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Employing non-Markovian effects to improve the performance of a quantum Otto refrigerator
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The extension of quantum thermodynamics to situations that go beyond standard thermodynamic settings
comprises an important and interesting aspect of its development. One such situation is the analysis of the
thermodynamic consequences of structured environments that induce a non-Markovian dynamics. We study a
quantum Otto refrigerator where the standard Markovian cold reservoir is replaced by a specific engineered cold
reservoir which may induce a Markovian or non-Markovian dynamics on the quantum refrigerant system. The
two dynamical regimes can be interchanged by varying the coupling between the refrigerant and the reservoir. An
increase of non-Markovian effects will be related to an increase of the coupling strength, which in turn will make
the energy stored in the interaction Hamiltonian, the interaction energy, increasingly relevant. We show how the
figures of merit, the coefficient of performance, and the cooling power change for non-negligible interaction
energies, discussing how neglecting this effect would lead to an overestimation of the refrigerator performance.
Finally, we also consider a numerical simulation of a spin quantum refrigerator with experimentally feasible
parameters to better illustrate the non-Markovian effects induced by the engineered cold reservoir. We argue that
a moderate non-Markovian dynamics performs better than either a Markovian or a strong non-Markovian regime

of operation.

DOI: 10.1103/PhysRevA.102.012217

I. INTRODUCTION

The theoretical description of thermal machines was fun-
damental to the development of classical thermodynamics,
providing an operational understanding of the second law
as established by Thomson (Lord Kelvin) [1] and Carnot
[2]. Moreover, the thermodynamic characterization of heat
engines and refrigerators is essential to engineering since it
provides tools for estimating the performance of such ma-
chines [3,4]. In the same perspective, it is expected that the
development of quantum thermodynamics will play a similar
role in quantum engineering to the development of quantum
technologies [5-7].

Quantum thermal machines are excellent platforms to test
results from quantum thermodynamics [8—14], transforming
heat into work and vice versa. In the quantum heat engine
configuration, the purpose is to extract the largest amount of
work by absorbing the least amount of heat from a hot source.
On the other hand, in the quantum refrigerator setting, the goal
is to absorb the largest amount of heat from a cold source by
injecting the least amount of work into the refrigerant. The
performance of the former is characterized by the thermo-
dynamic efficiency and the power output, while that of the
latter is characterized by the coefficient of performance (COP)
and the cooling power. The theoretical underpinnings of the
description of quantum thermal machines date back to the late
1950s with the early works of Scovil and Schulz-DuBois (see
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Refs. [15,16]). Since then, several theoretical investigations
on quantum heat engines and refrigerators have been carried
out [17-38].

From the experimental point of view, two microscopic
classical heat engines [39,40], a quantum refrigerator with
trapped ions [41] and a spin quantum engine in nuclear mag-
netic resonance (NMR) [42], have been recently implemented.
Additionally, a quantum Otto cycle on a nanobeam working
medium [43] and a quantum heat engine using an ensem-
ble of nitrogen-vacancy centers in diamonds [44] have been
reported. In particular, the experiment reported in Ref. [43]
employs a squeezed thermal reservoir and demonstrated that
the efficiency of the quantum heat engine (that explores
squeezing) may go beyond the standard Carnot efficiency,
corroborating theoretical expectations [45-56].

Interaction with a squeezed thermal reservoir is not the
only generalized process that goes beyond the typical settings
in classical thermodynamics. For instance, engineered reser-
voirs [46], such as including coherence [57], have also been
addressed, evidencing that quantum properties can be used to
enhance the performance of quantum heat engines and refrig-
erators when compared to their conventional counterparts.

Reservoir engineering may be useful and important in
different physical setups, for instance, for cooling phonons
[58] and in circuit quantum electrodynamics [59]. Quantum
fluctuation theorems can be probed by using engineered
reservoirs [60]. In the context of quantum thermodynamical
processes an approach for reservoir engineering inducing non-
Markovian dynamics has been considered in Ref. [61], where
the complete reservoir structure is composed of a Markovian
part plus a two-level system.

©2020 American Physical Society
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In recent years, advances in quantum technologies and
quantum control allowed the study of effects beyond the
Born-Markov approximation in open systems, enabling tests
of memory effects in decoherence dynamics [62]. Although,
in general, the non-Markovian aspects of the dynamics are
associated with a strong coupling between system and reser-
voir, a non-Markovian dynamics may be observed in a weak-
coupling regime, for instance, when the reservoir has a finite
size (structured reservoir) [63]. Recently, non-Markovian as-
pects in quantum thermodynamics have been studied from dif-
ferent points of view, for instance, in the context of thermody-
namic laws and fluctuations theorems [64], in nonequilibrium
dynamics [65], and their effects on the entropy production of
nonequilibrium protocols [66-68]. From the perspective of
quantum thermal machines, a promising avenue is emerging
with recent theoretical results illustrating how to use memory
effects to improve the performance on quantum thermody-
namic cycles [69-71].

In this paper, we are interested in studying and quantifying
the performance of a quantum Otto refrigerator in which
the particular structure of the engineered cold reservoir may
generate a non-Markovian dynamics on the quantum refrig-
erant. Due to the nature of our engineered cold reservoir, the
interaction energy between the refrigerant and the reservoir is
not negligible, having an important role in the performance.
Such an impact has been previously addressed for quantum
heat engines where the interaction energy was considered as
an additional cost for the performance [72,73]. We show how
the expressions for the COP and cooling power change, in-
cluding this contribution, and discuss how the interaction en-
ergy impacts the performance of the refrigerator. Employing
incomplete thermalization with the engineered cold reservoir
(at the finite-time regime), we show that memory effects (non-
Markovianity) serve as a resource to increase the performance
of the quantum Otto refrigerator, provided we have a suffi-
ciently high control of the parameters involved in the cycle,
for instance, the time allocation in each stroke. We show that
the performance does not always improve as one increases the
memory effects but an intermediate no-Markovian dynamics
corresponds to the best performance. In order to illustrate our
results, we consider a numerical simulation of a single-qubit
quantum Otto refrigerator model.

This paper is organized as follows. In Sec. II we discuss
the model of an engineered cold reservoir employed in the
quantum Otto refrigerator. Section III is devoted to present
and discuss the performance of the refrigerator, i.e., the role
of memory effects in the COP, cooling power, and injected
power. We provide analytical and numerical results employing
experimentally feasible parameters to illustrate that memory
effects may improve the performance of a quantum refriger-
ator. Finally, in Sec. IV we draw our conclusions and final
remarks.

II. QUANTUM OTTO REFRIGERATOR WITH
STRUCTURED COLD RESERVOIR

A. Model of the structured cold reservoir

Before describing the quantum Otto refrigerator, we detail
the model of the engineered cold reservoir, which induces a
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FIG. 1. (a) Illustration of the structured cold heat reservoir which
can induce a non-Markovian dynamics on the refrigerant of the
quantum Otto refrigerator. It is composed of two parts, a Markovian
heat reservoir and a two-level system (auxiliary qubit). (b) Time
derivative of the trace distance between the |0) and |1) initial states
for the system for different values of the ratio J/«, 40 (red solid line),
10 (blue dotted line), and 0.5 (black dashed line) in order to indicate
the non-Markovian and Markovian regimes of the model.

non-Markovian dynamics on the refrigerant substance. The
cold reservoir is composed of two parts, a Markovian heat
reservoir and a two-level system (henceforth referred as the
auxiliary qubit), as depicted in Fig. 1(a). The system (quantum
refrigerant) will be regarded as a qubit, which interacts with
the cold reservoir by means of the coupling with the auxiliary
qubit. The Hamiltonian of the full composite system is given
by

HS™ = H + 3" hayblb; + hic Y gi(otb; + ob]), (1)

2 1

where S, A, and M stand for system, auxiliary qubit, and
Markovian reservoir, respectively; b; (bj) is the bosonic anni-
hilation (creation) operator of the ith oscillator, which satisfies
[b;, b;] = §;j; kg; are the coupling constants; w; are the fre-

quencies; and o1 = (o, £ ioy)/ V2, where Oy,y,; are the Pauli
matrices. The coupling between the auxiliary qubit and the
reservoir is assumed to be weak and flat so that the dynamics
is Markovian. The two-qubit Hamiltonian is given by

hoi
H? =Y Twag + hoSoh, )
i=S,A
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where fiw’ and fiw® are the energy gaps of the system S
and auxiliary qubit A, respectively, and J is their coupling
constant. Depending on the relative value between J and «,
the dynamics of the refrigerant may become non-Markovian
[61]. For further reference we denote by Hii{* the last term on
the right-hand side of Eq. (2), i.e., the interaction Hamiltonian
between the refrigerant and the auxiliary qubit.

When the bosonic modes are in the thermal state it is
possible to show that the two-qubit system SA evolves under
the Lindblad master equation [61]

d i
SA _ _ ﬁ[HSA’ ptSA]

. 1 .
+ Z )/l(fi)<Lisz,-' - E{Li'Li’ pf})

i=1,2

+y yT(ei)<L§szi - %{L,-L,T : p,}), 3)

i=1,2

where  y4(e) = ZJ ()1 +npe(e)]  and  y'(e) =
%j (e;)npp(€;) are the decay rates, with spectral density
J(w)=«/m and Bose-Einstein distribution ngg(w) =
(Pl — 1)_1, and L; are the Lindblad operators (see
Appendix A for more details). The quantities /e; and
he, are the energy gaps between different energy levels of the
Hamiltonian H54 (see Fig. 5).

There are different notions of non-Markovian dynamics
for quantum processes [74-76]. Independent of the precise
definition employed, non-Markovianity is always related to
the concept of memory in the dynamics. Here, we will adopt
the following notion: a system undergoes a non-Markovian
dynamics if there is a flow of information from the envi-
ronment to the system. In particular, we consider the trace
distance as a measure of distinguishability (information) [75].
For two arbitrary states p and o, their trace distance is given

by [77]
1
Dlp.o) = S Tily/ (b — o) (p— o)l 4

We denote by A, o[p(0)] = p(¢) the one-parameter fam-
ily of dynamical maps. The dynamics is non-Markovian if
dD(pi(t), p2(t))/dt becomes positive at any time ¢ and for
some pair of initial states p;(0) and p,(0) [75], thus being
a non-Markovian witness. Conversely, this means that, in a
Markovian dynamics, the distinguishability between any pair
of states always decreases monotonically in time, i.e., the
derivative of the trace distance is never positive. In other
words, in a non-Markovian dynamics there always exists some
pair of initial states for which the distinguishability (informa-
tion) increases at a given time. In particular, it is sufficient
to assume a pair of initially pure and orthogonal states to
witness the non-Markovianity of a qubit system [78]. For that
reason, we consider such a pair of states to be the eigenstates
of g,, i.e., the states |0) and |1}, in order to determine which
parameter regimes induce a non-Markovian dynamics into the
refrigerant substance [see Fig. 1(b)].

We assume that the refrigerant and auxiliary qubits are
resonant, 2w’ = 2mrw* = 2.2 kHz, the vacuum decay rate
k = 20 Hz, and the temperature T = 2/iw" /kg ~ 6 pK for the
bosonic modes. These parameters are experimentally achiev-

able in NMR setups [79-82]. Using these parameters, in
Fig. 1(b), we show for which values of the ratio J/« the
Markovian and non-Markovian regimes are achieved. When
J/k = 40 and 10 the derivative of the trace distance becomes
positive and hence the system dynamics is non-Markovian.
On the other hand, for J/x = 0.5, we numerically considered
10 000 pairs of initial states where one of the orthogonal states
was varied throughout the north hemisphere of the Bloch
sphere. We found that the derivative of the trace distance never
becomes positive, hence we can suppose that the dynamics
is Markovian. The plot in Fig. 1(b) shows one representative
example of these curves for the mentioned pair of initial states.
As shown in Ref. [68], which studied a similar structured
environment, the asymptotic state for the system and the
auxiliary qubit is a correlated one and the reduced system
state is a Gibbs state with an effective inverse temperature ﬁf_ff
that is different from the inverse temperature of the Markovian
heat reservoir.

B. Quantum Otto refrigerator

Let us consider a quantum Otto refrigerator with a single-
qubit refrigerant and the cycle of which is comprised by
two driven adiabatic (no heat exchange) and two undriven
thermalization strokes. In an Otto refrigerator with Markovian
reservoirs, work and heat exchanges are associated with the
adiabatic and undriven thermalization strokes, respectively.
These thermodynamic quantities can be obtained through the
difference between the final and initial internal energies for a
given stroke. The internal energy at time ¢ is given by U, =
Tr[p;H ()], where p, is the density operator of the refrigerant
(system) and H (¢) is the Hamiltonian at a time 7.

The refrigerant starts the cycle in the hot Gibbs state pg =
pgq’h = e Pt 7l where B, = 1/kgTj, is the hot inverse tem-
perature, Hy is the initial Hamiltonian, and Z{ = Tr[e /] is
the associated partition function.

In the first stroke a compression is performed on the
refrigerant frequency, with driven Hamiltonian given by

fio(t)
_UZa
2

where the frequency is changed as a linear ramp as w(t) =
(1 —1t/t1)wo + (t/71)wy,, With wy and w,, (wo > w,,) being
the initial and final frequency of the refrigerant, respectively.
Hence the initial Hamiltonian is Hy = H*°™(0) = (hwy/2)07,
where “com” stands for compression. Although this stroke is
performed for a finite time, the reduced density operator of the
system will not present coherence in the energy eigenbasis.
This is especially due to the structure of the driving in Eq. (5)
which commutes at different times, i.e., [H°™(t), H*™ ()] =
0 for t # ¢'. For recent studies of noncommutative driving in
quantum Otto heat engines, we refer to Refs. [38,83]. In par-
ticular, in Ref. [38], a quantum Otto heat engine that generates
coherence in the energy basis due to the noncommutativity
of the Hamiltonian was considered. It was shown that the
effect of coherence in a finite-time Otto cycle induces fast
oscillations in the figures of merit for the engine performance.
In order to focus on the non-Markovian effects due to the
engineered cold reservoir, we considered the commutative
driving Hamiltonian in Eq. (5). The state at the end of the

H®™ (1) = (&)
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first stroke is given by p, = ,],O/r)gq’hl/ljl o0» Where U o =

T-exp[—(i/h) fot ds H™(s)] is the time-evolution operator,
T~ is the time-ordering operator, and ¢ € [0, 7;]. The final
Hamiltonian is H*°™ (1)) = (fiw,, /2)o,, such that the work
performed on the refrigerant is given by (W) = U, — Up.

In the second stroke the refrigerant system interacts with
the engineered cold reservoir described in the previous sec-
tion, the Markovian part of which has an inverse temperature
B. = 1/kgT,.. During this stroke, the refrigerant Hamilto-
nian is kept fixed at H°(t) = (hw,, /2)o, along the time ¢ €
[t1, 72]. For further reference, we denote by At. =1, — 1)
the duration of the second stroke. Moreover, some recent
developments have pointed out that incomplete (or partial)
thermalization can be used to reach a better performance in
quantum heat engines [38,84]. For that reason we consider an
incomplete thermalization, denoting by p,, the state at the end
of this stroke. Furthermore, the structure of the engineered
cold reservoir will be set to generate a Markovian or non-
Markovian dynamics on the refrigerant substance. This choice
is adjusted depending on the ratio of the coupling constant
J between the refrigerant and the auxiliary qubit and the
internal coupling k between the auxiliary qubit and the cold
Markovian reservoir as considered in Fig. 1(b). Since « should
be small (weak coupling) the regimes are essentially obtained
by varying J. The heat absorbed by the quantum refrigerant is
given by (Q.) = U, — Uy,.

In the third stroke, the refrigerant is decoupled from the
structured cold reservoir and its frequency is increased from
w7, to wy by means of an adiabatic expansion. The driving
Hamiltonian for this stroke is H®*P(t) = H™(t; + 1) — t)
applied for the time interval ¢ € [1;, 73], where “exp” stands
for expansion. The final state is p,, = Vi, o, ngINZ where
Vs, = T-expl—(i/h) f; dt H®*P(t)] is the evolution opera-
tor associated to the adiabatic expansion. The time duration
of the third stroke is assumed to be the same as for the
first stroke, i.e., T3 — T, = 1, so that H®P(13) = H°™(0).
The work performed on the refrigerant during this stroke is
(W3) = U, — U,,. At this point we can define the total work
performed on the refrigerant as (W) = (Wp) + (W3).

Finally, in the fourth stroke and in order to close the
cycle, this last stroke comprises a complete thermalization of
the refrigerant with the hot reservoir at inverse temperature
Bi. During this process the Hamiltonian is kept fixed at
H®P(13) = (hwo/2)o, along the time t € [13, T4]. Once the
condition 74 — 73 > rfél is fulfilled, where rr’fcl is the relaxation
time for the hot Markovian heat reservoir, the final state
reaches p;, = pgq’h. The heat absorbed by the refrigerant is
given by (Q) = U, — Uy,. The total time duration of a single
cycle will be given by Teyele = T4 = 71 + AT + 71 + AT).

Before we move forward to the discussion of the perfor-
mance, we define some other quantities that will turn out to be
relevant. In the second stroke, the first law of thermodynamics
implies that (Q%) + (OF) + AVSR =0, where —(QX) is the
energy released by the engineered cold reservoir R, and AVSR
is the change in the interaction energy between S and R.
The total energy released by the engineered cold reservoir is,
therefore, given by the expression

—(0F) = (@) + avS®. (6)

For our model, the auxiliary qubit couples weakly to the
Markovian heat reservoir, hence we have AVCSR = AVCSA,
SA SA 17SA SAySAT : :
where AV>? = Tr[,oT2 Him 11— Tr[,on I_'Iim ] is the interaction
energy of the SA composite system during the second stroke.

III. PERFORMANCE OF THE QUANTUM OTTO
REFRIGERATOR

The purpose of a refrigerator is to cool down the cold
reservoir, hence the quantity that has to fundamentally be con-
sidered to assess the performance of a refrigerator is —(QF),
i.e., the energy released by the cold reservoir. Therefore, the
COP is defined by

_[NR S SR
o (of) _ (@f) + AV, ’ o

(Wnset> (Wnsél)

where we used Eq. (6) to write the last equality. Similarly, the
cooling power will be given by (I') = —(OF) /¢y while the
injected power is (P) = (Wnset) /Teyele- When the interaction
energy is small compared to the heat absorbed by the system,
ie., (0%) + AVSR ~ (05), we can see that the usual expres-
sions for the figures of merit of a refrigerator are recovered.
One such a situation happens in classical thermodynamics,
where the coupling between the refrigerant and the reservoir
is small (weak-coupling regime). Not only that, the refrigerant
is a macroscopic system (a fluid or a gas) so that the internal
energy, which scales with the volume, is larger than the
interaction energy, which scales with the area (boundary). On
the other hand, if the refrigerant is strongly coupled to the
reservoir, the interaction energy starts playing a role in the
thermodynamics [72,73] and in the performance analysis of
the refrigerator.

We obtain the following analytical expressions for any
quantum refrigerant (and not only for a qubit), as described
in Appendix B. We later restrict to our specific model again
to present our numerical analysis. The COP defined in Eq. (8)
can be written as

€Carnot

=y—, 8
¢ v 1 + GCamotE ( )

where €camot = (Be/Brn — 1)~! is the Carnot COP and
£ = Deallpi) = Dlpa|[p2) + Dlps |02 o

Br(Qe)

is the COP lag, previously defined for quantum engines
[38,42,85]. The multiplicative term in Eq. (8) is given by

AVSR
Yy = (1 + W>, (10)

and we call it the interaction-energy parameter. Similarly, the
cooling power can be written as
QS
()= )/<—C>- 1D
Teycle

From these two equations we can see that the parameter y
quantifies how the COP and the cooling power change in the
presence of a non-negligible interaction energy between the
refrigerant and the engineered cold reservoir.

012217-4
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In order to remain in the operation regime of a refrigerator,
the thermodynamic quantities must satisfy the constraints
—(0%) > 0, (Whet) > 0, and (QF) < 0. These constraints im-
ply that the interaction-energy parameter must be positive, i.e.,
y > 0 (see Appendix B). For our specific refrigerator cycle,
the COP can be also written as € = yegy,, where €% =
wr, [(wo — wy,) (see Appendix C). Therefore, the interaction-
energy parameter should be upper bounded by 1 so that the
COP is smaller than the Otto COP. For a wide range of
parameters, we verified numerically that our refrigerator does
not surpass the Otto COP. If one assess the performance of
the refrigerator ignoring this parameter y, either by simply
not accounting for it or because one might not be aware if
the interaction energy is not negligible, the performance of
the refrigerator will be overestimated by precisely 1/y. More
specifically, ignoring a parameter of y = 0.9, the COP and
the cooling power would be overestimated by about 11%,
meaning that the computed COP and cooling power will be
11% larger than the true COP and cooling power.

Before we present our numerical analysis, we note that
we have chosen a driving Hamiltonian that commutes at
different times, [H™(¢), H*®™(¢')] = 0. This implies an Otto
cycle without quantum friction [25,38,80,86-91]. We assume
this dynamics for the driving Hamiltonian in order to solely
focus on the non-Markovian aspects of the Otto cycle. Since
our refrigerator has no quantum friction, in the Markovian
regime where the interaction energy is negligible, y = 1, the
refrigerator reaches the Otto COP, € = €pyo. In the case of
the non-Markovian regime, even in the absence of quantum
friction, the Otto COP will not be generally reached, due to
the presence of the interaction energy.

In the following, we performed a numerical simulation
of our quantum Otto refrigerator, assuming energy scales
compatible with quantum thermodynamics experiments per-
formed in NMR setups [42,79-82]. The initial and final gaps
of the compression stroke are chosen as wy /2w = 3.6 kHz and
wy, /27w = 2.2 kHz, respectively. The cold (7;) and hot (7})
temperatures are chosen such that 7, = 1/(2.5w-,) and T}, =
1/(2.5wp) with inverse temperatures given by 8. = 1/T. and
Bn = 1/T,,. Finally, we assume that the vacuum decay rates of
the cold and hot Markovian reservoirs are y, = y, = 20 Hz,
where y. = k from Sec. IT A.

We see in Fig. 2 that the Markovian regime (dashed black
line) reproduces the expected results. The COP reaches the
Otto limit, since there is no quantum friction in our cycle.
Furthermore, the cooling power (I') decreases for second
strokes of long duration, for both the non-Markovian and
the Markovian regimes. We can clearly see the effect of the
non-Markovian dynamics on both the COP and the cooling
power, which is to induce oscillations of different amplitudes
and frequencies, depending on the ratio J/«. For a larger ratio
of J/«k [solid red line in Fig. 2(b)] the cooling power oscillates
quite more frequently but does not have a maximum value that
exceeds considerably the maximum of a moderate ratio of J/«k
[dotted blue line in Fig. 2(b)]. In the non-Markovian regime,
the oscillation frequency increases considerably, meaning that
a better control of the allocation time on the second stroke
is needed to end up in the peak of the cooling power curves.
On the other hand, in Fig. 2(a), a larger ratio of J/k (solid
red line) degrades considerably the COP and the timescale
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1.25 =

1.20-”

1.15 4

1.10 4

cop

1.05 -
1.00 |

0.95 -

0.90 + o 5 10 15 20

0 20 40 60 80 100 120
A7, (ms)

2.0 1

1.5 1

0
S
B
% 1.0
Nal
=

051!

0.047
0 20 40 60 80 100 120
A7, (ms)
— J/k=40 - J/k=10 -=-- J/k=05

FIG. 2. COP (a) and cooling power (b) as a function of the time
of the second stroke Az, for three values of the ratio J/«: 40 (solid
red line), 10 (dotted blue line), and 0.5 (dashed black line). The
oscillations of the COP are very fast, as seen in the inset of (a), and
hence the oscillations seen in (a) represent just a coarse graining of
the actual oscillations. From both figures we can see that the larger
the ratio J/« is, which implies a larger effect of the non-Markovian
dynamics, the larger the effect on the performance as well, namely,
larger oscillation amplitudes and frequency of oscillations. For the
Markovian regime (J/k = 0.5), there is no oscillation in the cooling
power, and the COP is the Otto COP, as expected from the fact that
our cycle has no quantum friction. We considered 7; = 0.75 ms.

for the oscillations are much smaller than for the cooling
power [compare the insets in Figs. 2(a) and 2(b)]. This means
that for larger values of J/k an extremely good amount of
control should be necessary to make the refrigerator operate
in the maximum of the corresponding COP. We also see that,
for a moderate ratio of J/x (dotted blue line), although the
COP is smaller than the Otto COP it remains very close to
it throughout the time range considered in the plot. In other
words, the value of the COP for moderate values of J/k
does not change much from its asymptotic value (reached
for long time durations of the second stroke Art.). There-
fore, for our model of an engineered cold reservoir, we can
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(a) Otto COP
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FIG. 3. COP (a) and cooling power (b) as a function of the ratio
J/k for three values of the duration of the second stroke Atz.: 3
ms (dotted blue line), 50 ms (solid red line), and 120 ms (dashed
black line). The Markovian regime corresponds to values of about
or smaller than J/x = 0.5. The gray area on both figures shows the
region of J/x values for which the cooling power is close to its
maximum. We considered 7, = 0.75 ms.

conclude that a moderate non-Markovian dynamics (J/x =
10) performs generally better than a Markovian (J/x = 0.5)
or a strong non-Markovian (J/k = 40) regime. Comparing to
the Markovian regime, the moderate non-Markovian regime
has almost the same COP and improves considerably on the
cooling power, whereas, comparing the moderate (dotted blue
line) with the strong (solid red line) non-Markovian regime,
the COP is larger while the cooling power oscillates with a
smaller frequency, making it easier to adjust the cycle time to
operate in the optimal regimes.

We now fix three values for the duration of the second
stroke A1, and analyze how the performance of the refrigera-
tor changes with the ratio J/k (see Fig. 3). For a long second
stroke, At. = 120 ms (dashed black line), the refrigerator and
auxiliary qubits practically reach their asymptotic states. We
see that the COP degrades very quickly with increasing J/«,
and that in the Markovian regime (J/x 2 0.5) it reaches the
Otto COP [see dashed black line in Fig. 3(a)]. The cooling

power, on the other hand, stays constant, showing that in the
asymptotic regime the non-Markovian regime is no better or
worse than the Markovian regime [see dashed black line in
Fig. 3(b)]. For a moderate duration of the second stroke, the
COP still decreases quickly but with an oscillating profile,
whereas the cooling power also does not represent a big dif-
ference between the non-Markovian and Markovian regimes
[see solid red lines in Figs. 3(a) and 3(b)]. As expected, for a
very short duration of the second stroke [see dotted blue lines
in Figs. 3(a) and 3(b)] and for the Markovian regimes, the
COP is the Otto limit and the cooling power is close to zero,
since the refrigerant has not much time to absorb the energy
from the cold reservoir. When the ratio J/k starts to get larger,
the non-Markovian dynamics starts to impact more strongly.
The cooling power starts increasing and then oscillates. It is
interesting to note that, even though the COP is strictly smaller
than the Otto COP for the non-Markovian regime, it stays
very close to the Otto COP for a reasonable portion of the
initial values of J/«. Then, there is a brief decay in the COP
which starts increasing again and stays almost constant before
decreasing abruptly. This behavior is notably different than
for a moderate duration of the second stroke. We highlighted
in gray the range of the J/k parameter for which the cooling
power is close to its maximum. For these shaded regions
[in Figs. 3(a) and 3(b)], the COP is about 99.8% and about
97.2% of the Otto limit, for the first and second highlighted
region from left to right, respectively. These regions point out
the most interesting parameter regimes in which the refrig-
erator should be operated, among the three plotted curves.
Figures 3(a) and 3(b) show also how the short duration of the
second stroke makes a huge difference in the performance of
the non-Markovian refrigerator.

We finish our discussion in this section by showing how the
mutual information between the refrigerant and the auxiliary
qubit changes in the second stroke (see Fig. 4). The mutual in-
formation is given by IS5 = S(p5 ) + S(p2 ) — S(p3*), where
psz, pfz, and p?z are the composite SA, the refrigerant S, and
the auxiliary qubit A states at the end of the second stroke. The
quantity S(p) = —Tr[p In p] is the von Neumann entropy. We
see that, for J/x = 40 (solid red line), the mutual information
oscillates very rapidly, reaching a finite value at the end,
showing that the asymptotic SA state is correlated [72]. For
a moderate non-Markovian dynamics, J/k = 10 (dotted blue
line), the mutual information also oscillates, but with a smaller
frequency, reaching almost zero at the end. For the Markovian
regime, J/k = 0.5 (dashed black line), the mutual information
is almost zero everywhere. Comparing the oscillations in
the inset of Fig. 4 and those of the inset of Fig. 2(b), we
see that the peaks of the cooling power are not associated
directly to the peaks of the mutual information. The same
conclusion applies comparing the mutual information with the
inset of Fig. 2(a). This shows that, although the presence of
mutual information is important because it is related to the
non-Markovian dynamics, the improvement of the refrigerator
performance is not directly related to the correlation created
between the refrigerant and the engineered cold reservoir.

IV. CONCLUSIONS

We analyzed the performance of a quantum Otto refrig-
erator the refrigerant of which interacts with an engineered
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FIG. 4. Mutual information /> between the refrigerant and the
auxiliary qubit at the end of the second stroke. For the strong non-
Markovian regime, the solid red line with J/k = 40, the mutual
information oscillates very rapidly (see the inset). The oscillatory
behavior of the plot is a coarse graining of the true oscillations. We
can see that in the asymptotic regime, for a long duration of the
second stroke, the SA system reaches a correlated state with given
mutual information. In the Markovian regime the correlations are
zero (dashed black line) while for a moderate non-Markovian regime
(dotted blue line) it oscillates less frequently and almost reaches
zero at the end. We considered 7y = 0.75 ms and 1 nat = 1/In2 =~
1.44 bit.

cold reservoir, comprised by a Markovian reservoir and an
auxiliary two-level system. Depending on the coupling be-
tween the refrigerant and the structured cold environment
the dynamics of the refrigerant can be either Markovian or
non-Markovian, changing the performance of the refrigerator.
In our model, the non-Markovian regime is reached when the
interaction between the refrigerant and the reservoir is strong,
in the sense that the contribution of the interaction energy
between the refrigerant and the engineered reservoir cannot be
neglected. Concisely, the heat removed from the cold reservoir
(the prime purpose of a refrigerator) is not the heat absorbed
by the refrigerant, because the interaction Hamiltonian stores
a nontrivial amount of energy.

Taking the interaction energy into account, we defined the
figures of merit for the refrigerator: the COP, the cooling
power, and the injected power. We showed that the interaction-
energy contribution can be recast as a parameter y, given by
Eq. (10), multiplying the usual expressions for the COP and
cooling power, which disregard such a contribution. These
analytical expressions are valid irrespective of the nature
of the quantum refrigerant. In light of these expressions,
we can conclude that an overestimation of the refrigerator
performance would be made if such an interaction-energy
contribution was ignored in the analysis. In fact, it is in
principle possible to find an operation regime in which one
might think the refrigerator is working properly, because the
refrigerant is absorbing energy, but in fact it is not operating
as a refrigerator at all, i.e., there is no energy being removed

from the cold reservoir. The increase in the refrigerant energy
comes solely from the interaction energy.

Performing a numerical analysis, we observed the expected
behavior for the Markovian regime of operation, reached for
a sufficiently small coupling between the refrigerant and the
engineered cold reservoir. On the other hand, for the non-
Markovian regimes of operation, we see that both the COP
and the cooling power start oscillating, a feature coming
from the backflow of information from the non-Markovian
environment. Both COP and cooling power oscillate faster as
the coupling and the non-Markovian effect increase, but the
COP decreases significantly as well, while the cooling power
increases slightly for a small time of interaction between them
(duration of the second stroke). We conclude that, at least for
the model considered in our paper, a moderate non-Markovian
effect improves the performance of the refrigerator, if com-
pared to the Markovian or strong non-Markovian regimes. We
also point out that in order to exploit the non-Markovian ef-
fects it is important to operate the refrigerator in a sufficiently
short interaction timescale between the refrigerant and the
engineered cold reservoir.

The finite-time performance of the present quantum Otto
refrigerator may be enhanced by the information backflow
provided one has sufficient control over the time allocated
in each stroke. The parameters considered in the numerical
simulation can be experimentally realized with current tech-
nologies, for instance, in nuclear magnetic resonance setups.
Along with other studies addressing non-Markovian effects
in quantum thermodynamics, we hope that our analyses help
to unveil the role of memory effects in quantum thermal
machines.

ACKNOWLEDGMENTS

We thank Ivan Medina and Wallace S. Teixeira for
fruitful discussions during the early stages of this work.
We acknowledge financial support from Universidade Fed-
eral do ABC (UFABC), Conselho Nacional de Desenvolvi-
mento Cientifico e Tecnolégico (CNPq), Coordenacdo de
Aperfeicoamento de Pessoal de Nivel Superior (CAPES),
and Fundacdo de Amparo a Pesquisa do Estado de Sao
Paulo (FAPESP). This research was performed as part
of the Brazilian National Institute of Science and Tech-
nology for Quantum Information (INCT-IQ). P.A.C. ac-
knowledges CAPES and Templeton World Charity Foun-
dation, Inc (TWCF). This publication was made possible
through the support of Grant No. TWCF0338 from TWCF
JLEG.S. acknowledges support from FAPESP (Grant No.
19/04184-5).

APPENDIX A: MASTER EQUATION OF THE
NON-MARKOVIAN MODEL

The master equation of the non-Markovian model em-
ployed is given by Eq. (3). Here, we provide some details
on the derivation of this master equation. We will follow the
approach of Refs. [92,93].
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We begin considering the diagonalization of the two-qubit
Hamiltonian [Eq. (2)]

hw'

A — Z 70;‘ + ool (A1)
i=S,A
The eigenvectors and eigenvalues are
h
|E3) = «|00) + &|11) and E3 = 5\/4J2+£22, (A2)
h
|E,) = n]|01) — §|10) and E, = 5\/4J2+A2, (A3)
|E1) = 6|01) + n|10) and E; = —E), (A4)
|Eo) = —£]00) 4+ «|11) and Ey = —Fj3. (AS)

We introduced the parameters A = @’ — o, Q=% +

Q+ VAT + Q2

o = s
\/4J2 +(Q+ V42 +Q2)
27

£ = ;
\/412 +(Q+ V4J? + Q?)?
A+ 4J?+ A2
T] =
\/4J2 + (A + V4J? + A?)?

(A6)

(AT)

; (A8)

and
—2J

§= .
\/412 + (A + V4% + A?)?

The master equation of the two-qubit system is given by
[93-95]

(A9)

St = L [HN g4 D), (A0
t h
where
D)= > ykz(w)[Amw)p?AAz(w)
weF k,i=1,2
1
- S Al @A), pf*‘}] (AL

is the dissipator superoperator. We note that we have disre-
garded the Lamb-shift Hamiltonian since it contributes to an
overall energy shift. The set F is comprised by all, positive
and negative, transition frequencies w,,, = (E,, — E,)/h for
m,n € {0, 1, 2, 3}. Since the composite system SA is a four-
level system, there are 12 transition frequencies, six positive
and six negative, w,, and w,, = —w,;,; With n < m, respec-
tively. As we will explain below, among the six positive (or
negative) transition frequencies only two doubly degenerate
ones are relevant to our problem (see Fig. 5). The positive
transition frequencies are wg; = w3 = €1 and wyy = W13 =
€, where

€ = AV 472 — VA2 402 (A12)

and

e = V@242 + /A2 1407, (A13)

Es

€1

€2
€1

Ey

FIG. 5. Transition frequencies. Among the six positive frequen-
cies (from a low- to a high-energy level) only four appear on the
master equation due to the structure of the interaction Hamiltonian.
These are shown in the energy diagram.

Before we proceed, we rewrite the interaction Hamiltonian
[Eqg. (1)] of the two-qubit system and the heat reservoir as

VAR = / do h()(o? @ b, + 04 @ b))
0
=AI Q@B +4,® B, (Al4)

where o1 = (0x £ioy)/2 and the continuum limit has
been taken at the Hamiltonian level [93]. The defined

Omax bl +b,
operators are Aj = o}, Ay =o', B| = ["™ dwh(w)=5

2 9
iby—ib! . .
and B, = fow'““‘ dw h(a))%. Using the relation B; =
f_”’E dw B;(w), one can obtain the operators B (w) = %,
+ .
Bi(—w) = 5%, Ba(w) = %5, and By(~w) = —i*P,

Since there are two reservoirs operators, k,/ € {1,2} in
Eq. (A11) and, therefore, there are four decay rates for each
transition frequency w € F.

First, we find the decay rates for a given w, which are given
by the formula [93]

+o00 )
Yi(w) = / ds e Trg[By(s)B; p*4]

o0

= 27 Trg[By(w)B; p®], (A15)

where w € F and p®® is the Gibbs state of the reservoir.
Knowing that TrR[awaL,,oR’eq] = [1 + ngp(w)]é(w — @),
Trrla)au pR] = npe(@)8(w — '), and Trgldaua. p] =
Trg [aLaL,pR’Cq] = 0, one can show for the positive transition
frequencies w € Fy = {w € F|w > 0} that

yi () = %J(w)[l + npE()], (A16)
yio(w) = —i%J(w)[l + npg(@)], (A17)
yor(@) = i%f(w)[l + npg(@)], (A18)
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and

yr(w) = %J(w)n + np(@)], (A19)

where npg(w) = (e#™ — 1) is the Bose-Einstein distri-
bution and J(w) = [h(a))]2 is the spectral density. On the

Yo (—w) = —i%f(w)ngg(w), (A22)

and
yon(—w) = %J(w)nBE(w). (A23)

Now, we need the operators Ai(w), which come

A A :
other hand, for the negative transition frequencies w € F_ = £r0r[r;3tlglz] system operators o and ;. They are given
{w € F|w < 0}, one finds y 2

Ak(wnm) = Z HnAkas (A24)
T - =W,
V(=) = ZJ(@)npe(), (A20) En=En=om
. where the projection operators are I1, = |E,)(E,|. Since A| =
Yi(—w) = iEJ(a))nBE(a)), (A21) 1°®ocfandA =15® a}{* one can show that
J
0 an — 8§ —(ad + né) 0
. an — 6& 0 ad + né
A Iy = —(ad + né) 0 an — 8¢ (A25)
0 ad +né an — 8¢ 0
and
0 ilan +688) —i(ad —né) 0
_ | —ilen+38) 0 i(ad —né)
ATl = |0 — ) 0 i(an + 88) (A26)
0 —i(ad —n&) —ilan + 88) 0

Note how the operators Ay (w) associated with the transition frequencies wg3, w3g, w12, and w,; are identically zero. That is why
these transition frequencies are not relevant, i.e., because their associated operators are zero due to the structure of the interaction
Hamiltonian. Explicitly, one has

Ar(er) = oA IT + TTHA I3, (A27)

Ar(e2) = MpAr T + 1A I, (A28)

Ar(—€)) = AZ(E 1), and Ay (—ey) = A;(Gz), for k € {1, 2}. In summary, there are four system operators, two for each nondegen-
erate transition frequency €; and €,. This means that there will be four dissipative channels in the master equation [see Eq. (3)].
Replacing the decay rates y4;(w) and system operators A (w), one obtains the master equation employed, the dissipator of which
is given by

D(pP*) =y (en[Li(enpP L (er) — H{LI(e)Li(er), pP*}] + v () [La(e)pP Ly (e2) — ${L}(e2)La(e2), pP*}]
+ v ED[L](eNpf Li(er) — H{Li(eDL] (1), pF*}] + v (€)[Li(e2)pf  La(er) — HLa(e2)Li(€2), p§*}], (A29)

where  y'(e) = ZJ(enpe(er),  yY(er) = SJ(e0ll +npe(en)],  Li(e)) = 2an(|Eg)(Ei| + |E2)(Es]), and  Ly(e) =
206(—|Ep)(Ea| + |E1)(E3]). We considered the spectral density to be J(w) = /7.
[
APPENDIX B: COEFFICIENT OF PERFORMANCE, can rewrite the second factor as
COOLING POWER, AND INJECTED POWER i
; ~ ~ () () Bl Qi)

Here we derive the expressions for the coefficient of per- ; = ¢ =_—|1+ h . (B2)

formance, cooling power, and injected power in terms of the (Wnet> <Qh> + (Q(S) ﬁh(Qf)

interaction energy and COP lag. The COP ¢ is written as
We now find an expression for the two heat quantities.

Applying the identity D(o||p/*) = BIU () — F] —
S(p;) to the states at the end of the first and second strokes,
respectively, we obtain

D(py,||05) = B[U(pr) = Fi¥] = S(py)  (B3)

c_Tled) _(,, avr) (o)
=) (1 "] )(wsﬁ)’ BD

where we used Eq. (6). The first factor is the y parameter; we

now work with the second factor, which only depends on the
refrigerant quantities. From the first law of thermodynamics
applied to a closed cycle, (WIS) + (W3S) = —(Qi) — (Qf), we

and

D(ps,||053) = Be[U(pr,) = 5] = S(pr,). (B4
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From these two equations we can write
[U(pe) = Up)] = B [D (0] [99) = D(pa|[59°)]
+ B [S(or) = S(pn)]. (BS)

where we used that F,™ = F;,* since H,, = H;, and the
inverse temperature J. is the same
In a similar way,

[Upe) = Ulpa)]

= B, ' [D(pa [ p5") — D (s || 50")]
+ B, [S(pz) — S(0=)] (B6)

where we used that F2%" = F2%" since H,, = H,, and the
inverse temperature B is the same. Then, the heats absorbed
by the refrigerant during the second and fourth strokes are,
respectively,

(02) = 8 [D(pr,

and

P3I) = D(py || p33)] + B AS, (BT)

(05) = =B, 'D(pr||2") + B, ' ASs, (B8)

where we used the assumption that the final state of the fourth

stroke is always the thermal state, hence D(ps"|| o) = 0
Substituting Eq. (B8) into Eq. (B2) we obtain
ASy — D(py, || 52"
e=—y|1+ (p;||p AN . (B9)
'3h<Qc>

For conservation of entropy in the cyclic cycle, AS; + ASy =
0, we use AS; from Eq. (B7) into Eq. (B9). Substituting we

obtain
| 1
¢ = y( " .c) , (B10)
€Carnot
where €camor = (Be/Bn — 1)~ ! is the Carnot COP and
£ = Ploalloi) = Dlolloi) + Do loit”) -

Br{Q2)

is the COP lag. Just rearranging the terms we get Eq. (8).

In order to operate in the refrigerator regime the engineered
cold reservoir must release heat, hence —(QF) > 0. The first
law applied to the refrigerant and engineered cold reservoir
gives AUSR = (Q5) + (QR) + AVSR = 0. From the sign con-
straint we get — (QR) (QS) + AVSR > (. Dividing by (QS)
on both sides of the inequality we get y > 0. Therefore,
the positivity of the parameter y is a necessary condition to
operate the refrigerator.

APPENDIX C: REACHING THE OTTO COP

In order to know when the Otto COP is reached it is more
instructive to write the COP in terms of another lag, which

contains the quasistatic reference state in the divergences. The
quasistatic state ,0?] , respectively pq, is the state reached if
the driving of the first, respectively, the third, stroke is per-
formed quasistatically (infinitely slowly). Taking these states
as the reference states for the divergence one can show the
identities

(;Or] | |I0qS h) ,BhF()eq’h

ﬁh%U(lofl) - _S(pfl) (CD

T
and

S, Wr,
(prsHpq ) ,Bcw_oU(pr )

We note that these two identities are derived assuming a
qubit or harmonic oscillator refrigerant [38]. Using S(o,) =

S(po) = BuU (po) — BrFs®" into Eq. (C1) we obtain
(pn ‘ ’pqSh) 0 U(IOTI) -

SimilarIY7 USing S(Prg) = S(/Orz) = ,BCU(prz)
D(py, || 5y into Eq. (C2) we obtain

D(p || o) = ﬁciU(pu)JrD(przllpeq‘)

,BcFeq “ (pr3)- (C2)

prU(po).  (C3)

,3 eqc
c

BeU (pr,)-

(C4)
Substituting U (pg) from Eq. (C3) and U (p,) from Eq. (C4)
we write

s
,Bh(Qh)z_a)o_ F ’ ©5)

Bu{0S) @ B(0Y)

where

F = D(pq ||05%) + 2 [D(pe || 085) = D(pu ] |955)].

Pewr,
(Co)
The ratio in Eq. (C5) appears in the expression for the COP in
Eq. (B2). Substituting Eq. (C5) into Eq. (B2) we finally obtain

-1
1 F
= , C7
¢ y(emo ,3h<QS>) ©D

where €ono = Wy, /(Wo — wy,) is the Otto COP. The COP can

be equivalently written as

€ = )/&. (C8)

I+ 60&0@

With this expression for the COP we can see how one can
reach the Otto COP. If there is no coherence in the energy ba-
sis being generated in the first or third strokes, a condition we
satisfy by imposing that the driving Hamiltonian commutes
at different times, then one can show that 7 = 0 [38]. The
resulting COP, in this case, becomes € = y €gyo, Which is the
COP that is valid for our refrigerator. If the parameter y = 1,
which is the case when the coupling between the refrigerant
and the engineered cold reservoir is sufficiently small, the
COP reaches the Otto COP, even operating at finite times.
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