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We present a deep-learning approach for modeling the atomic structure of amorphous silicon (a-Si). While
accurate models of disordered systems require an ab initio description of the energy landscape which severely
limits the attainable system size, large-scale models rely on empirical potentials, at the price of reduced reliability
and a computational load that is still restricting for many purposes. In this paper, we explore an approach based on
deep learning, particularly generative modeling that could reconcile both requirements of accuracy and efficiency
by learning structural features from data. When trained on a set of observations, such models can generate new
structures very efficiently with the desired level of accuracy, as determined by the data set. We first validate our
approach by training a convolutional neural network to approximate the potential-energy surface of a-Si, as given
by the Stillinger-Weber potential, which results in a root-mean-square error of 5.05 meV per atom—about 0.16%
of the atomic energy. We then train a deep generative model, the Wasserstein autoencoder, for the generation of
a-Si configurations. Our approach leads to models which exhibit some of the essential features of a-Si while
possessing too much structural disorder, thus suggesting that the method is viable; we indicate avenues for
improving it towards the generation of state-of-the-art structures.

DOI: 10.1103/PhysRevB.100.094107

I. INTRODUCTION

The detailed structure of a-Si remains unresolved: while it
has been studied from many different angles over the years,
the structure on the local and medium-range scales is still
unclear (see, e.g., [1] for a review). The lack of long-range
order is such that the structure of the material cannot be
univocally extracted from diffraction experiments. In addition,
different techniques are used to prepare a-Si in the laboratory,
and these yield (slightly, if not somewhat) different structures.
The most reliable preparation method, which leads to the
purest, highest-quality material, is certainly ion implantation
[2], where highly energetic Si ions are implanted in a c-Si
target, causing the matrix to amorphize; the material is then
annealed until most defects (vacancies, interstitials, etc.) are
removed. With this method, the first coordination number has
been found to be 3.88 with an average interatomic distance
of 2.352 Å (vs 2.350 for c-Si); for second neighbors, the
coordination number is 12.43, slightly more than that of the
crystal (=12).

Because the structure of a-Si is not known precisely, stud-
ies of the physical properties of a-Si must rely on structural
models which can in turn be validated—or discarded—by
comparing calculated properties with measured properties.
Because of the disorder, however, models are extremely dif-
ficult to construct. The structure of a-Si is akin to an ideal
“continuous random network” (CRN), whose coordination
is very close to 4 with a distribution of nearest-neighbor
distances that is relatively narrow. It can be, and has been,
modeled with varying degrees of success using different
methods that have the common feature of requiring some sort
of description of the energy of the interacting system. For
example, the bond-switching Monte Carlo method of Wooten,

Weiner, and Weaire [3,4] employs a harmonic description
of the interatomic potentials, which is evidently unrealis-
tic but ensures perfect coordination. An approach based on
the activation-relaxation technique (ART) of Barkema and
Mousseau [5–7] employs an empirical description of the
interaction energies, the Stillinger-Weber (SW) potential [8,9]
in this particular case. It could equally employ an ab initio
formulation. However, there is a price to pay for “quality.”
Ab initio approaches (e.g., density-functional theory [10,11])
are precise and realistic [12], but terribly costly in terms of
computer cycles, especially since large systems are usually
needed. In fact, these need to be relaxed for long times
because of the multiminima structure of the potential-energy
surface (PES). Empirical potentials such as SW and Tersoff
[13,14] also have limitations: (i) they lack the accuracy of
first-principles potentials; (ii) they are not transferable and
their parameters typically have to be adjusted “by hand” to
adapt to various configurations; (iii) the computational load
scales as N3 in small systems, tending to N in large systems. In
practice, the largest models of a-Si that have been built contain
N ∼ 106 atoms, which roughly translates into a cube with side
length 102 Å—still very small for many purposes. Clearly,
there is still a need for an approach for constructing a-Si
models that is both accurate and computationally effective,
and that would allow the construction of large-scale systems
whose dimensions approach those of real systems. While
the use of trained machine-learning (ML) potentials in MD
simulations is an interesting avenue in this respect [15–19],
the route we follow in this work is different.

The complexity of the description of the PES is directly
related to the exponential increase of the dimension of con-
figuration space with the number of atoms. This is known as
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the “curse of dimensionality” and refers to phenomena that
arise in very high-dimensional spaces, such as configuration
space for a disordered system. The problem is well known
in the context of ML, whereby models “learn” from data.
Recent advances in deep learning (DL), a branch of ML, have
allowed the problem to be largely alleviated, with models
able to approximate effectively high-dimensional probability
distributions using deep neural networks; for an excellent
review of DL, see [20]. For example, DL algorithms can
approximate the energy landscape of a system of atoms when
trained on a set of configurations and target energies that can
be produced with the desired level of accuracy, thus providing
an interesting and efficient alternative to empirical potentials
[15–19,21–23].

DL models, and in particular deep generative models (see
Sec. II B), can characterize and approximate the distribution
of complex data sets and generate new realizations of it.
This is precisely the philosophy that we adopt in the present
work: model the atomic structure of complex materials as a
learning task. The quality of the resulting models intimately
depends on the quality of the input data set that is used to
train the “learner” (algorithm). Constructing this input data set
(to the desired level of accuracy) and training the algorithm
on it is the most demanding part of the procedure; once
the model has learned, new structures can be generated very
efficiently.

The purpose of our work is to establish a “proof of con-
cept” using a-Si as a test bed. We demonstrate that models
exhibiting some of the essential features of the true structure
can be generated, and indicate how the approach could be
improved towards state-of-the-art models. We start with a
description of the DL methodology required for our purpose,
then discuss its application for the task of learning the PES,
and finally present our model for the atomic structure of a-Si.

II. DEEP-LEARNING METHODOLOGY

Machine learning is a branch of artificial intelligence
that pertains to the development of data-driven algorithms,
whereby the instructions are not explicit but rather “learned”
[24]. ML algorithms can be separated in two classes: su-
pervised learning and unsupervised learning. In both cases,
the algorithm is provided with a set of observations forming
the input data set. In supervised learning, the data set is
composed of a set of input and output (or target) values.
The algorithm is then trained to approximate a function that
makes accurate predictions of the output values when given an
input. In unsupervised learning, no output values are provided,
and the algorithm is trained to identify the structure and the
relationships among the input data, and possibly to generate
new realizations of it.

The field of DL designates a class of ML algorithms which
process data via a deep cascade of layers, corresponding
to multiple levels of representation and abstraction. Their
topology, referred to as “architecture,” is often based on neural
networks (NNs) where layers composed of several artifi-
cial neurons loosely emulate the structure of biological neu-
rons [20,25]. These schemes have been successfully applied
within material science in tasks such as predictions of phase

diagrams, crystal structures, and material properties, as well as
in the development of interatomic potentials and energy func-
tionals that resulted in an increased accuracy and efficiency of
materials simulations [26,27].

In this section we discuss briefly the functioning of feed-
forward NNs, wherein the connections do not form a cycle (in
contrast to recurrent NNs): the information circulates in only
one direction (viz. forward) from the input layer to the output
layer and through the so-called “hidden layers.” In particular,
we examine the various architectures that will be used in this
work: the multilayer perceptron (MLP) and a convolutional
neural network (CNN) for the prediction of potential energies
and the Wasserstein Autoencoder (WAE) for atomic structure
generation.

A. Feed-forward neural networks

Research on biological NNs has allowed the main charac-
teristics of the communication between neurons in the nervous
system to be identified and modeled. When a neuron receives
a signal from the synapses, it is propagated through the
dendrites up to the kernel where the processing is done; the
output is then carried through the axon. This corresponds to
having an input x processed by a set of parameters w, the
synaptic weights (or simply the weights), and a nonlinear
function φ, giving rise to an output y = φ(w � x + b), where
φ is the activation function, � is any linear operation and b
is the threshold, or bias—indeed, a biological neuron is only
activated beyond a certain value of the current received. This
structure can be generalized to form neuron layers that share
the same nonlinearity φ. For any type of tensor input x, a
neuron layer applies the transformation

y = φ(W � x + b), (1)

where we assume the dimensions of the parameter tensors
W and b and of the output tensor y to be consistent with
the operations � and φ. NN layers can be stacked to form
a deep neural network (DNN). The number of layers D is
called depth. They can have different widths and activation
functions: these are called “hyperparameters” in order to
distinguish them from the parameters learned by the network
(such as W and b). Therefore, the topology of a feed-forward
NN can be summarized as

x(l+1) = φl (W(l ) �l x(l ) + b(l ) ), (2)

where x0 is the input layer—a layer whose sole task is to feed
the inputs to the next layer—and xl is the output of layer l .
Therefore, each layer is defined in terms of the ranks and
dimensions of tensors W(l ) and b(l ) and by the transformations
�l and φl .

The choice of the activation function φ is regulated by
different factors such as the desired output range or its dif-
ferential properties. For example, tanh will produce values
strictly in (−1,−1) while max(0, x) allows for fast and ef-
ficient optimization.

The choice of the linear operation � regulates the connec-
tivity between neurons of consecutive layers. Indeed, setting
it as the standard matrix multiplication results in having all
neurons belonging to a given layer to be connected with those
of the previous layer. This is why such layers are also called
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dense layers. A network that is solely composed of dense
layers is called a multilayer perceptron (MLP), and it is the
archetypal structure of a DNN.

An example of how the connectivity induced by the trans-
formation � can impact the performance of a model is the
impressive success of convolutional NNs (CNNs) on discrete-
topology data, such as time series, and particularly in com-
puter vision tasks [25,28]. As the name implies, a convolution
is used instead of a matrix multiplication for the linear trans-
formation �, and usually a “rectified linear unit” ReLU(x) =
max(0, x) for the nonlinear transformation φ. This approach
is inspired by the functioning of the visual cortex of some
mammals [29]: individual neurons of a given layer respond to
stimuli coming from only a restricted region of the visual field,
known as the receptive field, which corresponds to a spatially
limited connectivity.

According to the universal approximation theorem, a
single-layer feed-forward neural network of finite width L
can approximate any continuous measurable function with
arbitrary precision (for all the most commonly used activation
functions) [20]. We note however that L can be in principle
very large and that there is no guarantee a priori that the NN
can learn the desired function.

Once the architecture of the network has been chosen,
training is achieved by minimizing a cost function (also
called objective or loss function) L(θ ) which depends on the
optimization parameters θ (such as W, b), and whose form
depends on the particular learning problem under considera-
tion.

In the case of supervised learning, the data set is composed
of pairs {x, y} of inputs and targets. We wish the algorithm to
find the function that maps x to y, so the cost function may
be any suitable metric measuring the discrepancy between
the targets and the algorithm’s output. For example, when
training a predictive model for reproducing the PES, a suitable
choice for the objective function would be the mean-squared
error (MSE) between the predicted energies ŷ(θ ) and the true
energies y. Unsupervised learning focuses instead on finding
a function that accurately describes the input data, as no
targets are present in the data set. In this case, a suitable
cost function can be derived from the maximum likelihood
framework. For example, the cost function can be set to the
negative log-likelihood (NLL).

The minimization of the cost function is achieved by
gradient descent: the parameters θ are updated iteratively
following the direction of steepest descent, i.e., θt+1 = θt −
η∇θL(θ ), where η is the learning rate controlling the size of
the steps. Computing gradients over the entire data set can
be inefficient, and is not done in practice. Stochastic gradient
descent (SGD) employs instead a stochastic approximation of
the gradient by calculating it on a minibatch of inputs ran-
domly selected from the data set. Updates of the parameters
throughout the network are achieved by applying iteratively
the chain rule of derivative. The back-propagation algorithm,
which implements automatic differentiation [30], allows the
gradients to be back-propagated from the objective function
all the way to the first hidden layer. All implementations
of the neural networks considered here were encoded in
PYTHON [31] using Theano and Lasagne software libraries
[32,33].

B. Deep generative models

Generative modeling is a branch of (unsupervised) ML
which aims at approximating the distribution pX (x) of a
given data set D = {xi}i=1,...,N defined in a high-dimensional
space X . The goal is to build a model which can easily be
sampled from, with a distribution pG(x) that is as close as
possible to pX (x) according to some probability measure.
While achieving both of these goals in the context of ML has
long been a challenge, recent algorithmic developments such
as variational autoencoders (VAEs) and generative adversarial
networks (GANs) have opened new avenues in this regard
[34,35], being extremely successful in such difficult tasks as
image generation and voice synthesis. In the context of the
present study, the distribution we seek to approximate is that
of the atomic positions of amorphous silicon.

GANs and VAEs are called latent-variable models since
the generation process is based on sampling from hidden (as
opposed to observed) variables in a latent space Z . These vari-
ables are used by the generative models to determine which
features of the data are important for the description and
generation processes. More formally, the model’s distribution
is factored as

pG(x) =
∫
Z

G(x|z)pZ (z)dz, (3)

where the latent variable z follows the distribution pZ (z). The
generative model then consists of a function (possibly stochas-
tic) distributed according to G(x|z) that must be optimized in
order to make pG close to pX .

In this work we consider a latent variable model that
similarly to the VAE introduces two networks: an encoder
qφ : X → Z with parameters φ and a decoder gθ : Z → X
with parameters θ . The encoder projects the input into a
tensor of reduced dimensionality, the latent code. The decoder
projects the latent code z ∈ Z back into input space X .

If the latent code follows a known distribution which is
easy to sample from (e.g., a normal distribution), then the
decoder becomes, at the end of training, a generator. When
fed with a latent vector from the aforementioned distribution,
its output will match closely the input distribution pX (x), as
if the latent vector was coming from the encoder.

More formally, the Wasserstein autoencoder (WAE) is a
latent variable model whose distribution is given by Eq. (3)
that aims at minimizing a specific class of divergences induced
by the optimal transport problem [36] given by

Wc(pX , pG) = inf
γ∈∏

(pX ,pG )
E(x,y)∼γ c(x, y), (4)

where
∏

(pX , pG) is the set of all joint distributions γ (x, y)
whose marginals are respectively pX and pG.1 One may see
γ (x, y) as the “mass” that needs to be transferred from x to y in
order to transform pX into pG; Wc(pX , pG) then corresponds
to the cost of the optimal transport plan. When c(x, y) = ||x −
y||p, the so-called p-Wasserstein distance is obtained, which
possesses several interesting properties with respect to other
divergences.

1Specifically, γ (x, y) verifies
∫

γ (x, y) dx = pX (y) and∫
γ (x, y) dy = pG(x).
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Under this model, the optimal transport cost of Eq. (4)
takes a simpler form:

Wc(pX , pG) = inf
Q:Q(z)=pZ

EpXEQ(z|x)c(x, G(z)). (5)

The WAE objective is obtained by relaxing the constraint on
Q(z) by adding a penalty to the cost function

LWAE(pX , pG) = inf
Q(z|x)∈Q

EpXEQ(z|x)c(x, G(z))

+ λD(Q(z), pZ ), (6)

where Q is any set of probabilistic encoders, D is an arbitrary
divergence, and λ > 0 is a hyperparameter. Two possible
ways of regularizing the WAE have been proposed. The first
consists of setting D as the maximum mean discrepancy
between Q(z) and pZ , and the second in setting D = DJS ,
the Jensen-Shannon divergence, and estimate it through ad-
versarial training [37]. The latter is achieved by introducing
an adversary NN, the discriminator dγ with parameters γ ,
which will learn to separate “true” points sampled from pZ
and “fake” ones sampled from Q(z). This adversary procedure
is originally found in GANs, with the difference that it applies
here to the latent space, which may have a better structure than
the input space. For simplicity, and since this is the model that
will be used in this work, we refer to the WAE-GAN as WAE.

Thus, the WAE training is achieved by minimizing the
following objectives with respect to the encoder, decoder, and
discriminator parameters φ, θ , and γ :

LAE = 1

B

B∑
i=1

c{xi, gθ [qφ (xi )]} − λln fγ [qφ (xi )]

(7)

LD = λ

B

B∑
i=1

ln fγ (zi ) + ln{1 − fγ [qφ (xi )]} ,

where the sums run over a batch of examples and B is the
minibatch size.

III. DEEP GENERATIVE MODEL FOR THE ATOMIC
STRUCTURE OF A-SI

As mentioned above, DNNs allow the PES of a material
to be approximated efficiently [15–19,21–23]), which can in
turn be used in, e.g., molecular dynamics (MD) simulations.
These proceed iteratively by moving the system one time step
at a time towards a global minimum; the length of the time
step is a small fraction of the period of vibration of the atoms
and is typically of the order of femtoseconds. Because of the
variety of energy barriers found in the PES, some of which
can be very large, an MD approach for simulating disordered
systems rapidly becomes intractable. Methods such as ART
alleviate this problem to a large extent by exploring the PES
directly [5–7], but it remains a formidable task for large sys-
tems. In contrast, generative models directly approximate the
probability distribution of the atomic configurations forming
the input training data set, after which new configurations can
be generated in a very efficient manner as neither energy cal-
culations nor time iterations are required, new configurations
being produced by forward propagating a random vector of
the latent space through the generator. This is the essence of
our approach.

The first step, therefore, consists in forming the data set on
which the NN will be trained, which is evidently of utmost
importance for the quality of the learning algorithm and the
resulting configurations. We discuss this first, then move on
to examine how it translates into learning the PES, by analogy
with the work of Behler et al. In the last subsection, we present
the results of training a WAE for modeling a-Si.

A. Construction of the input data set

The statistical learning process requires, and this is essen-
tial, a representative sample of the probability distribution that
we seek to approximate, i.e., a sufficiently large set of realiza-
tions that captures the main properties of the distribution. In
our case, this boils down to a set of atomic a-Si configurations
exhibiting the desired structural properties. A configuration
is considered acceptable if it corresponds to a low-lying mini-
mum of the PES (noting that the global minimum corresponds
to the crystal) and if its structural properties, such as bond
length and bond angle distributions, agree with experimental
observations. These configurations constitute the input data
set for the NN. We also incorporate the total potential energies
of the configurations into the data set, in order to learn the
PES and improve the accuracy of the generative model. For
the purpose of testing the procedure, and for simplicity, we
employed here the modified SW potential as it provides an
adequate description of a-Si [8,9]; nevertheless, our approach
applies to any PES, empirical or ab initio. The SW potential
is defined as

E = ε

[∑
〈i j〉

φ2

(
ri j

σ

)



(
a − ri j

σ

)

+
∑
〈i jk〉

φ3

(
ri j

σ
,

rik

σ

)]
ri j, rik < σa, (8)

φ2(ri j ) = A
(
Br−p

i j − 1
)
e1/(ri j−a),

φ3(ri j, rik ) = λ

(
cos θi jk + 1

3

)
eγ /(ri j−a)eγ /(rik−a),

where 
 is the Heaviside step function and
ε, A, B, σ, p, a, λ, γ are parameters that have been fitted to
the amorphous phase of silicon.

The data set was prepared in two steps: First, a number
of 216-atom a-Si configurations, in a volume (16.282 Å)3

with periodic boundary conditions, were constructed using
ART [5–7]. This approach consists in exploring the PES of a
system by searching transition paths between energy minima
in an iterative fashion. Starting with a configuration in a local
minimum, the algorithm looks for a saddle point and moves
the system to it (activation) and then relaxes it to a new, local
minimum (relaxation). The activation step is achieved with
iterative diagonalization routines for the Hessian such as the
Lanczos algorithm while the relaxation step can be achieved
with any descent method such as conjugate gradients.

New minima in the PES were saved once every ten ART
steps in order to reduce correlations. Structurally equivalent
configurations were discarded, except one, as were configura-
tions with positive energies. This procedure resulted in 23 075
different configurations and corresponding energies. Second,
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using these configurations as starting points, the data set was
extended by carrying out MD simulations for a duration of
2 ps each, at various temperatures in the range 50–1200 K,
new configurations being saved at 15-fs intervals; structurally
equivalent and positive-energy configurations were again re-
moved. Overall, this resulted in a data set D = {xi, Ei}N

i=1,
containing N = 121 163 a-Si structures xi with corresponding
potential energies Ei.

B. Learning the PES

The atomic structure of a given configuration in the input
data set D is described by the set of all atoms’ Cartesian
coordinates. However, this choice of representation is not
unique and has a major drawback: the symmetries inherent to
the system are not taken into account. Cartesian coordinates
are not invariant under global orthogonal transformations and
atomic index permutations, while the atomic structure and
its potential energy are. Training a NN to approximate the
PES with such a representation would certainly fail: equiv-
alent configurations would be treated as different and the
total potential energy would not be invariant to the system’s
symmetries. It is thus of utmost importance to represent the
atomic coordinates in a suitable, invariant fashion for any
learning problem. Here we follow the procedure introduced by
Behler [23]; a configuration is mapped onto a set of symmetry
functions describing the local environment of each atom in an
invariant fashion.

We now assess the methodology by training two different
NNs (a MLP and a CNN—see below) for learning the PES.
This will allow us (i) to validate the representation of the
atomic configurations in terms of symmetry functions, (ii) to
ensure that it is indeed possible to learn from D, and (iii) to
assess two different choices of architecture.

For this supervised learning task, the data set has
been divided into a training set (∼ 80%), a validation set
(∼ 10%) to monitor the model’s performance during training,
and a test set (∼ 10%) for estimating, in an unbiased way,
the performance on configurations it has never seen. Each
atomic configuration was represented by a set of 18 symmetry
functions [23] of type G1, G2, and G3, for a total of 54.
Symmetry functions G4 and G5 were not used as they require
the calculation of bond angles, which implies a consider-
able computational overhead. Hence, an atomic configuration
with Cartesian coordinates x ∈ R216×3 is transformed into
a set of 54 symmetry functions G ∈ R216×54, and periodic
boundary conditions (PBCs) are used. In contrast to Behler
et al., the symmetry functions are not constructed with fixed
parameters but, rather, are implemented as a neuron layer
such that their parameters can be optimized on the fly while
learning the PES, just as any other parameter of the NN. In
both NNs presented in this section, the first layer maps the
atomic configurations onto the symmetry functions. More-
over, each 216-atom configuration is considered as a mini-
batch of 216 data points: each atom is thus treated in parallel
and one gradient step per configuration is performed. The
total energy is then evaluated as the sum of individual atomic
energies E = ∑N

i=1 Ei, computed on the last layer of the
network.

TABLE I. Comparison of MLP and CNN performance for the
prediction of the potential energies over the test set. The total number
of parameters Nθ is equal for both NNs.

Nθ Epochs RMSE (meV/atom)

train test

MLP 34853 8 4.621 6.978
CNN 34853 8 4.496 5.095

We considered two architectures with the same number of
parameters, illustrated in Fig. 1. The first is a MLP, similar
to the approach of Behler et al. [21], viz. a five-layer MLP
with ReLU activations. The second is a five-layer CNN, where
the spatial dimension (the one over which the convolution
is applied) corresponds to the different symmetry functions.
The filter size has been set to 1, since symmetry functions
do not exhibit any particular local structure, thus reducing
the number of parameters and preventing overfitting. In that
specific case, the convolution operation becomes a simple
dyadic product (w ⊗ x)i j = wix j .

Both NNs have been trained with the adaptive moment
estimation algorithm ADAM (η = 10−4, β1 = 0.5, β2 =
0.9, λ = 10−6) with weight decay [38,39], where η is the
learning rate, β1 and β2 are exponential decay factors for
the first and second moment estimates, respectively, and λ is
the weight decay factor. The objective function is the MSE
between the estimated energy Ẽ (x) and the target energy y,
that is the function

L(x, y) = [Ẽ (x) − y]2, (9)

while the performance was measured by the RMS error of the
energy over the entire validation/test set

RMSE(Ẽ ) =
√√√√ 1

N

N∑
i=1

[Ẽ (xi ) − yi]2. (10)

The performance on the validation set has been computed at
every 128 gradient steps, and the final state of the NN has
been taken as that corresponding to the minimum of these
evaluations. The overall performance has been measured on
the test set at the end of this procedure. Figure 2 shows the
evolution of the objective function vs iteration number for
both models, which have the same number of parameters and
have been trained for eight epochs. (One epoch corresponds
to one passage over the whole training set.)

The results of training these two NNs on D are presented
in Table I, for the parameters corresponding to the best-case
validation scenario of each model. The CNN performs better
than the MLP, with a RMS error on the energy of 1.101 eV
(5.095 meV/atom) vs 1.507 eV (6.978 meV/atom). These
values are comparable to those reported by Behler et al.
[21] for 64-atom crystalline silicon configurations at various
pressures and temperatures (RMSE over the test set was
reported to be of the order of 5–6 meV/atom), in spite of the
fact that we have neglected the G4 and G5 symmetry functions
to describe the atomic configurations. These results show that
the use of convolutions provides a clear advantage over dense
layers.
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FIG. 1. Architecture of the MLP (top) and the CNN (bottom) used for learning the PES. Each block represents a neuron layer; the color
indicates its type, and the dimensions of the output tensor are indicated. The first dimension corresponds to that of the minibatches: the
corresponding elements are treated in parallel by the NN as different observations. The last dimension is the one where the operation is
applied; the second dimension in the convolutional layers therefore corresponds to channels. The last layer performs a sum over the atomic
energies and yields the total potential energy.

The performance of both NNs is quite satisfactory and
both could certainly be used to approximate the SW potential.
That being said, we insist that learning has been done here
only on a-Si configurations, so that we cannot expect these
models to transfer easily to other structures. The approach
presented here is thus tailor-made for a-Si, but would easily
transpose to other forms of silicon or other disordered materi-
als inasmuch as it is possible to construct a proper input data
set.

C. Model structures

We have established in the preceding section the relevance
of representing the atomic configurations in terms of symme-
try functions in spite of omitting the angular functions G4 and
G5, and the advantage of using convolutional layers instead of
fully connected ones. We will now exploit these observations

0 2500 5000 7500 10000 12500
Gradient steps (/128)

0

1

2

3

4

5

||f
θ
( x

)
−

y
||2

(e
V

2
)

MLP

CNN

FIG. 2. Mean-square error (in eV2) over 128 configurations be-
tween predicted and target energies during training for the two
architectures considered, as indicated. The full lines are obtained by
smoothing the data via a moving average.

for building a deep generative model for the atomic structure
of a-Si.

We considered two architectures for this task. A Wasser-
stein GAN (WGAN) [40] was first considered, but while
it succeeded in producing realistic structures, its perfor-
mance was systematically poorer than the WAE, presented
in Sec. II B. We will thus consider only the WAE in the
following.

Since we are dealing with an unsupervised learning task,
the data set has been separated in only two parts: a training
set (∼90%) and a validation set (∼10%), the latter being used
only to measure the distance between unseen configurations
and generated configurations—see below.

It is certainly judicious to incorporate the potential ener-
gies contained in D to the model in order to fully exploit
the available data. This can be done by conditioning the
WAE over the potential energies y, i.e., providing these to
both the encoder and the decoder; their distributions then
become Qφ (z|x, y) and Gθ (x|z, y), respectively. While this
is not essential—one may completely discard the potential
energies and train the model only on the configurations—
we observed that conditioning the model increased its
accuracy.

1. WAE architecture

In order to evaluate the reconstruction cost of the WAE, we
need the function c(x, x′) to be a suitable metric of the input
space X . Finding an appropriate way to measure a distance
between two a-Si configurations is not a priori simple. Such
a metric must be invariant under the system’s symmetries,
be reasonably fast to compute, and also be smooth enough
to allow back-propagation of gradients. The symmetry func-
tions Gμ(x) possess these properties naturally. The distance
between two configurations can thus be taken as the Eu-
clidean distance between their respective symmetry-function
representations. As these are not invariant with respect to
the permutation of atomic indices, we must sort the vectors
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FIG. 3. Architecture of the WAE used to model the structure of a-Si. The color code and symbols are the same as in Fig. 1. The dimension
of the output tensor of each layer is indicated. Inputs x and y stand for a minibatch of 32 data-set configurations and the corresponding total
potential energies. Layers N (0, 1) and N (μ, �) perform a draw from the normal distribution, where μ and � are the encoder’s output vectors.

Gμ(x); thus we have

c(x, x′) = ||G(x) − G(x′)||2

=
N∑

i=1

K∑
μ=1

[
sortGi

μ(x) − sortGi
μ(x′)

]2
. (11)

One can easily verify that this function is non-negative, sym-
metric with respect to its arguments, and vanishes when u ∼ v
(where ∼ indicates the equivalence between two configura-
tions). The objective functions of the WAE are thus given by
Eq. (7), with the distance given by Eq. (11), and by feeding
qφ and gθ with atomic configurations and potential energies.
Figure 3 illustrates the architecture of the WAE used.

The autoencoder is essentially convolutional, as it allows
the formation of deeper networks with fewer parameters and
yields a better performance than dense layers for learning
the PES. The encoder’s first layers have the task of (i) cal-
culating the symmetry functions associated with the atomic
configurations and (ii) projecting the potential energies onto
a vector. The output from these two layers are concatenated
and fed into five convolutional layers. One last dense and
linear layer, i.e., with identity activation function, is applied to
produce the output vectors μ and � of the encoder. These are
then used to produce a minibatch of stochastic latent vectors
z = μ + ε� where ε ∼ N (0, 1). This procedure allows us to
draw from N (μ,�) while ensuring well-defined gradients
with respect to μ and �, thus making it possible to back-
propagate gradients through the encoder. As a technical note,
we find that a stochastic (as opposed to deterministic) encoder
is important to ensure the convergence of the model.

The decoder’s input consists in the concatenation of a
minibatch of latent vectors with a minibatch of potential

energies. The first layer is dense and up-scales its input into a
vector of size 3 × 216 that is subsequently reshaped and fed to
five convolutional layers. The last layer of the decoder outputs
reconstructed (generated) configurations during (after) train-
ing. In particular, it allows us to generate configurations that
automatically satisfy periodic boundary conditions by using
the following activation function:

PBC(x) = (x − L)mod(2L) − L, (12)

where L is half the simulation box (8.141 Å here). The en-
coder and the decoder are constructed so as to be as symmetric
and balanced as possible, a heuristic often used for ensuring
more stable training.

The discriminator is an MLP with a number of parameters
similar to that of the encoder and decoder; this allows for sim-
ilar capacities of the different NNs involved. Finally, an ap-
proach used in Ref. [41] consists in helping the discriminator
to discern the latent distribution of the model from N (0, 1),
knowing that the optimal discriminator between the distri-
butions PZ and Qφ is D∗ = lndPZ (z) − lndQ(z|x, y). Since
pZ is known, the discriminator need only learn lndQ(z|x, y),
which can be done by subtracting the term

lndPZ = 1

2

(
ln(2π ) +

dim z∑
i=1

z2
i

)
(13)

from its output.
The WAE we consider here thus consists of (i) a stochastic

encoder with 305 585 parameters formed of five convolutional
layers and a linear, dense output layer; (ii) a deterministic
decoder with 343 891 parameters, five convolutional layers
and a dense input layer; and (iii) a discriminator with 306 179
parameters, six dense layers, and a sigmoid output. Unless
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FIG. 4. Separate contributions to the training error of the WAE
with respect to gradient iterations (unitless). The discriminator cost
(blue) is computed from LD in Eq. (6). The reconstruction cost
corresponds to the first term of LAE in Eq. (6) while the autoencoder
cost corresponds to the second term, i.e., the adversarial part. The
reconstruction cost has been evaluated on the validation set. The
curves are obtained by smoothing the raw data via a moving average.

otherwise noted, all transfer functions are ReLUs. Thus, in
total, the model contains 777 621 optimization parameters. It
was trained over 20 epochs using the ADAM stochastic gra-
dient algorithm with ηAE = 5 × 10−4, ηD = 10−3, β1 = 0.5,
β2 = 0.999, ω = 10−8, λ = 1, and dim z = 216. The gradient
step was subject to the schedule

η(t ) = η

t1/4
, (14)

where t is the number of iterations in ADAM; this schedule
turned out to be excellent for the convergence of the model.

The evolution of the different components of the objective
function during the training phase is presented in Fig. 4.
Training took 160 min on a Tesla K80 GPU. We note that
training becomes stable after five epochs (one epoch = 1893
iterations), which means that the encoder has correctly learned
to project the configurations from D onto a latent Gaussian
representation. This is very important because it demonstrates
the capacity of the encoder to properly decorrelate latent
variables representing the system. In addition, if the encoder
would fail, the decoder would not have learned to reconstruct
configurations from a N (0, 1) latent vector, and thus to gen-
erate realistic configurations at the end of training.

The reconstruction error, evaluated over the validation set,
decreases monotonically, apart from a few isolated peaks,
then converges to a value comparable to the typical distance
between configurations in D. The generator is thus able to
construct realistic configurations that are close, according to
the distance measure in Eq. (11), to configurations it has never
seen.

However, convergence heavily depends on the hyperpa-
rameters of the model, as poor choices lead to instabilities
or divergences. For instance, a learning rate schedule that is
too fast or too slow can prevent convergence by causing the
system to either escape from local minima or struggling to
reach it. Training is penalized if the first inertia factor β1 is

1.7 Å

2.9 Å

FIG. 5. Atomic configuration (of energy −302.38 eV) generated
using the WAE algorithm. The color code indicates the distribution
of distances in the range 1.7–2.9 Å. The image was produced using
the OVITO software [42].

too large and, in practice, values in the range [0.5,0.7] are
optimal. Likewise, β2 should lie between 0.9 and 0.999. The
gradient step of the autoencoder and the discriminator were
found to be best in the range [10−4, 10−3]. Finally, a latent
dimension dim z smaller than ∼200 leads to instabilities in the
first few epochs, after which the model stabilizes and proper
configurations can be generated down to dim z = 150.

At the end of the training phase, the generative model
consists of only the decoder, or generator, gθ . The process for
generating new configurations amounts to feeding into gθ a
minibatch of latent vectors z ∼ N (0, 1) as well as energies
y ∼ N (μE , σ 2

E ), where μE and σE are the average and stan-
dard deviation for the whole data set, respectively.

2. Models of a-Si

Following the procedure described above, 1600 new con-
figurations were generated, which took 6.1 s on a local ma-
chine. Figure 5 shows a selected, low-energy, configuration
from this set. A visual inspection indicates that the config-
uration is already quite satisfactory—the structure is clearly
disordered and has no major deficiencies, in particular no
atom pairs at unrealistically short distances.

The average SW potential energy was −1.336 eV/atom, as
compared to −3.130 eV/atom for the data-set configurations.
However the distances between generated and input samples
[as defined in Eq. (11)] are comparable to the distances
between samples in D. Similar distances are thus attributed
to configurations that differ by as much as 1.8 eV/atom,
suggesting that this criterion is not able to properly distinguish
configurations with different structures. We suspect that this
is a consequence of the neglect of the G4 and G5 symmetry
functions, but further investigation is needed to ascertain this.

Thus, the model has converged up to the best of the G1,
G2, and G3 symmetry-function representation capability. We
stress that no overfitting has taken place: the algorithm has
properly learned, in an unsupervised manner, to generate con-
figurations that are near the data-set ones, i.e., the generator is
clearly tending towards the distribution pX .
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density (5.00 × 10−2 Å
3
). The averages have been taken over 1600

samples (WAE) and 20 000 samples (data set), and the curves have
been smoothed via a moving average.

To be more quantitative, we present in Fig. 6 the aver-
age radial distribution function (RDF) of the generated and
the input data-set configurations. We observe that the RDF
presents a well-defined local order, as no atom pairs are found
at distances shorter than 1.8 Å, confirming that the model
has properly learned this crucial aspect of the structure of
a-Si. The two RDFs coincide at large distances while we note
a downward shift and broadening of the first peak for the
generated structures; this is manifest of too strong a structural
disorder, thus explaining the observed energy difference.

Nevertheless, we may set a nearest-neighbor cutoff dis-
tance rc at the minimum between the first and second peaks
of the RDF, yielding rc = 2.892 Å. This can then be used
to calculate various properties such as coordination numbers,
average positions, and standard deviations of the RDF’s peaks.
These and other structural properties, averaged over the 1600
samples, are presented in Table II and compared with ex-
perimental data, average properties of the data set, and a
state-of-the-art structure from [4].

The first-neighbor shell is centered at 2.323 Å which is
slightly under the experimental value of 2.352 Å and the
average value in the data set of 2.362 Å. The first coordination
number C1 = 3.278 is also below the experimental and data-
set value, which are comparable. A bond-length deviation of
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FIG. 7. Average nearest-neighbor bond-angle distribution over
the 1600 generated configurations. The distribution is approximately
Gaussian, while presenting a small peak at its low tail.

12.7% indicates excessive structural disorder, as noted above,
when compared to the data-set value of 3.13%, which is close
to the experimental value of 2.76%.

Figure 7 presents the average bond-angle distribution over
the generated structures. It is centered at 109.67◦, which is
very near the crystalline value arccos(− 1

3 ) = 109.47◦, but sig-
nificantly too wide with a standard deviation of σ = 27.387◦
vs 10–15◦ in traditional models, depending on the method
used. Of course, the numbers depend on the particular choice
of rc which, as we have seen, is not well defined. We note
also the presence of a small number of 60◦ angles, which
reveals the presence of three-membered rings. (The latter are
sometimes removed artificially from a-Si models as they are
unrealistic, a procedure which is not possible in a automatic
learning context.)

The second neighbor shell, here defined as the set of first
neighbors to first neighbors, lies at 3.73 Å with a standard
deviation of 0.654 Å and a coordination C2 = 8.560. These
values indicate an undercoordination of the shell and a strong
disorder in bond angles, as seen previously in Fig. 7.

3. Discussion

Overall, our model yields configurations presenting a
structure which is qualitatively similar to that expected while
possessing too much disorder. The WAE exhibits a stable
learning curve after five epochs, and the distance between

TABLE II. Average structural properties of (i) configurations generated by our model (WAE), (ii) the input data set (D), (iii) a 4096-atom
model of [4] (BM), and (iv) experimental data of Laaziri et al. [2] (Expt.). Presented are the density ρ, the coordination numbers C1 and C2,
the first and second peak positions, and standard deviations r1 and r2 and σ1 and σ2. The SW total potential energy E and its standard deviation
σE are also presented when available.

ρ C1 r1 σ1 C2 r2 σ2 E σE

(g/cm3) (at.) (Å) (Å) (at.) (Å) (Å) (eV) (eV)

WAE 2.334 3.278 2.323 0.297 8.560 3.73 0.654 −288.56 13.30
D 2.334 3.926 2.362 0.074 11.97 3.82 0.206 −676.15 12.016
BM 2.450 4.000 2.397 0.075 12.00 3.74 0.272
Expt. 2.285 3.881 2.352 0.065 12.43 3.81 0.238
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generated and data-set configurations decreases
monotonically in this regime, down to the typical distance
between data-set configurations. This indicates that the
model has converged, to the best of the capabilities of the
given distance measure, towards the data set’s distribution.
We believe that the lack of angular description (which
cannot easily be resolved computationally) provided in the
symmetry-function representation, and the resulting distance,
to be the cause of the discrepancies between generated and
data-set configurations.

Some other limitations may be invoked. First, convergence
of the learning process is very sensitive to the choice of
hyperparameters. Generative models are known to be less
stable than predictive models, which is why unsupervised
learning is notably more difficult than supervised learning.
Second, the model is not invariant with respect to the number
of particles, i.e., it cannot learn from, or generate structures of,
different sizes—a feature we believe is achievable in principle
and constitutes an interesting research avenue.

Nevertheless, we have demonstrated that it is feasible to
train a WAE to generate structures that are qualitatively close
to those expected for a-Si, based on a learning data set of
representative configurations and the corresponding potential
energies, using the Euclidean distance between the symmetry
functions for the reconstruction cost.

IV. CONCLUSION

In summary, we have trained a deep generative model, the
Wasserstein autoencoder, to generate a-Si configurations that
feature a qualitatively correct structure although presenting
excessive disorder. The model was trained on a data set gen-
erated by means of ART and MD simulations. Configurations
were represented by symmetry functions, a mapping that also
served to define a suitable distance between samples. We

validated this approach by first training a convolutional neural
network to predict the SW potential energies, which featured a
very good performance, comparable to that of previous work.
Next, the WAE has been trained. The average RDF of the
generated samples has been analyzed, showing that the key
features of a-Si are captured. Even if the lack of angular
resolution in the symmetry function representation was not
problematic for learning the PES, it seems to be the case
for the generative task. And indeed, generative modeling is
notoriously more demanding than predictive modeling.

The present work establishes the viability of the DL ap-
proach for generating model structures of disordered systems.
The method clearly requires improvements, however; when
implemented, we expect that it may lead to deep generative
models combining both realism and efficiency, especially
when trained, e.g., on ab initio input structures, thus removing
the human bias encountered in current models. Moreover, the
approach presented here paves the way to a general framework
for overcoming size limitations inherent to computationally
demanding techniques for simulating the structure of disor-
dered systems.
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