIC simulations,
the aliasing instability is avoided by choosing a grid discretization equal to or smaller than
the Debye length (ℎ𝑛 ≤ 𝜆𝐷), including for problems with scales of interest much larger
than the Debye length. For example, dense plasmas are well described by the quasi-neutral
approximation in most of the domain and the simulation of the plasma physics does not
required grid cells smaller than the Debye length. Therefore large gains could be obtained
with coarse grid cells that do not resolve the Debye length, especially for three dimensional
computations.

Various methods and numerical schemes have been proposed to mitigate this instability,
including introducing grid interlacing [15], random jiggling [10], using higher order particle
shapes [5] or temporal/spatial filtering [40]. Besides, semi-implicit scheme with exact energy
conservation, such as the ECSIM scheme [39] have proven numerically to preserve the
simulations from aliasing.

Nonetheless, analysis of the aliasing instability is not straightforward. It has been con-
ducted linearly for stationary plasmas and specific schemes, such as the fully-implicit energy-
conserving scheme in [4]. For drifting plasma however, it has been shown that in principle
the scheme is not exempted from the instability, but that in practice the scheme is almost
always freed from it. In this section, we address to establish numerically that the introduced
schemes do not feature finite grid instability in classical configurations where the explicit
discretizations does.

An initially Maxwellian and stable plasma is considered with the following distribution
of electron:

𝑓 0
𝑣 (v) =

(
1

√
𝜋𝑣𝑇

)3
𝑒−∥v∥2

2/𝑣
2
𝑇 ,(5.6)

where 𝑣𝑇 =
√︁

2𝑇𝑒𝑞𝑒/𝑚𝑒 is the thermal velocity of electrons and ∥v∥2
2 = 𝑣2

1 + 𝑣
2
2 + 𝑣

2
3. The size

of the domain is 𝐿 = 5𝜋, 10𝜋, 15𝜋, 20𝜋 and the grid discretization is ℎ𝑛 = 2−5𝐿. Some of
these configurations shall lead to the development of the finite-grid instability for the explicit
schemes, since the grid discretization is larger than the Debye length.

The first dimension of the particle phase space (𝑥1, 𝑣1) is represented at time 𝑇 = 100 on
figure 2 for different schemes and configurations of the domain. The finite grid instability is
visible for the explicit schemes for the configurations in which the grid discretization is larger
than the Debye length: the velocities of the particles are increased entailing an increase of the
system total energy (initially the electric energy is equal to zero). This is a characterization
of the numerical heating of particles. The implicit schemes are preserved from the finite grid
instability for all configurations. The results for the ECSPIC scheme are not provided since
the numerical instability discussed in the previous section prevents us to investigate the finite
grid instability. The initially Maxwellian velocity distribution is preserved at any time and for
all configurations with the SISPIC-std and SISPIC-sg schemes.

5.3. Landau damping. The first test case considered is the well-known Landau damping
[1, 36]. When a plasma is slightly perturbed from an equilibrum state, it returns to its
equilibrium with an exponential damping. A perturbation in the electron distribution of an
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Fig. 2: Finite-grid instability: representation of the phase space (𝑥1, 𝑣1) of an initially
Maxwellian distribution of electron. 𝑃𝑐 = 100, Δ𝑡 = 0.1 for the explicit schemes and Δ𝑡 = 1
for the implicit schemes.

equilibrium state is considered:

𝑓𝑒 (x, v, 0) = 𝑓 0
𝑣 (v) 𝑓 0

𝑥 (x),(5.7)

where the initial velocity distribution is Maxwellian, similar to the previous configuration
defined by equation (5.6), and the perturbation has the following form:

𝑓 0
𝑥 (x) = (1 + 𝛼1cos (𝑘1𝑥1)) (1 + 𝛼2cos (𝑘2𝑥2)) .(5.8)

α is the magnitude and k is the period of the perturbation. The perturbation is considered
uniform in each dimension, i.e. 𝑘𝑖 = 𝑘 , 𝑘 ∈ R and the domain size depends on the perturbation:

𝐿 =
2𝜋
𝑘
.(5.9)

23



By considering the roots of the dispersion function (𝜀(𝜔, 𝑘) = 0), which is as follows:

1
𝜀0

𝜀(𝜔, 𝑘) = 1 + 1
𝑘2

(
1 + 𝜔

√
2𝑘

𝑍

(
𝜔

√
2𝑘

))
,(5.10)

one can find the damping rate of the plasma (ℑ(𝜔)) for given values of 𝑘 ∈ R [7]. E.g. for
𝑘 = 0.3, the root with the largest imaginary part is 𝜔 = ±1.1598 − 0.0126𝑖, etc.

Let us parametrize the perturbation with 𝛼1 = 𝛼2 = 0.05, 𝑘 = 0.3 such that the domain
size is 𝐿 = 20𝜋/3. The time step is Δ𝑡 = 3, 1, 0.5, 0.1, 0.005, depending on the configurations
and the final time is 𝑇 = 100. The grid discretization is ℎ𝑛 = 2−5𝐿 so that the Debye length
is resolved: ℎ𝑛 ≈ 0.65𝜆𝐷 and the number of particles per cell ranges from 𝑃𝑐 = 100 to 1000.

The evolution of the electric field 𝐿2-norm in time is provided on figures 4 and 5 for
different configurations described in table 3. For the sparse grid reconstruction schemes, the
electric field 𝐿2-norm is computed on the Cartesian grid after combination of the field. The
corresponding evolution in time of the total energy, the total momentum, the error with respect
to the Gauss’ law and the difference in the field energy are represented on figure 6.

We observe on the left panel of figure 4 that the damping rate is not well reproduced for the
ECSIM and SISPIC-std schemes with 𝑃𝑐 = 100. The damping rate is accurately reproduced
for the SISPIC-sg and ECSPIC schemes, despite the reduced total number of particles (more
than two times fewer particles for the sparse schemes in comparison to standard schemes with
equivalent 𝑃𝑐). Nonetheless, around 𝑡 ≈ 30, the recombined field energy of ECSPIC scheme
becomes negative and the instability described in section 5.1 is observed: the velocities of the
particles are significantly increased to balance the loss in the negative field energy (see figure
6, bottom panel). It results from the nonphysical growth of the particle velocities yielding an
increase of the electric field 𝐿2-norm (computed after combination on the Cartesian grid, i.e.
the quantity observed on the figure 4). As a result of round-off errors, the total energy and
total momentum are also increased.

On the right panel of figure 4, the SISPIC-sg scheme with 𝑃𝑐 = 50 provides equivalent
results than the SISPIC-std scheme with 𝑃𝑐 = 500 and slightly better than the ECSIM
scheme with 𝑃𝑐 = 1000. These observations lead to two conclusions. First, the electrostatic
Vlasov-(div)Ampere formulation (in which the particle response to the field is computed on
the potential Φ) offers a reduction of the statistical noise in PIC discretizations compared to
traditional Vlasov-Ampere formulation (in which the particle response to the field is computed
on the field E). Second, the results point out the significant gain in term of statistical resolution
for semi-implicit methods embedding sparse grid reconstructions over standard semi-implicit
methods. Indeed, the SISPIC-sg simulation on figure 4 (right panel) is performed with roughly
25 times fewer particles than the ECSIM simulation (with 𝑃𝑐 = 1000) and 12 times fewer
than the SISPIC-std simulation.

The SISPIC-sg scheme is compared to the explicit schemes on figure 5. On panel left, the
damping rate is more accurate for SISPIC-sg scheme with Δ𝑡 = 0.5, 𝑃𝑐 = 100 than the explicit
schemes with time steps 2,10 and 20 times smaller (Δ𝑡 = 0.1, 0.05, 0.025), with 𝑃𝑐 = 500.
The stability, according to the time discretization, is investigated on figure 5 (right panel).
All of the semi-implicit schemes, excepted the ECSPIC scheme, are stable for Δ𝑡 = 1, 3. As
a comparison, the explicit scheme, which is not unconditionally stable is represented with
Δ𝑡 = 1.

Note that, as depicted in the bottom right panel of Figure 6, the consistency with Gauss’
law is maintained to 1E−02, 1E−03 for the SISPIC schemes and remains bounded over time.
This implies that our Vlasov-Ampere formulation is approximately equivalent to the Vlasov-
Poisson system of the explicit schemes.

The computational time of each step of an iteration and the total are provided in the table
7 for the different schemes. The field solve computational time of the ECSIM scheme is about
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Table 3: Landau damping: configurations of the simulations (figure 9), 𝑘 = 0.05.

scheme Δ𝑡 ℎ𝑛 𝑃𝑐 𝑁 figure (color) comp. time
one iteration [s]

Ex-std 0.05 2−5 500 5.1E+05 5 (left) ■ 4.2E−02(×1)
Ex-sg 0.05 2−5 500 2.2E+05 5 (left) ■ 5.0E−02 (×1.2)*

ECSIM 0.5 2−5 1000 1.2E+06 4 (right) ■ 3.1E−00 (×73)*

SISPIC-std 0.5 2−5 500 5.1E+05 4 (right) ■ 7.4E−02 (×1.7)
SISPIC-sg 0.5 2−5 100 4.4E+04 4 (left) ■ 7.6E−02 (×1.8)
ECSPIC 0.5 2−5 100 4.4E+04 4 (left) ■ 5.1E−01 (×12)*

*the implementation is not optimal
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Fig. 4: Landau damping: evolution of the electric field 𝐿2-norm ∥Eℎ𝑛 ∥𝐿2 (on the Cartesian
grid) in time, 𝑘 = 0.3, Δ𝑡 = 0.5 (cf. table 3).
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Fig. 5: Landau damping: evolution of the electric field 𝐿2-norm ∥Eℎ𝑛 ∥𝐿2 (on the Cartesian
grid) in time, 𝑘 = 0.3 (cf. table 3).
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Fig. 6: Landau damping: evolution of the total energy 𝜖E (𝑡) and total momentum 𝜖M (𝑡)
conservation error in time, 𝑘 = 0.3. Semi-implicit: 𝑃𝑐 = 100, Δ𝑡 = 0.5 (top left panel);
explicit: 𝑃𝑐 = 500, Δ𝑡 = 0.05 (top right panel); difference in field energy 𝜂(𝑡) = ∑𝑘

𝑖=0 E𝑖
F −

E𝑖+1
F , where 𝑘 is such that 𝑡𝑘 = 𝑡 (bottom right panel); Gauss’ law error in time εG (𝑡) :=

∥(𝜀0∇ℎ · Eℎ − 𝜌ℎ) (𝑡)∥∞, 𝑃𝑐 = 100, Δ𝑡 = 0.5 (bottom left panel).

5 times larger than the SISPIC schemes one (with direct method) because the linear system is
6 times larger (see section 3.4). The total computational time of the ECSIM is expected to be
much smaller with an iterative method, about six times larger than the SISPIC-std scheme. The
difference between SISPIC-std and SISPIC-sg is not significant here because the reduction of
particles is not large (roughly 2 times fewer particles). Nonetheless, as already observed in
[26, 24], the gains provided by sparse grid reconstructions are significantly larger for finer grid
discretizations and three dimensional computations so that the difference between SISPIC-std
and SISPIC-sg shall deepen in those configurations. For the configurations investigated here
(equivalent 𝑃𝑐), the computational time of the SISPIC schemes are about 2 or 3 times larger
than the explicit schemes; the computational time of the ECSPIC scheme is 10 times larger than
the explicit sparse scheme. Note that the implementation of the mass matrix computation and
linear system solve with iterative method (use of more efficient PETSc objects) for ECSPIC is
not optimal; e.g. with a better implementation, the field solve computation time with iterative
method shall be lower than SISPIC (because the size of the system is smaller).
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Table 7: Computational time (mean of 10 iterations) for the Landau damping simulations, 𝑘 = 0.3,
𝑃𝑐 = 100, 𝑛 = 5.

scheme total [s] compute matrix, field solve [s] charge accu- field inter-
(min) assembly [s] direct (LU) iterative (GMRES) mulation [s] polation [s]

Ex-std 2.5E−02 5.8E−04 1.0E−01 2.0E−02 2.0E−03 1.3E−03
Ex-sg 5.3E−02* 1.8E−05 3.1E−02 (not computed) 7.9E−03 1.4E−02

ECSIM 2.5E−00* 1.7E−01 2.4E−00 (not computed) 5.5E−03 6.5E−03
SISPIC-std 7.2E−02 4.6E−02 5.6E−01 1.7E−02 4.4E−03 2.3E−03
SISPIC-sg 7.6E−02 3.7E−02 5.8E−01 1.8E−02 1.7E−02 1.0E−03
ECSPIC 5.0E−01* 2.4E−01 2.0E−01 5.3E−01* 1.7E−02 2.8E−02

*the implementation is not optimal

5.4. Two-streams instability. The two-streams instability [6] configuration consists of
two particle beams with opposite mean velocities. The following Maxwellian distribution of
electrons is considered:

𝑓𝑒 (x, v, 0) = 𝑓 0
𝑣 (v) 𝑓 0

𝑥 (x),(5.11)

where the perturbation has the same form than for the Landau damping and the initial velocity
distribution is Maxwellian with two beams:

𝑓 0
𝑣 (v) =

(
1
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)2 ©­«𝑒
−∥v−v0 ∥2
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𝑇 + 𝑒
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ª®¬ .(5.12)

v0 = (𝑣0, 0) ∈ R2 is the mean velocity of the beams in opposite direction and the domain size
is:

𝐿 =
2𝜋
𝑘
,(5.13)

where 𝑘𝑖 = 𝑘 ∈ R, for 𝑖 = 1, 2. Depending on the values of 𝑘 and 𝑣0, the configuration is
stable or unstable. Indeed, when two streams move through each other so that one wavelength
is traveled in one cycle of the plasma frequency, the perturbation of one stream is increased
by the other stream and the perturbation grows exponentially in time. The linear dispersion
relation for this test case is:

1
𝜀0

𝜀(𝜔, k) = 1 −
𝜔2

𝑝

(𝜔 − k · v0)2 −
𝜔2

𝑝

(𝜔 + k · v0)2 .(5.14)

The four roots of the linear dispersion relation are [7]:

𝜔 = ±
[
𝑘2𝑣2

0 + 𝜔2
𝑝 ± 𝜔𝑝

(
4𝑘2𝑣2
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𝑝

) 1
2
] 1

2

,(5.15)

which can be imaginary, and lead to instability, for:

0 ≤ 𝑘𝑣0
𝜔𝑝

≤
√

2.(5.16)
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Let us parametrize the perturbation with 𝛼1 = 𝛼2 = 0.005, 𝑘 = 0.05 such that the domain
size is 𝐿 = 40𝜋. The mean velocity is 𝑣0 = 12, the time step is Δ𝑡 = 0.1 and the final time
𝑇 = 60, resulting in 600 iterations. The grid discretization is ℎ𝑛 = 2−5𝐿 for semi-implicit
schemes and ℎ𝑛 = 2−7𝐿 for explicit schemes so that the Debye length is resolved for explicit
schemes: ℎ𝑛 ≃ 0.98𝜆𝐷 . The number of particles per cell is 𝑃𝑐 = 100 or 500. The evolution
of the electric field 𝐿2-norm is provided on figure 9 for different configurations described in
table 8.

Table 8: Configurations for the two-streams instability simulations (figure 9), 𝑘 = 0.05.

scheme Δ𝑡 ℎ𝑛 𝑃𝑐 𝑁 figure (color) comp. time
one iteration [s]

Ex-std 0.1 2−7 500 8.2E+06 9 ■ 2.3E−00 (÷1)
Ex-sg 0.1 2−7 500 1.2E+06 9 ■ 1.0E−00 (÷2.3)*

SISPIC-std 0.1 2−5 500 5.1E+05 9 ■ 1.5E−01 (÷15.3)
SISPIC-sg 0.1 2−5 100 4.4E+04 9 ■ 7.5E−02 (÷30.6)
ECSPIC 0.1 2−5 100 4.4E+04 9 ■ 5.3E−01 (÷4.3)*

*the implementation is not optimal
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Fig. 9: Two-streams instability: evolution of
the electric field 𝐿2-norm ∥Eℎ𝑛 ∥𝐿2 (on the
Cartesian grid) in time, 𝑘 = 0.05, Δ𝑡 = 0.1
(cf. table 8).

Here again, the ECSPIC scheme is subject to the numerical instability related to the
loss of field energy non-negativity. The instability is triggered at the moment when the field
energy become negative (around 𝑡 ≈ 18). The theoretical rate is well reproduced for both the
explicit and the semi-implicit schemes. The SISPIC schemes are significantly more efficient,
in term of computational time, than the explicit schemes, the execution time being 15 or 30
times smaller than for the explicit scheme on standard grid. The ECSPIC scheme is slightly
more efficient than the explicit sparse grid scheme but we recall that the implementation is not
optimal and gains may be obtained with optimization on the computation of the mass matrix
and the field solver with iterative method, as well as the dimensionality of the problem.
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Conclusion. In this paper, numerical methods based on an implicit discretization of the
Vlasov-Maxwell system in electrostatic regime and embedding sparse grid reconstructions
have been introduced: the SISPIC-sg, SISPIC-std and ECSPIC schemes. These methods
have been numerically experienced and compared against existing semi-implicit (ECSIM)
and explicit PIC methods. Sparse grid reconstructions embedded in PIC discretizations offer
a reduction of the memory cost of the method thanks to a better control of the statistical
noise which entails a decrease of the particle number. Indeed, we have observed numerically
that the number of particles required to obtain a given accuracy can be reduced by a factor
of 25 with sparse grid semi-implicit schemes in comparison to standard grid schemes. In
addition, the methods are unconditionally stable with respect to the plasma period so that the
time step can be chosen irrespective to this value; and the finite grid instability is eliminated,
permitting to choose the mesh size according to the physic of interest rather than the Debye
length. Nonetheless, we have observed numerical instabilities related to the loss of the field
energy non-negativity in the ECSPIC scheme, these instabilities deteriorating significantly
the results in course of time. The SISPIC-sg method is exempted from this instability and
has proven to be the most efficient method (compared to the explicit schemes, ECSPIC and
ECSIM) in term of memory footprint and computational times. The gains, observed on two
dimensional simulations, are expected to be larger with three dimensional geometries for
which the reduction of particles achieved by the sparse grid reconstruction is more significant
(see figure 10, extracted from [26]). Indeed, the full potential of the sparse grid reconstruction
method can only be achieved by three dimensional computations. This is strikingly illustrated
by the plot of figure 10 relating the memory footprint of the particle data for standard and
sparse grid simulations to guarantee a equivalent statistical noise.
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Fig. 10: Memory footprint of the particle data
for standard and sparse grid simulations, with
75 ≤ 𝑃𝑐 ≤ 500.

However, the schemes introduced are not consistent with the charge continuity equation
(as Gauss’s law is not strictly satisfied), indicating that the Vlasov-Ampere formulation is not
equivalent to the Vlasov-Poisson system. Therefore, corrections, such as those introduced
in [16] and [12], are planned for future work. We conclude our investigations upon semi-
implicit schemes embedding sparse grid reconstructions with the following considerations.
The SISPIC-sg method is a good alternative to explicit sparse-PIC schemes for configurations
in which the time and space scales of interest are larger than the plasma period or/and
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the Debye length. The use of sparse grid techniques shall offer a significant reduction of the
computational costs (memory footprint, computational time) for three dimensional geometries.
Nonetheless the derivation of a semi-implicit sparse-PIC method conserving the discrete total
energy is left to a future work.
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Appendix A. Appendix.

A.1. Spatial discretization. In this section, the spatial discretization of the physical
quantities (electric field, charge current, electric potential, etc.), as well as operators (gradient
and divergence), on the component grids are explicited in two and three dimensions.

Let us consider a component grid Ωℎl with grid discretization ℎl (or the Cartesian grid,
i.e. 𝑙𝑖 = 𝑛, ∀𝑖). The scalar quantities, such as the electric potential, are defined at the vertices
of the grid cells:

Φℎl;j = Φℎl;𝑖, 𝑗 ,𝑘 ∈ Ωℎl , where j = (𝑖, 𝑗 , 𝑘) ∈ 𝐼ℎl .(A.1)

The notation Φℎl;𝑖, 𝑗 ,𝑘 stands for the electric potential approximation at the grid node jℎl =
(𝑖ℎ𝑙1 , 𝑗 ℎ𝑙2 , 𝑘ℎ𝑙3 ).

The field quantities, such as the electric field and current density, are defined on the centers
and vertices of the grid cells according to the Yee discretization [48]. The Yee discretization
of a component grid consists of 𝑑 staggered component grids, Ω𝑦1

ℎl
, Ω𝑦2

ℎl
and Ω

𝑦3
ℎl

defined by:

Ω
𝑦𝑖
ℎl

:=
{
j𝑦𝑖 ℎl | j ∈ 𝐼ℎl

}
⊂ Ω, 𝑖 = 1, ..., 𝑑(A.2)

and we introduce the notation j𝑦 for an index j ∈ 𝐼ℎl , defined by:

j𝑦 = (j𝑦𝑖 )𝑖=1,...,𝑑 , where j𝑦𝑖 = j + e𝑖/2,(A.3)

where e𝑖 ∈ N𝑑 is the index whose value is 1 along the 𝑖𝑡ℎ coordinate and 0 elsewhere.
Specifically, in two and three dimensions, it falls down to:

j𝑦 =

(
(𝑖 + 1/2, 𝑗)
(𝑖, 𝑗 + 1/2)

)
if 𝑑 = 2, j𝑦 =

©­«
(𝑖 + 1/2, 𝑗 , 𝑘)
(𝑖, 𝑗 + 1/2, 𝑘)
(𝑖, 𝑗 , 𝑘 + 1/2)

ª®¬ if 𝑑 = 3.(A.4)
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Let Ω𝑦

ℎl
= (Ω𝑦𝑖

ℎl
)𝑖=1,...,𝑑 denotes the staggered component grids. Then, the electric field and

current density discretizations are written as:

Eℎl;j𝑦 = (Eℎl;j𝑦𝑖 )𝑖=1,...,𝑑 ∈ Ω
𝑦

ℎl
, Jℎl;j𝑦 = (Jℎl;j𝑦𝑖 )𝑖=1,...,𝑑 ∈ Ω

𝑦

ℎl
.(A.5)

Let us introduce the discrete gradient, discrete divergence, and discrete Laplacian oper-
ators defined on the component grids. The discrete gradient is defined from the regular grid
to the staggered grid; the discrete divergence from the staggered grid to the regular grid; and
the discrete Laplacian from the regular grid to the regular grid by:(

∇ℎlΦℎl;j
)
ℎl;j𝑦 =

(
Φℎl;j+e𝑖 −Φℎl;j

ℎ𝑙𝑖

)
𝑖=1,...,𝑑

,(A.6)

(
∇ℎl · Eℎl;j𝑦

)
ℎl;j =

𝑑∑︁
𝑖=1

Eℎl;j𝑦𝑖 − Eℎl;j𝑦𝑖 −e𝑖
ℎ𝑙𝑖

,(A.7) (
ΔℎlΦℎl;j

)
ℎl;j = ∇ℎl · ∇ℎlΦℎl;j.(A.8)

The motivation for the introduction of the staggered discretization is to retain some properties
of the continuum gradient and divergent operators. Specifically, the discrete gradient and
discrete divergence operators shall verify a discrete integration by parts for exact conservation
of energy.

Lemma A.1 (Discrete integration by parts). Let 𝐴ℎl;j be a scalar quantity defined on the
component grid Ωℎl and B be a field quantity defined on the staggered component grids Ω𝑦

ℎl
,

then the following discrete integration by parts holds:∑︁
j∈𝐼ℎl

∇ℎl 𝐴ℎl;j · Bℎl;j𝑦 = −
∑︁
j∈𝐼ℎl

𝐴ℎl;j∇ℎl · Bℎl;j𝑦(A.9)

Proof. The result is obtained with the periodicity of the component grids.
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