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The main focus of this paper is on bilevel optimization on Hilbert spaces involving two monotone equilibrium bifunctions. We present a new achievement consisting on the introduction of inertial methods for solving this type of problems. Indeed, two several inertial type methods are suggested: a proximal algorithm and a forwardbackward one. Under suitable conditions and without any restrictive assumption on the trajectories, the weak and strong convergence of the sequence generated by the both iterative methods are established. Two particular cases illustrating the proposed methods are thereafter discussed with respect to hierarchical minimization problems and equilibrium problems under a saddle point constraint. Furthermore, a numerical example is given to demonstrate the implementability of our algorithm. The algorithm and its convergence results improve and develop previous results in the field.

Since this abstract variational formulation constitutes a convenient unified mathematical model for many problems in the life sciences, it plays a central role in applied mathematics, for instance in optimization theory, variational and hemivariational inequalities, fixed-point and saddle point problems, network equilibrium problems, Nash equilibrium and others areas, (see for instance [START_REF] Blum | From optimization and variational inequalities to equilibrium problems[END_REF][START_REF] Brézis | A remark on Ky Fan's minimax principle[END_REF][START_REF] Chadli | Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities[END_REF][START_REF] Mosco | Implicit variational problems and quasi variational inequalities[END_REF] and the bibliography therein). One of the most popular numerical approach for solving (EP) is the proximal point method (PPM) well known in convex optimization since Martinet and Rockafellar. Let us remind that given a bifunction f , the resolvent of f (see, [START_REF] Blum | From optimization and variational inequalities to equilibrium problems[END_REF]) is defined for each λ > 0 by

J f λ (x) := {z ∈ K : f (z, y) + 1 λ z -x, y -z ≥ 0, ∀y ∈ K}.
Using this concept of resolvent for monotone bifunctions, Moudafi [START_REF] Moudafi | Proximal point algorithm extended to equilibrium problems[END_REF] proposed and analyzed a proximal method for solving general equilibrium problems. This proximal method generates the next iterate x n+1 , for each n ≥ 0, by solving the subproblem

x n+1 = J f rn (x n ), i.e., f (x n+1 , y) + 1 r n x n+1 -x n , y -x n+1 ≥ 0, ∀y ∈ K, (1) 
where {r n } is a sequence of nonnegative numbers. Supposing the monotonicity of f, Moudafi [START_REF] Moudafi | Second-order differential proximal methods for equilibrium problems[END_REF] proved the weak convergence of the sequence {x n } generated by the algorithm (1) to a solution of (EP). Thereby, a great interest has been brought to the study of (EP) by means of splitting proximal point (or backward) methods. One can consult [START_REF] Antipin | Convergence and estimates for the rate of convergence of proximal methods to fixed points of extremal mappings[END_REF][START_REF] Burachik | On a generalized proximal point method for solving equilibrium problems in Banach spaces[END_REF][START_REF] Moudafi | Proximal and dynamical approaches to equilibrium problems[END_REF] and the references therein.

Given its growing interest in applications to different applied fields, the problem (EP) is currently considered as one of the important research directions in which the optimization community is interested. Indeed, the study of the existence of a solution to this problem still falls within the scope of very recent studies concerning new methods of resolution. Let us cite in this sense the article [START_REF] Cotrina | An existence result for quasi-equilibrium problems via Ekeland's variational principle[END_REF], in which the authors use the Ekeland variational principle, to prove, in complete metric spaces and without any assumption of convexity, the existence of solutions to equilibrium and quasi-equilibrium problems. The bibliography of this article refers to new equilibrium concepts in which quasi-monotonicity and quasi-convexity are relaxed.

Given two real-valued bifunctions f and g defined on K × K, in this paper we will focus on the more general problem (BEP): Find x ∈ S f such that g(x, y) ≥ 0, ∀y ∈ S f , (BEP)

where S f stands for the set of constraints and is defined by

S f := {u ∈ K : f (u, y) ≥ 0, ∀y ∈ K}. (2) 
We will assume throughout that the solution set to (BEP), denoted by S, is nonempty.

Problem (BEP) was implicitly introduced by Chadli, Chbani and Riahi [START_REF] Chadli | Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities[END_REF] in the setting of the so-called viscosity principle for equilibrium problems. This principle aims at a good selection of the upper equilibrium among solutions to the lower level equilibrium problem. This class of hierarchical problems covers in both levels, all the cases cited previously for an equilibrium problem. Besides their unification aspect, bilevel equilibrium problems have proved over the past two decades, very good applicability in different fields covering mechanics, engineering sciences and economy, see [START_REF] Dempe | Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints[END_REF] and references therein.

More attention was then given to this class of problems with regard to, either the existence of solutions via dynamic and algorithmic approaches, or of the parametric stability point of view. The interested reader can consult the following recent contributions [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF][START_REF] Bento | Generalized proximal distances for bilevel equilibrium problems[END_REF][START_REF] Chbani | From convergence of dynamical equilibrium systems to bilevel hierarchical Ky Fan minimax inequalities and applications[END_REF][START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algo-rithms for bilevel equilibrium problems[END_REF][START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF][START_REF] Thuy | A projected subgradient algorithm for bilevel equilibrium problems and applications[END_REF] and the references therein. In recent years, algorithmic solving procedures have been widely studied to solve (BEP). For instance, Moudafi [START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF] used a penalty method [START_REF] Chadli | Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities[END_REF] and introduced the regularized proximal point method (RPPM). This algorithm is described as follows: from a starting point x 0 ∈ K, for each n ≥ 0, the next iterate x n+1 is defined by the proximal iteration x n+1 := J f +βng λn (x n ), i.e., f (x n+1 , y) + β n g(x n+1 , y) + 1 λ n x n+1 -x n , y -x n+1 ≥ 0, ∀y ∈ K,

where {β n } and {λ n } are two sequences of nonnegative reals. More precisely, under suitable assumptions on the bifunctions f and g, Moudafi proved that the sequence {x n } generated by the algorithm (3) converges weakly to a solution of (BEP) provided that lim inf

n→+∞ λ n > 0, +∞ n=0 λ n β n < +∞ and x n+1 -x n = o(β n ). (4) 
The drawback of the last assumption is the difficulty to choose such a control sequence (β n ) because we do not know the convergence rate of x n+1 -x n . This led Moudafi [START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF] to conjecture that this limiting assumption can be removed via the introduction of a conditioning notion for equilibrium bifunctions. Later on Chbani et al. [START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algo-rithms for bilevel equilibrium problems[END_REF] considered an alternate proximal scheme, which generates the next iterates x n+1 by solving the regularized problem x n+1 := J βnf +g λn (x n ), i.e.,

β n f (x n+1 , y) + g(x n+1 , y) + 1 λ n x n+1 -x n , y -x n+1 , ∀y ∈ K. (5) 
In this paper, the difficulty of the method (RPPM) mentioned in [START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF] has been solved. Following [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF] and under a similar geometric assumption formulated in terms of the Fenchel conjugate of the bifunction f , they analyzed the weak and strong convergence of their algorithm to a solution of (BEP). More recently, in [START_REF] Riahi | Weak and strong convergences of the generalized penalty Forward-Forward and Forward-Backward splitting algorithms for solving bilevel hierarchical pseudomonotone equilibrium problems[END_REF], the authors proposed a forward-forward algorithm and a forward-backward algorithm for solving (BEP) under quite mild conditions supposing that the bifunctions of the two level equilibrium problems are pseudomonotone.

As a continuation of the studies of equilibrium problems by means of proximal iterative methods, we propose an inertial proximal method for solving (BEP). It is well known that the inertial proximal iteration, where the next iterate is defined by making use of the previous two iterates, may be interpreted as a discretization of differential systems of second order in time. The presence of inertial terms improves the convergence behavior of the generated sequences. We emphasize that the origin of these methods dates back to [START_REF] Alvarez | An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping[END_REF] as part of the approach to a solution of an abstract inclusion of the form: find x ∈ H such that

0 ∈ A(x), (6) 
where A : H ⇒ H is a maximally monotone operator, and the solution set A -1 ({0}) is assumed to be nonempty. In this regard, giving two sequences of nonnegative numbers {α n } and {λ n }, the authors in [START_REF] Alvarez | An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping[END_REF] considered the following iterative scheme:

x n+1 -x n -α n (x n -x n-1 ) + λ n A(x n+1 ) 0, (7) 
and proved the weak convergence of the sequence {x n } generated by the above algorithm towards a solution of ( 6) under appropriate conditions on the parameters {α n } and {λ n } whenever the restrictive assumption

+∞ n=1 α n x n -x n-1 2 < +∞ holds.
Let us consider the second-order differential system in time

ẍ(t) + α ẋ(t) ∈ P T u (-∂ (g + βf ) (x(t), •)x(t)), (8) 
where

T u = cl(R + (C -u))
is the Bouligand tangent cone to C at u ∈ C and P K is the orthogonal projection onto a closed convex set K and defined as

P K (x) = inf u∈K x-u .
For solving the problem (BEP), we propose two approximate inertial proximal schemes. Each of them is derived from a different discretization of (8). This approach is inspired from the results presented in [START_REF] Moudafi | Second-order differential proximal methods for equilibrium problems[END_REF] and the contributions [START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algo-rithms for bilevel equilibrium problems[END_REF][START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF].

• The first scheme (Algorithm (IPA)) is expressed as an inertial prox-penalization algorithm. It is considered in order to reach a solution to the two-level equilibrium problem (BEP) in its general form (i.e., the two associated bifunctions f and g are arbitrary). • The second scheme (Algorithm (IFBA)) is expressed as an inertial forwardbackward algorithm. It is specifically designed to handle the situation where f (x, y) = Bx, y -x , and B : H → H is a single-valued and cocoercive operator.

Algorithm 1: (Inertial proximal algorithm (IPA)).

Initialization: Choose positive sequences {β n }, {λ n }, and a nonnegative real number α ∈ (0, 1 3 ). Take arbitrary x 0 , x 1 ∈ K.

Iterative step: For every n ≥ 1 and given current iterates x n-1 , x n ∈ K set y n :=

x n + α(x n -x n-1 ) and define x n+1 ∈ K by x n+1 := J βnf +g λn (y n ), i.e.,

β n f (x n+1 , y) + g(x n+1 , y) + 1 λ n x n+1 -y n , y -x n+1 ≥ 0, ∀y ∈ K. (9) 
Due to the significant difficulty in computing the resolvent J βnf +g of β n f + g compared to computing the resolvent of f and g separately, an alternative approach is proposed. This is the object of the algorithm (IFBA) presented below.

Algorithm 2: (Inertial forward-backward algorithm (IFBA)).

Initialization: Choose positive sequences {β n }, {λ n }, and a nonnegative real number α ∈ (0, 1 3 ). Take arbitrary x 0 , x 1 ∈ K.

Iterative step: For every n ≥ 1 and given current iterates

x n-1 , x n ∈ K set y n := x n + α(x n -x n-1 ) and define x n+1 ∈ K by x n+1 := J g λn (y n -β n λ n Bx n ), i.e., β n Bx n , y -x n+1 + g(x n+1 , y) + 1 λ n x n+1 -y n , y -x n+1 ≥ 0, ∀y ∈ K. (10) 
In the above algorithms, {λ n } denotes the sequence of step sizes, {β n } the sequence of penalization parameters, and α ∈ (0, 1 3 ) the parameter that controls the inertial terms. The proposed numerical scheme (IPA) recovers, when α = 0, the algorithm investigated in [START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algo-rithms for bilevel equilibrium problems[END_REF], and if in addition f = 0, the one suggested in [START_REF] Moudafi | Proximal point algorithm extended to equilibrium problems[END_REF]. The Fitzpatrick transform of the bifunction f will be a key ingredient in our convergence analysis. Indeed, we provide conditions under which the sequence generated by the algorithm (IPA) weakly or strongly converges to a solution of (BEP). More precisely, under a discrete counterpart [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF] of the geometric condition used in [START_REF] Chbani | From convergence of dynamical equilibrium systems to bilevel hierarchical Ky Fan minimax inequalities and applications[END_REF] and formulated in terms of the Fitzpatrick transform of the bifunction f , we first prove that (see Theorem 2.3) the sequence generated by (IPA) weakly converges to a solution of (BEP) provided that 0 ≤ α < 1 3 , lim inf λ n = +∞, we show (see Theorem 2.4) the strong convergence of the trajectories generated by the algorithm (IPA) to the unique solution of (BEP). Then, we show (see Theorem 2.5) that, without the need of the geometric assumption [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF], the sequence converges strongly to the unique solution of (BEP) when the parameters λ n and β n satisfy additionally the conditions : lim n→+∞ λ n = 0, lim n→+∞ β n = +∞ and lim inf n→+∞ λ n β n > 0. In the subsequent step of the work, we state and prove (see Theorem 3.3 and Theorem 3.4) the main results concerning the weak and the strong convergence of the sequence generated by (IFBA). The main advantage of our approach is that it provides convergence without any restrictive assumption on the trajectories. The convergence results of (IPA) can be seen as an extension to the second order counterparts of the ones given in [START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algo-rithms for bilevel equilibrium problems[END_REF][START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF]. To our knowledge, such inertial proximal schemes have been studied only for the first level equilibrium problem (EP), see for instance [START_REF] Chbani | Weak and strong convergence of an inertial proximal method for solving Ky Fan minimax inequalities[END_REF][START_REF] Hieu | Strong convergence of inertial algorithms for solving equilibrium problems[END_REF] and the references therein. As applications, we discuss the hierarchical convex minimization case and equilibrium problems under a saddle point constraint.

A numerical experiment is thereafter given to illustrate our theoretical results. We end up the paper by concluding comments.

Background material and technical lemmata

In this section, we give some preliminary results and definitions that will be used in the sequel. Throughout this paper, unless stated otherwise, let K be a nonempty closed and convex subset of a real Hilbert space H. We first recall some well known concepts on monotonicity and continuity of real bifunctions and operators.

Definition 1.1. A bifunction f : K × K → R is called:

(i) monotone if f (x, y) + f (y, x) ≤ 0 for all x, y ∈ K;

(ii) γ-strongly monotone, if there exists γ > 0 such that f (x, y) + f (y, x) ≤ -γ x -y 2 for all x, y ∈ K;

(iii) upper hemicontinuous, if lim t 0 f (tz + (1 -t)x, y) ≤ f (x, y) for all x, y, z ∈ K;

(iv) lower semicontinuous at y with respect to the second argument on K, if f (x, y) ≤ lim inf w→y f (x, w) for all x ∈ K;

(v) an equilibrium bifunction, if for each x ∈ K, f (x, x) = 0 and f (x, •) is convex and lower semicontinuous.

Definition 1.2. An operator B : H → H is said to be:

(i) monotone if Bx -By, x -y ≥ 0 for all x, y ∈ H;

(ii) θ-inverse strongly monotone (or θ-cocoercive) if there exists θ > 0 such that Bx -By, x -y ≥ θ Bx -By 2 for all x, y ∈ H;

(iii) monotone if for every (x, y) ∈ H × H, v ∈ Ax, v ∈ Ay it holds

x -y, v -v ≥ 0;

(iv) maximally monotone, if it is monotone and if it has no monotone extension.

Remark 1. Let B : H → H be θ-cocoercive, with θ > 0. Then B is maximally monotone.

The dual equilibrium problem associated with the bifunction f on K is stated as follows: find x ∈ K such that f (y, x) ≤ 0, ∀y ∈ K.

(DEP)

The set of solutions to (DEP) is called the Minty solution set. The following result gives the link between Minty equilibria and the standard ones.

Lemma 1.3 (Minty's Lemma, [START_REF] Blum | From optimization and variational inequalities to equilibrium problems[END_REF]). (i) Whenever f is monotone, every solution of (EP) is a solution of (DEP);

(ii) Conversely, if f is upper hemicontinuous and an equilibrium bifunction, then each solution of (DEP) is a solution of (EP).

The next lemma introduces the notion of resolvent associated with a bifunction. This concept is crucial in our approach for solving (BEP).

Lemma 1.4. [START_REF] Chbani | Variational principles for monotone and maximal bifunctions[END_REF] Suppose that f : K × K → R is a monotone equilibrium bifunction. Then the following are equivalent:

(i) f is maximal: (x, u) ∈ K × H and f (x, y) ≤ u, x -y , ∀y ∈ K imply that f (x, y) + u, x -y ≥ 0 ∀y ∈ K; (ii) for each x ∈ H and λ > 0, there exists a unique z λ = J f λ (x) ∈ K, called the resolvent of f at x, such that λf (z λ , y) + y -z λ , z λ -x ≥ 0, ∀y ∈ K. ( 11 
)
Moreover, x ∈ S f if, and only if, x = J f λ (x) for every λ > 0 if, and only if, x = J f λ (x) for some λ > 0.

We will make use of the two following useful lemmata for establishing the main results on the convergence of the sequence generated by the algorithms ( 9) and ( 10).

Lemma 1.5 (discrete Opial's Lemma, [START_REF] Opial | Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF]). Let C be a nonempty subset of H and {x k } k≥0 be a sequence in H such that the following two conditions hold:

(i) For every x ∈ C, lim k→+∞ x k -x exists; (ii) Every weak sequential cluster point of {x k } k≥0 is in C.
Then, {x k } k≥0 converges weakly to an element in C. Lemma 1.6. Let 0 < p ≤ 1 and {b k } k≥0 , {w k } k≥0 be two sequences of nonnegative numbers such that, for all k ≥ 0,

b k+1 ≤ pb k + w k . If +∞ k=0 w k < +∞, then lim k→+∞ b k exists. Further, if p < 1 then +∞ k=0 b k < +∞.
Proof. Since b k ≥ 0 for all k and since +∞ k=0 w k < +∞, then the sequence {b k+1k i=0 w i } is bounded from below. We also have

b k+1 - k i=0 w i ≤ pb k - k-1 i=0 w i ≤ b k - k-1 i=0 w i , which implies that the sequence {b k+1 -k i=0 w i } is nonincreasing, hence convergent. It follows that lim k→+∞ b k exists. Observe that (1 -p)b k ≤ b k -b k+1 + w k . Summing up from k = 0 to n, we get (1 -p) n k=0 b k ≤ n k=0 (b k -b k+1 ) + n k=0 w k = b 0 -b n+1 + n k=0 w k ≤ b 0 + n k=0 w k . Since 1 -p > 0 and +∞ k=0 w k < +∞, we conclude that +∞ k=0 b k < +∞.
We also need the two following technical lemmata.

Lemma 1.7. [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] For all x, y ∈ H and β ∈ R, the following equality holds,

βx + (1 -β)y 2 = β x 2 + (1 -β) y 2 -β(1 -β) x -y 2 .
Lemma 1.8. [START_REF] Chbani | Weak and strong convergence of prox-penalization and splitting algo-rithms for bilevel equilibrium problems[END_REF] Let {a n } be a sequence of real numbers that does not decrease at infinity, in the sense that there exists a subsequence {a nk } k≥0 of {a n } which satisfies

a nk < a nk+1 for all k ≥ 0.
Then, the sequence of integers {σ n } n≥n0 defined by σ n := max{k ≤ n : a k < a k+1 } is a nondecreasing sequence verifying lim n→+∞ σ n = ∞ and, for all n ≥ n 0 a σn < a σn+1 and a n ≤ a σn+1 .

In the rest of this section we recall some standard definitions and tools from convex analysis. For an extended real-valued function ϕ : H → R ∪ {+∞}, we denote by dom ϕ = {x ∈ H : ϕ(x) < +∞} the effective domain of ϕ and we say that ϕ is proper, if dom ϕ = ∅. We also denote by min ϕ := inf x∈H ϕ(x) the optimal value of the objective function ϕ and by argmin ϕ := {x ∈ H : ϕ(x) = min ϕ} the set of its global minima.

By Γ 0 (H), we mean the set of extended real-valued proper lower semicontinuous convex function ϕ : H → R ∪ {+∞}. Given ϕ ∈ Γ 0 (H) and x ∈ H, we recall that the Fenchel conjugate of ϕ is the function ϕ

* : H → R ∪ {+∞} defined by ϕ * (x) := sup y∈H { x, y -ϕ(y)}. If ϕ = δ K is the indicator function of K ⊂ H, i.e., when δ K (x) = 0 if x ∈ K and +∞ otherwise, we remind that δ * K is the support function of K. It is denoted by σ K , and it is defined as δ * K (x * ) = σ K (x * ) = sup y∈K x * , y . The (convex) subdifferential of ϕ at x ∈ H is the set ∂ϕ(x) := {v ∈ H : ϕ(y) ≥ ϕ(x) + v, y -x , ∀y ∈ H} and ∂ϕ(x) := ∅ if ϕ(x) = +∞, while the normal cone to K ⊂ H at x ∈ H is the set N K (x) = {x * ∈ H : x * , u -x ≤ 0, ∀u ∈ K} if x ∈ K ∅ otherwise.
We mention that N K = ∂δ K , and that x * ∈ N K (x) if, and only if, σ K (x * ) = x * , x . For every u ∈ K, we denote by f u the function defined on H by

f u (x) = f (u, x) if x ∈ K and f u (x) = +∞ otherwise. For an equilibrium bifunction f : K × K → R, the associated operator A f : H ⇒ H defined by A f (x) := ∂f x (x) = {z ∈ H : f (x, y) + z, x -y ≥ 0, ∀y ∈ K} if x ∈ K ∅ otherwise,
is monotone when f is monotone and satisfies f (x, x) = 0. Following Alizadeh & Hadjisavvas [START_REF] Alizadeh | On the Fitzpatrick transform of a monotone bifunction[END_REF][START_REF] Bot | Approaching the maximal monotonicity of bifunctions via representative functions[END_REF], the Fitzpatrick transform

F f : K × H → R ∪ {+∞} associated with a bifunction f is defined by F f (x, u) = sup y∈K { u, y + f (y, x)}.
Given its continuity and convexity properties, the function F f has proven to be an important tool when studying the asymptotic properties of dynamical equilibrium systems, see [START_REF] Chbani | From convergence of dynamical equilibrium systems to bilevel hierarchical Ky Fan minimax inequalities and applications[END_REF] for a detailed presentation of these elements. This section concludes with the following auxiliary result needed for establishing our results.

Proposition 1.9. [START_REF] Alizadeh | On the Fitzpatrick transform of a monotone bifunction[END_REF][START_REF] Chbani | From convergence of dynamical equilibrium systems to bilevel hierarchical Ky Fan minimax inequalities and applications[END_REF] • Suppose that f (x, y) = ϕ(y)-ϕ(x) where ϕ : H → R∪{+∞} is convex and lower semicontinuous with dom ϕ ⊂ K. Then for every (x, u)

∈ K × H, F f (x, u) = ϕ(x) + ϕ * (u).
• Let B : H → H be a monotone operator and f (x, y) := Bx, y -x . Then, the Fitzpatrick function F f is exactly the Fitzpatrick function of the operator B denoted by F B which was first introduced by Fitzpatrick in [START_REF] Fitzpatrick | Representing monotone operators by convex functions[END_REF]. In other words, for every (x, u) ∈ H × H, we have:

F B (x, u) = F f (x, u) = sup y∈H { u, y + By, x -y }.

Assumptions

In the remaining part of the paper, we suppose that f and g are two monotone and upper hemicontinuous bifunctions satisfying assumptions (iv) and (v) of Definition 1.1; for each y ∈ K, ∂g y (y) = ∅ (i.e., dom (A g ) = K) and that

K ∩ S f = ∅; R + (K -S f
) is a closed linear subspace of H. In this case, the operator g x + δ Sf is maximally monotone, see [START_REF] Attouch | Somme ponctuelle d'opérateurs maximaux monotones[END_REF][START_REF] Riahi | On the maximality of the sum of two maximal monotone operators[END_REF], and the subdifferential sum formula ∂(g x + δ Sf ) = ∂g x + N Sf holds; the following geometric assumption:

∀u ∈ S f , for all p ∈ N Sf (u), +∞ n=1 λ n β n F f u, 2p β n -σ Sf 2p β n < +∞. ( 12 
)
This assumption will be also needed and considered as a key tool in our treatment of the convergence analysis. Let us mention that hypothesis [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF] is the discrete counterpart of the condition introduced in [START_REF] Chbani | From convergence of dynamical equilibrium systems to bilevel hierarchical Ky Fan minimax inequalities and applications[END_REF] in the context of continuous-time dynamical equilibrium systems. Note also that it is a natural extension of similar assumptions known in the literature for the convergence analysis of variational inequalities expressed as monotone inclusion problems and for constrained convex optimization problems, see [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF][START_REF] Bot | Forward-backward and Tseng's type penalty schemes for monotone inclusion problems[END_REF][START_REF] Bot | An inertial proximal-gradient penalization scheme for constrained convex optimization problems[END_REF] and references therein for further useful comments on these assumptions.

Convergence of the inertial proximal algorithm (IPA)

Consider the sequence {x n } defined by the algorithm [START_REF] Moudafi | Proximal and dynamical approaches to equilibrium problems[END_REF], where x n+1 := J βnf +g λn (y n ). Our objective is to analyze the convergence behavior of the sequence {x n }.

Weak convergence analysis

In this subsection, under natural conditions, we obtain a weak convergence result for the trajectory generated by ( 9) to a solution of (BEP). We first prove the following preliminary estimation. Lemma 2.1. Let {x n } be a sequence generated by the algorithm [START_REF] Moudafi | Proximal and dynamical approaches to equilibrium problems[END_REF]. Take u ∈ S and set a n := x n -u 2 . Then, there exists p ∈ N Sf (u) such that for each n ≥ 1 the following inequality holds:

a n+1 -a n -α(a n -a n-1 ) + λ n β n f (u, x n+1 ) ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + λ n β n F f u, 2p β n -σ Sf 2p β n . (13) 
Proof. Since {x n } is generated by the algorithm (9), we have for each

x ∈ K 0 ≤ λ n β n f (x n+1 , x) + λ n g(x n+1 , x) + 1 2 y n -x 2 -x n+1 -x 2 -x n+1 -y n 2 . ( 14 
)
By Lemma 1.7, we have for all n ≥ 1

y n -x 2 = x n + α(x n -x n-1 ) -x 2 = (1 + α)(x n -x) -α(x n-1 -x) 2 = (1 + α) x n -x 2 -α x n-1 -x 2 + α(1 + α) x n -x n-1 2 . ( 15 
)
Also, we have

x n+1 -y n 2 = x n+1 -x n -α(x n -x n-1 ) 2 = x n+1 -x n 2 + α 2 x n -x n-1 2 -2α x n+1 -x n , x n -x n-1 ≥ (1 -α) x n+1 -x n 2 + (α 2 -α) x n -x n-1 2 . ( 16 
)
Combining ( 15) and ( 16) with ( 14), we get for every x ∈ K

x n+1 -x 2 -(1 + α) x n -x 2 + α x n-1 -x 2 ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 2λ n β n f (x n+1 , x) + 2λ n g(x n+1 , x).
(17) Since u ∈ S, according to the first-order optimality condition, we have

0 ∈ ∂(g u + δ Sf )(u) = A g (u) + N Sf (u).
Let p ∈ N Sf (u) be such that -p ∈ A g (u), we have for every n ≥ 1

λ n g(u, x n+1 ) + λ n -p, u -x n+1 ≥ 0, ( 18 
)
and by taking x = u and a n = x n -u 2 in (17), we also have

a n+1 -(1 + α)a n + αa n-1 ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 +2λ n β n f (x n+1 , u) + 2λ n g(x n+1 , u). ( 19 
)
Summing up the above inequalities and using the monotonicity of g, we get

a n+1 -a n -α(a n -a n-1 ) ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 2λ n β n f (x n+1 , u) + 2λ n -p, u -x n+1 .
Using the monotonicity of f , we obtain

a n+1 -a n -α(a n -a n-1 ) + λ n β n f (u, x n+1 ) ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + λ n β n f (x n+1 , u) + 2λ n -p, u -x n+1 = (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 +λ n β n 2p βn , x n+1 + f (x n+1 , u) -2p βn , u .
Finally, using the fact that p ∈ N Sf (u), i.e., δ Sf (u) + σ Sf (p) = p, u , we obtain

a n+1 -a n -α(a n -a n-1 ) + λ n β n f (u, x n+1 ) ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 +λ n β n sup x∈K 2p βn , x + f (x, u) -σ Sf 2p βn = (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 +λ n β n F f u, 2p β n -σ Sf 2p β n .
The proof is complete.

Remark 2. We can continue our analysis assuming that +∞ n=1

x n -x n-1 2 < +∞; however this condition involves the trajectory {x n } which is unknown. In the next corollary we prove that the above condition holds under a suitable control of the parameter α.

Corollary 2.2. Under hypothesis [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF] and by assuming that 0 ≤ α < 1 3 , we have

(i) +∞ n=1 x n -x n-1 2 < +∞; (ii) +∞ n=1 λ n β n f (u, x n+1 ) < +∞, for each u ∈ S.
Proof. (i) First we simplify the writing of the estimation [START_REF] Bento | Generalized proximal distances for bilevel equilibrium problems[END_REF] given in Lemma 2.1. Since u ∈ S f and λ n β n ≥ 0, we have λ n β n f (u, x n+1 ) ≥ 0. Setting δ n = x n -x n-1 2 , then inequality [START_REF] Bento | Generalized proximal distances for bilevel equilibrium problems[END_REF] gives

a n+1 -a n -α(a n -a n-1 )+(1-α)δ n+1 -2αδ n ≤ λ n β n F f u, 2p β n -σ Sf 2p β n . (20) 
In order to simplify its summation we rewrite [START_REF] Alvarez | An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping[END_REF] as

a n+1 -a n -α(a n -a n-1 ) + (1 -α)(δ n+1 -δ n ) + (1 -3α)δ n ≤ λ n β n F f u, 2p β n -σ Sf 2p β n . ( 21 
)
Let be N ∈ N * . Summing up from n = 1 to N the inequality (21), we get

(a N +1 -a 1 ) -α(a N -a 0 ) + (1 -α)(δ N +1 -δ 1 ) + (1 -3α) N n=1 δ n ≤ N n=1 λ n β n F f u, 2p β n -σ Sf 2p β n . (22) 
Assumption [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF], infers that

(a N +1 -αa N ) + (1 -α)δ N +1 + (1 -3α) N n=1 δ n ≤ C, (23) 
where

C = a 1 -αa 0 + (1 -α)δ 1 + n≥1 λ n β n F f u, 2p β n -σ Sf 2p β n ∈ R.
Since α < 1 3 yields 1 -3α > 0 and 1 -α > 0, then inequality [START_REF] Chbani | Variational principles for monotone and maximal bifunctions[END_REF] implies that for all n ≥ 1

a N +1 ≤ αa N + C, with C ∈ R. (24) 
Recursively we obtain for all N ≥ n 0 ≥ 1

a N +1 ≤ α N -n0+1 a n0 + C(1 + α + α 2 + ... + α N -n0 ) = α N -n0+1 a n0 + C 1 -α N -n0+1 1 -α .
Therefore, the sequence {x N } is bounded and since sup

N x N +1 -x N ≤ 2 sup N x N < +∞, (25) 
the sequence {δ n } is also bounded. Combining [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] with [START_REF] Chbani | Variational principles for monotone and maximal bifunctions[END_REF] and noticing that 1-3α > 0, yields

+∞ n=1 δ n < +∞, ensuring (i).
Returning to inequality (13), we have

a n+1 -a n -α(a n -a n-1 ) + λ n β n f (u, x n+1 ) ≤ λ n β n F f u, 2p β n -σ Sf 2p β n + (α -1) ≤0 δ n+1 + 2αδ n ≤ λ n β n F f u, 2p β n -σ Sf 2p β n + 2αδ n .
Summing up from n = 1 to +∞, we obtain

+∞ n=1 λ n β n f (u, x n+1 ) ≤ a 1 -αa 0 + +∞ n=1 λ n β n F f u, 2p β n -σ Sf 2p β n + 2α +∞ n=1 x n -x n-1 2 .
Then, assumptions ( 12) and (i) ensure (ii).

In order to further proceed with the convergence analysis, we have to choose the sequences {λ n } and {β n } such that lim inf n→+∞ λ n > 0 and β n → +∞. We are now able to state and prove the first main result of this section.

Theorem 2.3. Suppose given monotone and upper hemicontinuous bifunctions f and g. Let {x n } be a sequence generated by the algorithm [START_REF] Moudafi | Proximal and dynamical approaches to equilibrium problems[END_REF]. Under hypothesis [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF] and by assuming that

0 ≤ α < 1 3 , lim inf n→+∞ λ n > 0 and lim n→+∞ β n = +∞,
the sequence {x n } weakly converges to some x ∈ S.

Proof. The proof relies on the discrete Opial's Lemma. To this end we will prove that the conditions (i) and (ii) in Lemma 1.5 for C = S are satisfied.

Returning to inequality [START_REF] Bento | Generalized proximal distances for bilevel equilibrium problems[END_REF], since u ∈ S f and λ n β n ≥ 0, we have λ n β n f (u, x n+1 ) ≥ 0, and then

a n+1 -a n ≤ α(a n -a n-1 ) + 2α x n -x n-1 2 + λ n β n F f u, 2p β n -σ Sf 2p β n .
Taking the positive part, we immediately deduce that

[a n+1 -a n ] + ≤ α[a n -a n-1 ] + + 2α x n -x n-1 2 + λ n β n F f u, 2p β n -σ Sf 2p β n .
Using assumption [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF] together with the fact that +∞ n=1

x n -x n-1 2 < +∞ and applying Lemma 1.6 with

b n = [a n -a n-1 ] + and w n = 2α x n -x n-1 2 + λ n β n F f u, 2p β n -σ Sf 2p β n , we obtain +∞ n=1 [a n -a n-1 ] + < +∞.
Since a n is nonnegative, this implies the existence of lim n→+∞ a n and the one of lim n→+∞

x n -u .

It remains to show that every weak cluster point x of the sequence {x n } lies in S. Let n k → +∞ as k → +∞ such that x nk

x. We want to show that x ∈ S. Thanks to the monotonicity of f and g, inequality [START_REF] Moudafi | Proximal and dynamical approaches to equilibrium problems[END_REF] ensures that for all y ∈ K and for all k large enough

f (y, x nk+1 ) ≤ - 1 β nk g(y, x nk+1 ) + 1 λ nk β nk x nk+1 -y nk , y -x nk+1 . (26) 
Since ∂g y (y) = ∅, pick x * (y) ∈ H such that for every z ∈ K

g(y, z) ≥ x * (y), z -y ≥ -x * (y) • y -z .
Thus there exists γ(y) := x * (y) > 0 such that for every z ∈ K -g(y, z) ≤ γ(y). y -z .

Returning to [START_REF] Alizadeh | On the Fitzpatrick transform of a monotone bifunction[END_REF], we can write

f (y, x nk+1 ) ≤ γ(y) β nk y -x nk+1 + 1 λ nk β nk x nk+1 -y nk . y -x nk+1 .
Passing to the limit, and using the facts that {x nk } is bounded, {β nk } → +∞, lim inf k→+∞ λ nk > 0 and x nk+1 -y nk → 0, we deduce that f (y, x) ≤ 0 for all y ∈ K.

Lemma 1.3 leads to x ∈ S f . Using ( 9) and the monotonicity of f and g, we have for every u ∈ S f ,

λ n β n f (u, x n+1 ) + λ n g(u, x n+1 ) ≤ y n -x n+1 , x n+1 -u .
Exploiting the fact that lim 

Strong convergence analysis

In this subsection, under an additional assumption on the monotonicity of the bifunction of the upper level g, we ensure the strong convergence of the trajectory in (9).

Strong convergence under assumption (12)

Theorem 2.4. Suppose that the bifunctions f and g are monotone and upper hemicontinuous. Under hypothesis [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF], if the bifunction g is ρ-strongly monotone, and if

0 ≤ α < 1 3 and ∞ n=1 λ n = +∞,
the sequence {x n } generated by the algorithm (9) strongly converges to a unique solution u ∈ S.

Proof. Uniqueness of the solution for (BEP) follows from the strong monotonicity of g. For the existence, see [START_REF] Chadli | Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities[END_REF]Theorem 4.3].

Using inequalities [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF] and [START_REF] Thuy | A projected subgradient algorithm for bilevel equilibrium problems and applications[END_REF], with x = u, summing up and using the ρ-strong monotonicity of g, we get for

a n := x n -u 2 a n+1 -a n -α(a n -a n-1 ) ≤ -2ρλ n a n+1 + (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 2λ n β n f (x n+1 , u) + 2λ n -p, u -x n+1 .
Following the arguments used in the proof of Lemma 2.1 we obtain

a n+1 -a n -α(a n -a n-1 ) + 2ρλ n a n+1 ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + λ n β n F f u, 2p β n -σ Sf 2p β n .
Then, summing up from n = 1 to +∞ yields

2ρ +∞ n=1 λ n x n+1 -u 2 ≤ a 1 -αa 0 + +∞ n=1 λ n β n F f u, 2p β n -σ Sf 2p β n + 2α +∞ n=1 x n -x n-1 2 .
Using condition [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF] and assumption (i) of Corollary 2.2, we deduce that

+∞ n=1 λ n x n+1 -u 2 < +∞.
Since lim n→+∞

x n -u exists and ∞ n=1 λ n = +∞, we conclude that lim n→+∞

x n -u = 0, which guarantees the strong convergence of the whole sequence {x n } to u.

Strong convergence without assumption (12)

We will show that in this case, the algorithm strongly converges without the need of the geometric hypothesis (12).

Theorem 2.5. Suppose that the bifunctions f and g are monotone and upper hemicontinuous with S f = ∅ and g is ρ-strongly monotone. Suppose moreover that

0 ≤ α < 1 3 , lim n→+∞ λ n = 0, +∞ n=0 λ n = +∞, lim n→+∞ β n = +∞ and lim inf n→+∞ λ n β n > 0.
Then, the sequence {x n } generated by the algorithm (9) converges strongly to the unique solution u of (BEP).

Proof. Under assumptions on the two bifunctions f and g, we get the unique solution denoted by x of the bilevel equilibrium problem (BEP).

Step 1: We show that {x n } is bounded.

Since {x n } is generated by the algorithm (9), then by ( 17), we have for each x ∈ K

x n+1 -x 2 -(1 + α) x n -x 2 + α x n-1 -x 2 ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 2λ n β n f (x n+1 , x) + 2λ n g(x n+1 , x). (28 
) Fix x ∈ S f , and set a n (x) = x n -x 2 and δ n = x n -x n-1 2 . Thanks to the monotonicity of f , then for each n ≥ 0,

a n+1 (x) -αa n (x) + 2αδ n+1 ≤ (a n (x) -αa n-1 (x) + 2αδ n ) + (3α -1)δ n+1 + 2λ n g(x n+1 , x). ( 29 
) Setting b n (x) = a n (x) -αa n-1 (x) + 2αδ n , we obtain, for n ≥ 1, b n+1 (x) ≤ b n (x) + (3α -1)δ n+1 + 2λ n g(x n+1 , x). (30) 
• If there is n 0 ∈ N such that {b n (x)} is decreasing for all n ≥ n 0 , then b n+1 (x) ≤ b n0 (x), which infers that

a n+1 (x) ≤ αa n (x) + b n0 (x) for all n ≥ n 0 .
Recursively, we obtain for all n ≥ n 0 ≥ 1

a n+1 (x) ≤ α n-n0 a n0 (x) + b n0 (x) 1 -α n-n0 1 -α ,
and the boundedness of the sequence {a n (x)}. • Otherwise there exists an increasing sequence {k n } such that for every n ≥ 0, b kn+1 (x) > b kn (x). By Lemma 1.8, there exists a nondecreasing sequence {σ n } and n 0 > 0 such that lim 

Using the ρ-strong monotonicity of g and relation [START_REF] Bot | Approaching the maximal monotonicity of bifunctions via representative functions[END_REF], we deduce that for n ≥ n 0 -2λ σn γ(x) a σn+1 (x) ≤ 2λ σn g(x, x σn+1 ) ≤ (3α -1)δ σn+1 -2λ σn ρa σn+1 (x).

(32) Since 3α -1 < 0, we conclude that for n ≥ n 0

a σn+1 (x) ≤ γ(x) ρ 2 and δ σn+1 ≤ 2γ 2 (x)λ σn ρ(1 -3α) . (33) 
Hence, {a σn+1 (x)} is bounded. Since {λ σn } is bounded too, then {δ σn+1 } is bounded, which means that {b σn+1 (x)} also is bounded. So, there exists M > 0, such that for all n ≥ n 0 , we have

a n (x) ≤ αa n-1 (x) + b n (x) ≤ αa n-1 (x) + b σn+1 (x) ≤ αa n-1 (x) + M ≤ α n-n0 a n0 (x) + M 1-α n-n 0 1-α .
Therefore the sequence {a n (x)} is bounded, ensuring the boundedness of {x n }.

Step 2: We show that the sequence {x n } strongly converges to x, the unique solution of (BEP).

Let us consider two cases:

Case 1: There exists n 0 such that {b n (x)} := a n (x) -αa n-1 (x) + 2αδ n is decreasing for n ≥ n 0 . Then, the limit of the sequence {b n (x)} exists and lim

n→+∞ (b n (x) -b n+1 (x)) = 0. For n ≥ n 0 , we have a n+1 (x) -αa n (x) + 2αδ n+1 ≤ a n (x) -αa n-1 (x) + 2αδ n ,
which implies that [α (a n (x) -a n-1 (x)) + 2α(δ n -δ n+1 )] < +∞, then the limit of {a n (x)} exists.

a n+1 (x) ≤ a n (x) + α (a n (x) -a n-1 (x)) + 2α(δ n -δ n+1 ). Since +∞ n=n0 (a n (x) -a n-1 (x)) ≤ sup
Therefore, it suffices to show that lim inf n→∞ a n (x) = 0. Since g is ρ-strongly monotone, then we have

lim n→+∞ a n+1 (x) = lim inf n→+∞ x n+1 -x 2 ≤ 1 ρ lim inf n→+∞ (-g(x n+1 , x)) + 1 ρ lim sup n→+∞ (-g(x, x n+1 )) . (34) 
Thus, it suffices to prove that lim inf n→+∞ (-g(x n+1 , x)) ≤ 0 and lim inf n→+∞ g(x, x n+1 ) ≥ 0.

Taking into account that x ∈ S f , we derive from (30) that

b n+1 (x) ≤ b n (x) + (3α -1)δ n+1 + 2λ n g(x n+1 , x).
Hence, since 3α -1 < 0, then

-λ n g(x n+1 , x) ≤ 1 2 (b n (x) -b n+1 (x)) . ( 35 
)
Summing up inequality ( 35) from 1 to +∞, we deduce that

+∞ n=1 -λ n g(x n+1 , x) ≤ 1 2 b 1 (x) -lim n→+∞ b n (x) < +∞, which in combination with +∞ n=0 λ n = +∞ leads to lim inf n→∞ (-g(x n+1 , x)) ≤ 0.
Let us prove that lim inf n→+∞ g(x, x n+1 ) ≥ 0. The sequence {x n } is bounded, so there exists a subsequence {x nk } of {x n } that converges weakly to some x ∈ K. By using the weak lower semicontinuity of g(x, •) we have g(x, x) ≤ lim inf k→+∞ g(x, x nk+1 ).

Since x is the unique solution of (BEP), we need just to check that x ∈ S f . In doing so, by ( 27) and ( 17), we have for every y ∈ K,

f (y, x n+1 ) ≤ - 1 2λ n β n (b n+1 (y) -b n (y)) + 1 2β n γ(y) a n (y). ( 36 
)
We have Hence, by using Minty's lemma we deduce that x ∈ S f and therefore,

b n (y) -b n+1 (y) = (a n (y) -αa n-1 (y) + 2αδ n ) -(a n+1 (y) -αa n (y) + 2αδ n+1 ) = (a n (y) -a n+1 (y)) + α (a n (y) -a n-1 (y)) + 2α (δ n -δ n+1 ) = (a n (x) -a n+1 (x) + 2 x n -x n+1 , x -y ) -α (a n-1 (x) -a n (x) + 2 x n -x n-1 , x -y ) + 2α (δ n -δ n+1 ) = b n (x) -b n+1 (x) + 2 x n -x n+1 , x -y + 2α x n -x n-1 , x -y .
0 ≤ g(x, x) ≤ lim inf n→+∞ g(x, x n+1 ).
Hence, by [START_REF] Rockafellar | On the maximal monotonicity of subdifferential mappings[END_REF],

lim n→+∞ a n+1 (x) ≤ - 1 ρ lim inf n→+∞ g(x, x n+1 ) ≤ 0,
and so lim n→+∞ a n (x) = 0.

Case 2: There exists a subsequence {x nj } of {x n } such that b nj (x) ≤ b nj+1 (x) for all j ∈ N. By Lemma 1.8, the sequence σ(n

) := max{k ≤ n : b k (x) < b k+1 (x)} is nondecreasing, lim n→+∞ σ(n) = ∞ and, for all n ≥ n 0 b σ(n) (x) < b σ(n)+1 (x) and b n (x) ≤ b σ(n)+1 (x).
Let us take n = σ(n) and x = x in [START_REF] Riahi | On the maximality of the sum of two maximal monotone operators[END_REF]. We have

0 < b σ(n)+1 (x) -b σ(n) (x) ≤ 2λ σ(n) g(x σ(n)+1 , x), (37) 
which yields g(x σ(n)+1 , x) ≥ 0, and thus lim sup

n→+∞ g(x σ(n)+1 , x) ≥ 0.
Using again the ρ-strong monotonicity of g and passing to the limit we have lim sup

n→+∞ a σ(n)+1 (x) ≤ 1 ρ lim sup n→+∞ -g(x σ(n)+1 , x) ≤0 + 1 ρ lim sup n→+∞ -g(x, x σ(n)+1 ) ≤ -1 ρ lim inf n→+∞ g(x, x σ(n)+1 ). ( 38 
)
Under the boundedness of {x n }, and similarly to the case 1, one can show that lim inf

n→+∞ g(x, x σ(n)+1 ) ≥ 0.
Hence, by [START_REF] Rockafellar | On the maximal monotonicity of subdifferential mappings[END_REF], we conclude that

lim n→+∞ a σ(n)+1 (x) = 0. ( 39 
) Since b n (x) ≤ b σ(n)+1 (x) for each n ≥ n 0 , we derive that lim n→+∞ a n (x) ≤ lim n→+∞ b n (x) ≤ lim n→+∞ b σ(n)+1 (x) ≤ lim n→+∞ a σ(n) (x) + 2αδ σ(n) . Since δ σ(n) = x σ(n) -x σ(n-1) 2 ≤ 2a σ(n) (x) + 2a σ(n)-1 (x), then lim n→+∞ a n (x) ≤ (1 + 4α) lim n→+∞ a σ(n) (x) =0 +4α lim n→+∞ a σ(n)-1 (x) =0 = 0,
thus guaranteeing the strong convergence of the whole sequence {x n } to x.

3. Convergence of inertial forward-backward algorithm (IFBA)

Weak convergence analysis

In this subsection, we study the weak convergence of the sequence {x n } generated by the algorithm (IFBA), given by:

g(x n+1 , y) + β n Bx n , y -x n+1 + 1 λ n x n+1 -y n , y -x n+1 ≥ 0, ∀y ∈ K, where g : K × K → R is a bifunction satisfying (i) -(iii) -(iv) -(v) of Definition 1.1
and B is an θ-inverse strongly monotone mapping from H into H.

Let us underline that it is necessary to include the geometric condition [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF]. Here, we have f (x, y) = Bx, y -x for all x, y ∈ H, and S f = B -1 (0). In this case, the condition ( 12) can be expressed in a simplified form as:

∀u ∈ B -1 (0), for all p ∈ N B -1 (0) (u), +∞ n=1 λ n β n F B u, 2p β n -σ B -1 (0) 2p β n < +∞, (40) 
where

F B (u, x) = sup y∈H { x, y + By, u -y }.
Similar to what was done in Lemma 2.1, we initiate our study by proving the following estimation:

Lemma 3.1. Let {x n } be a sequence generated by the algorithm [START_REF] Cotrina | An existence result for quasi-equilibrium problems via Ekeland's variational principle[END_REF]. Take u ∈ S and set a n := x n -u 2 . Then, there exists p ∈ N B -1 (0) (u) such that for each ρ > 0 and n ≥ 1, the following inequality holds:

a n+1 -a n -α(a n -a n-1 ) ≤ ((1 + ρ)α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 1 2ρα λ 2 n p 2 + λ n β n 2λnβn ρα -θ Bx n 2 +λ n β n F B u, 2p β n -σ B -1 (0) 2p β n . (41) 
Proof. Take u ∈ S. Let p ∈ N Sf (u) be such that -p ∈ A g (u), we have for every n ≥ 1

λ n g(u, x n+1 ) + λ n -p, u -x n+1 ≥ 0. (42) 
Given that {x n } is generated by the algorithm [START_REF] Cotrina | An existence result for quasi-equilibrium problems via Ekeland's variational principle[END_REF], then it easy to check that

0 ≤ λ n β n Bx n , u -x n+1 + λ n g(x n+1 , u) + 1 2 y n -u 2 -x n+1 -u 2 -x n+1 -y n 2 . (43) 
Using the relations ( 15) and ( 16) (see the proof of Lemma 2.1), along with the two last inequalities, we get

a n+1 -a n -α(a n -a n-1 ) ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 2λ n β n Bx n , u -x n+1 + 2λ n -p, u -x n+1 . (44) 
For each ρ > 0, on one hand, we have

2λ n -p, u -x n+1 = 2λ n -p, u -x n + 2λ n -p, x n -x n+1 ≤ λ n -p, u -x n + 2 ρα λ 2 n p 2 + ρα 2 x n -x n+1 2 . ( 45 
)
On the other hand, we have

2λ n β n Bx n , u -x n+1 = 2λ n β n Bx n , u -x n + 2λ n β n Bx n , x n -x n+1 . (46) 
Due to the fact that B is θ-inverse strongly monotone, we have

Bx n , u -x n ≤ -θ Bx n 2 .
We also have

2λ n β n Bx n , x n -x n+1 ≤ 2λ 2 n β 2 n ρα Bx n 2 + ρα 2 x n -x n+1 2 .
The two last inequalities together with (46), lead to

2λ n β n Bx n , u -x n+1 ≤ -λ n β n θ Bx n 2 + λ n β n Bx n , u -x n + 2λ 2 n β 2 n ρα Bx n 2 + ρα 2 x n -x n+1 2 =λ n β n 2λ n β n ρα -θ Bx n 2 + λ n β n Bx n , u -x n + ρα 2 x n -x n+1 2 . ( 47 
)
Combining this inequality with (44) and (45), we obtain

a n+1 -a n -α(a n -a n-1 ) ≤((1 + ρ)α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 1 2ρα λ 2 n p 2 + λ n β n 2λ n β n ρα -θ Bx n 2 +λ n β n Bx n , u -x n + 2λ n -p, u -x n . (48) 
Since,

λ n β n Bx n , u -x n + 2λ n -p, u -x n =λ n β n Bx n , u -x n + - 2p β n , u -x n =λ n β n 2p β n , x n + Bx n , u -x n - 2p β n , u ≤λ n β n F B u, 2p β n -σ B -1 (0) 2p β n . (49) 
It follows that for every n ≥ 1,

a n+1 -a n -α(a n -a n-1 ) ≤((1 + ρ)α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 1 2ρα λ 2 n p 2 + λ n β n 2λ n β n ρα -θ Bx n 2 +λ n β n F B u, 2p β n -σ B -1 (0) 2p β n .
The proof is complete.

Corollary 3.2. Under hypothesis (40) and by assuming that there exists ρ > 0 such that

0 ≤ α < 1 3 + ρ , (λ n ) ∈ 2 and lim sup n→+∞ λ n β n < ραθ 2 ,
we have

(i) +∞ n=1 x n -x n-1 2 < +∞; (ii) +∞ n=1 λ n β n Bx n 2 < +∞.
Proof. Let us take δ n = x n+1 -x n 2 , then the inequality (41) becomes

a n+1 -a n -α(a n -a n-1 ) ≤ ((1 + ρ)α -1)δ n+1 + 2αδ n + 1 2ρα λ 2 n p 2 + λ n β n 2λnβn ρα -θ Bx n 2 +λ n β n F B u, 2p β n -σ B -1 (0) 2p β n . (50) 
Since lim sup

n→+∞ λ n β n < ραθ 2 , then a n+1 -a n -α(a n -a n-1 ) + (1 -α)(δ n+1 -δ n ) + (1 -3(α + ρ)) δ n ≤ 1 2ρα λ 2 n p 2 + λ n β n F B u, 2p β n -σ B -1 (0) 2p β n . (51) 
Following the same argument as [START_REF] Hieu | Strong convergence of inertial algorithms for solving equilibrium problems[END_REF] in the proof of Corollary 2.2, one can obtain for

N ∈ N * (a N +1 -αa N ) + (1 -α)δ N +1 + (1 -3(α + ρ)) N n=1 δ n ≤ D, (52) 
where

D = a 1 -αa 0 +(1-α)δ 1 + 1 2ρα p 2 n≥1 λ 2 n + n≥1 λ n β n F B u, 2p β n -σ B -1 (0) 2p β n ∈ R.
By hypothesis, we have 1 -3(α + ρ) > 0 and 1 -α > 0, then for all n ≥ 1, the inequality (52) leads to

a N +1 ≤ αa N + D, with D ∈ R, (53) 
which is identical to [START_REF] Opial | Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF] in the proof of Corollary 2.2. Therefore, one can conclude that the sequence {x N } is bounded and hence {δ n } is bounded too. Using again (52) with the fact that {x n } is bounded and 1 -3(α + ρ) > 0, we obtain

+∞ n=1 δ n < +∞, ensuring (i).
Returning to inequality (50), we have

a n+1 -a n -α(a n -a n-1 ) + λ n β n θ - 2λ n β n ρα Bx n 2 ≤λ n β n F B u, 2p β n -σ B -1 (0) 2p β n + 1 2ρα λ 2 n p 2 + ((1 + ρ)α -1) <0 δ n+1 + 2αδ n ≤λ n β n F B u, 2p β n -σ B -1 (0) 2p β n + 1 2ρα λ 2 n p 2 + 2αδ n . (54) 
Then, since lim sup n→+∞ λ n β n < ραθ 2 , there exists > 0 such that 2λnβn ρα -θ ≤ -. Hence, summing up from n = 1 to +∞ the inequality (54), we conclude that

+∞ n=1 λ n β n Bx n 2 ≤ a 1 -αa 0 + +∞ n=1 λ n β n F B u, 2p β n -σ B -1 (0) 2p β n + 2α +∞ n=1 x n -x n-1 2 .
Then, assumptions (40) and (i) ensure (ii).

Theorem 3.3. Let g : K × K → R be a bifunction satisfying (i) -(iii) -(iv) -(v) of Definition 1.1 and B : H → H is θ-inverse strongly monotone for some θ > 0. Under hypothesis (40) and by supposing there exists ρ > 0 such that

0 ≤ α < 1 3+ρ , (λ n ) ∈ 2 \ 1 , lim n→+∞ β n = +∞, lim sup n→+∞ λ n β n < ραθ 2 and lim inf n→+∞ λ n β n > 0.
Then, the sequence {x n } generated by algorithm [START_REF] Cotrina | An existence result for quasi-equilibrium problems via Ekeland's variational principle[END_REF] weakly converges to some x ∈ S.

Proof. In order to reach the desired conclusion, we shall check the hypotheses of Opial's Lemma. Let us take u ∈ S. By Lemma 3.1, there exists p ∈ N B -1 (0) (u) such that for each ρ > 0 and n ≥ 1, we have

a n+1 -a n -α(a n -a n-1 ) ≤ ((1 + ρ)α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 1 2ρα λ 2 n p 2 + λ n β n 2λnβn ρα -θ Bx n 2 +λ n β n F B u, 2p β n -σ B -1 (0) 2p β n .
By taking (3 + ρ)α < 1, and lim sup

n→+∞ λ n β n < ραθ 2 , we get a n+1 -a n -α(a n -a n-1 ) ≤ 2α x n -x n-1 2 + 1 2ρα λ 2 n p 2 + λ n β n F B u, 2p β n -σ B -1 (0) 2p β n .
Similar to the proof of Theorem 2.3, to prove that lim n→+∞ a n exists, using the fact that

n≥1 1 2ρα λ 2 n p 2 + λ n β n F B u, 2p β n -σ B -1 (0) 2p β n < +∞, it suffices to replace λ n β n F f u, 2p β n -σ Sf 2p β n by 1 2ρα λ 2 n p 2 + λ n β n F B u, 2p β n -σ B -1 (0) 2p β n .
Now, we need to verify that each weak cluster point of {x n } belongs to S. Let n k → +∞ as k → +∞ such that x nk x. By the inequality (10), we have for all k large enough and for each y ∈ K

β nk Bx nk , x nk -x nk+1 + β nk Bx nk , y -x nk + g(x nk+1 , y) + 1 λ nk x nk+1 -y nk , y -x nk+1 ≥ 0.
Using the fact that g and B are both monotone, we obtain for each y ∈ K By, x nk -y

≤ Bx nk , x nk -x nk+1 - 1 β nk g(y, x nk+1 ) + 1 λ nk β nk x nk+1 -y nk , y -x nk+1 . (55) 
Using the inequality [START_REF] Bot | Approaching the maximal monotonicity of bifunctions via representative functions[END_REF] used in the proof of Theorem 2.3 leads us to the following one, valid for each y ∈ K

By, x nk -y ≤ Bx nk , x nk -x nk+1 + γ(y) β nk y -x nk+1 + 1 λ nk β nk x nk+1 -y nk , y -x nk+1 .
Hence for all y ∈ K we have By, x nk -y

≤ Bx nk x nk -x nk+1 + γ(y) β nk y -x nk+1 + 1 λ nk β nk x nk+1 -y nk y -x nk+1 .
So, now by passing to the limit, and using the facts that {x nk } is bounded, lim β nk = +∞, lim inf k→+∞ λ nk β nk > 0 and x nk+1 -y nk → 0, we deduce that By, x -y ≤ 0 for all y ∈ K. Hence, by the maximality of B (see Remark 1), we conclude that x ∈ B -1 (0).

Returning to the inequality (43), for every x = u ∈ B -1 (0), we have

λ n β n Bx n , u -x n+1 + λ n g(x n+1 , u) + 1 2 y n -u 2 -x n+1 -u 2 -x n+1 -y n 2 ≥0. (56) 
Using the monotonicity of B and g, and the fact that u ∈ B -1 (0), we get

λ n β n Bx n , x n -x n+1 + 1 2 y n -u 2 -x n+1 -u 2 -x n+1 -y n 2 ≥ λ n g(u, x n+1 ).
Using again the inequalities ( 15) and ( 16) utilized in the proof of Lemma 2.1, we obtain

2λ n g(u, x n+1 ) ≤ 2λ n β n Bx n , x n -x n+1 + (1 + α) x n -u 2 -x n+1 -u 2 -α x n-1 -u 2 + 2α x n -x n-1 2 + (α -1) x n+1 -x n 2 ≤ λ n β n Bx n 2 + λ n β n x n -x n+1 2 + x n -u 2 -x n+1 -u 2 +α x n -u 2 -x n-1 -u 2 +(1 -α) x n -x n-1 2 -x n+1 -x n 2 + (3α -1) ≤0 x n -x n-1 2 .
Let a fixed N > 1. Summing up the latter relation from n = 1 to n = N and letting N → +∞, we get Then, the sequence {x n } generated by the algorithm (10) converges strongly to the unique solution u of (BEP).

2 n≥1 λ n g(u, x n+1 ) ≤ n≥1 λ n β n Bx n 2 + n≥1 λ n β n x n -x n+1 2 + x 1 -u 2 +α lim N →+∞ x N -u 2 + (1 -α) x 1 -x 0 2 .
Proof. Similar to the proof of Theorem 2.5, since g is strongly monotone, then the bilevel equilibrium problem (BEP) has a unique solution denoted by x. Firstly, we show that the sequence {x n } is bounded. Since {x n } is generated by the algorithm [START_REF] Cotrina | An existence result for quasi-equilibrium problems via Ekeland's variational principle[END_REF], then combining (43) with the relations ( 15) and ( 16), (see the proof of Lemma 2.1), it holds for each x ∈ K,

x n+1 -x 2 -(1 + α) x n -x 2 + α x n-1 -x 2 ≤ (α -1) x n+1 -x n 2 + 2α x n -x n-1 2 + 2λ n β n Bx n , x -x n+1 + 2λ n g(x n+1 , x). (57) 
Using again the inequality (47), we have, for ρ > 0

2λ n β n Bx n , x -x n+1 =λ n β n 2λ n β n ρα -θ Bx n 2 + λ n β n Bx n , x -x n + ρα 2 x n -x n+1 2 ,
and so

x n+1 -x 2 -(1 + α) x n -x 2 + α x n-1 -x 2 ≤ α(1 + ρ 2 ) -1 x n+1 -x n 2 + 2α x n -x n-1 2 + λ n β n 2λ n β n ρα -θ Bx n 2 + λ n β n Bx n , x -x n + 2λ n g(x n+1 , x). (58) 
Since lim sup n→+∞ λ n β n < ραθ 2 , then

x n+1 -x 2 -(1 + α) x n -x 2 + α x n-1 -x 2 ≤ α(1 + ρ 2 ) -1 x n+1 -x n 2 + 2α x n -x n-1 2 + λ n β n Bx n , x -x n + 2λ n g(x n+1 , x). (59) 
Let us fix x ∈ B -1 (0), and set a n (x) := x n -x 2 and δ n = x n -x n-1 2 . Then, using the monotonicity of B, we get for each n ≥ 0,

a n+1 (x) -αa n (x) + 2αδ n+1 ≤ (a n (x) -αa n-1 (x) + 2αδ n ) + 3 + ρ 2 α -1 )δ n+1 + 2λ n g(x n+1 , x). ( 60 
) Setting b n (x) = a n (x) -αa n-1 (x) + 2αδ n , we obtain, for n ≥ 1, b n+1 (x) ≤ b n (x) + 3 + ρ 2 α -1 δ n+1 + 2λ n g(x n+1 , x). (61) 
Finally, one can conclude the boundedness of the sequence {a n (x)} by using the same argument as in step 1, in the proof of Theorem 2.5.

Secondly, similar to the step 2 in the proof of Theorem 2.5, by using the inequality (61), one can show the existence of the limit of {a n (x)} and that lim n→+∞ a n (x) = 0.

Application to optimization and saddle point problems

In this section, we give two examples of particular bifunctions, for which our main weak and strong convergence theorems apply.

Hierarchical minimization

Our contribution in this subsection concerns the hierarchical minimization problem:

min x∈argmin K ψ ϕ(x), (HMP) 
where ψ and ϕ belong to Γ 0 (H) with K = dom ϕ = dom ψ a closed subset of H. The above problem can be equivalently expressed as:

Find x ∈ argmin K ψ such that ϕ(x) ≤ ϕ(y), ∀y ∈ argmin K ψ. (62) 
Clearly, (62) can be viewed as a bilevel equilibrium problem (BEP) such that the associated bifunctions are defined for all x, y ∈ K by f (x, y) = ψ(y) -ψ(x) and g(x, y) = ϕ(y) -ϕ(x). In this case the bifunctions f and g are obviously monotone and upper hemicontinuous. Hence the theorem on the weak convergence applies whenever ( 12) is satisfied.

-Weak convergence: Without any loss of generality we assume that min K ψ = 0. Set M = argmin K ψ, and consider ψ(x) = ψ(x) if x ∈ K, and ψ(x) = +∞ if x / ∈ K; then ψ(x) ≤ δ M (x) for all x ∈ H. Using the reverse inequality for their Fenchel conjugates, we deduce ψ * (p) ≥ σ M (p) for all p ∈ H, and in view of Proposition 1.9, condition [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF] becomes: ∀u ∈ M, for all p ∈ N M (u), Remark 3. We note that the condition (63) is simply the assumption from [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF] in the framework of solving a variational inequality of the form Ax + N C (x) 0, where A : H ⇒ H is a maximally monotone operator and C ⊂ H is a closed convex set.

+∞ n=1 λ n β n ψ * 2p β n -σ M 2p β n < +∞. ( 63 
For this problem, the authors in [START_REF] Attouch | Prox-penalization and splitting methods for constrained variational problems[END_REF] obtained solutions by means of the convergence analysis of the trajectories of the following prox-penalization algorithm -Strong convergence: To deduce the strong convergence of the algorithm (IPA) to a solution of (HMP), we'll have to add a strong monotonicity condition on the function g. However, when we set g(x, y) = ϕ(y) -ϕ(x), the strong monotonicity of g is not ensured, so that we suppose in addition ϕ to be differentiable and strongly convex on K, i.e., for some κ > 0 and for all x, y ∈ K and all t ∈ [0, 1] ϕ(tx + (1 -t)y) ≤ tϕ(x) + (1 -t)ϕ(y) -κt(1 -t) x -y 2 , and we take g(x, y) = ∇ϕ(x), y -x , where ∇ϕ is the gradient of ϕ (we identify ϕ with ϕ(x) = ϕ(x) if x ∈ K, and ϕ(x) = +∞ if x / ∈ K). In this case g is strongly monotone and our inertial proximal scheme associated with the problem (62) is the following: y n := x n + α(x n -x n-1 ) and x n+1 ∈ K such that β n (ψ(y) -ψ(x n+1 )) + ∇ϕ(x n+1 ), y -x n+1 + 1 λ n x n+1 -y n , y -x n+1 ≥ 0, ∀y ∈ K.

(64)

Thus, the conclusion of Theorem 2.4 is valid whenever

∞ n=1
λ n = +∞ and 0 ≤ α < 1 3 .

Equilibrium problem under a saddle point constraint

Let H 1 , H 2 be two real Hilbert spaces, U ⊂ H 1 and V ⊂ H 2 be nonempty closed convex sets, and let L : U × V → R be closed and convex-concave, i.e., for each (u, v) ∈ U × V the real-valued functions L(., v) and -L(u, .) are convex and lower semicontinuous. We note in Figure 2, that when β n increases then the rate of convergence of x n -x 2 rapidly increases to 0, while in Figure 3, the constant coefficient α acts inversely on the speed of convergence of x n -x 2 , (the convergence gets worst as the values of α exceed 1 3 ), which confirms the importance of taking α < 1 3 in our theoretical results.

We note that all codes in this digital test are written in SCILAB-6.1.

Concluding Remark

In this paper, we presented two inertial type methods for solving bilevel monotone equilibrium problems in Hilbert spaces. Our analysis provides interesting convergence results of the trajectory generated by the proposed algorithms under natural assumptions. The results obtained can be seen as an extension and an improvement of some known results in the literature. In particular, the geometric assumption [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF] shows that, as conjectured in [START_REF] Moudafi | Proximal methods for a class of bilevel monotone equilibrium problems[END_REF], the restrictive assumption x n+1 -x n = o( n ) may be removed via the introduction of a notion of conditioning for equilibrium bifunctions. We illustrate this assumption with two concrete particular cases and conclude this work by a numerical experiment, which shows that, with a suitable choice of the parameters, the convergence conditions are satisfied and the proposed iterative method succeeds in approximating a solution to bilevel equilibrium problems.

Finally, we note that, to the best of our knowledge, our algorithm (IPA) seems to be the first introduced inertial proximal scheme for solving (BEP) and then several extensions of our main results may be analyzed. In particular, an interesting direction of future research will be to obtain the above weak convergence result without condition [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF] and also to develop new splitting inertial proximal algorithms for solving bilevel equilibrium problems.

n→+∞ λ n > 0 and lim n→+∞ β n = 0 .

 0 Afterwards, by strengthening the monotonicity assumption on the upper level bifunction g, and whenever 0 ≤ α <

  n→+∞ σ n = ∞, and for all n ≥ n 0 , b σn (x) < b σn+1 (x) and b n (x) ≤ b σn+1 (x). For n = σ n in (30), we get 0 < b σn+1 (x) -b σn (x) ≤ (3α -1)δ σn+1 + 2λ σn g(x σn+1 , x).

n>n0 a n

 n (x) and due to the fact that a n (x) is bounded (by step 1), it follows that +∞ n=n0 (a n (x) -a n-1 (x)) < +∞. By Lemma 1.6, and since +∞ n=n0

  Since lim n→+∞ (b n (x) -b n+1 (x)) = 0 and lim n→+∞ x n+1 -x n = 0, then lim n→+∞ (b n (y)b n+1 (y)) = 0. By using the weak lower semicontinuity of f (y, •) and the fact that {x n } is bounded, lim n→+∞ λ n = 0, lim inf n→+∞ λ n β n > 0 and lim n→+∞ β n = +∞, we conclude from (36) that for every y ∈ K f (y, x) ≤ lim inf n→+∞ f (y, x n+1 ) ≤ 0.

) Applying Theorem 2 . 3 , 2 p 2

 2322 and supposing that M is nonempty, lim inf n→+∞ λ n > 0, lim n→+∞ β n = +∞ and 0 ≤ α < 1 3 , then the whole sequence {x n } generated by the algorithm (9) weakly converges to a point x solution of (HMP). Consider the particular case ψ(x) = 1 2 d(x, M ) 2 , where M ⊂ K is a nonempty closed convex set and d(x, M ) = inf y∈M x -y . Then, ψ * (p) -σ M (p) = 1 for all p ∈ H. Here, M is the minimum set of ψ, and then condition (63) is equivalent to +∞ n=1 λ n β n < +∞.
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  n = (I + λ n (A + β n ∂ψ)) -1 x n-1 ,where {β n } and {λ n } are two sequences of nonnegative reals and ψ : H → R ∪ {+∞} acts as an external penalization function with respect to the constraint x ∈ C. Indeed, several ergodic and non ergodic convergence results have been justified for {x n } under the key assumption: for all p ∈ R(N C ),+∞ n=1 λ n β n ψ * p β n -σ C p β n < +∞,where R(N C ) denotes the range of N C .

Figure 1 .

 1 Figure 1. The asymptotic behavior of the trajectories xn = (yn, zn).

Figure 2 .

 2 Figure 2. The rate of convergence of xn -x 2 for α = 0.1.

Figure 3 .

 3 Figure 3. The convergence rate of xn -x 2 for βn = (1 + n).
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We consider the saddle point problem: find (ū, v) ∈ U × V such that L(ū, v) ≤ L(ū, v) ≤ L(u, v) for every (u, v) ∈ U × V, (SP) which is equivalent, see [START_REF] Ekeland | Convex analysis and variational problems[END_REF], to max Setting H = H 1 × H 2 , K = U × V , we define the bifunction f : K × K → R by: f ((u 1 , v 1 ), (u 2 , v 2 )) := L(u 2 , v 1 ) -L(u 1 , v 2 ), for each (u 1 , v 1 ), (u 2 , v 2 ) ∈ K.

Let us observe that problems (SP) and (EP) are equivalent and we denote the solution set of (SP) by S L .

Using the definition of the Fitzpatrick transform F f , for all (u 1 , v 1 ), (u 2 , v 2 ) ∈ K we have:

Therefore the condition [START_REF] Mansour | A dynamical approach for the quantitative stability of parametric bilevel equilibrium problems and applications[END_REF] is satisfied when for all pairs (u, v) ∈ S f and (p, q) ∈ N Sf (u, v),

We consider two single-valued monotone operators A and B such that K ⊂ dom A × dom B and A × B + N SL is a maximally monotone operator (see [START_REF] Rockafellar | On the maximal monotonicity of subdifferential mappings[END_REF][START_REF] Rockafellar | On the maximality of sums of nonlinear monotone operators[END_REF]). Furthermore we suppose that the solution set S V L of 0 ∈ Ax×B ȳ+N SL (x, ȳ) is nonempty. By A×B, we mean the operator defined for (u, v)

Then, our inertial proximal algorithm (IPA) used for approaching a solution to the problem (BEP) associated with the above bifunctions f and g, i.e., the problem of finding a solution in S V L , takes the following form: for every n ≥ 1, given current

In this case, Theorems 2.3 and 2.4 can be summarized as follows:

Corollary 4.1. Let {x 1 n , x 2 n } be the sequence generated by (66). Under the hypothesis (65) and whenever 0 ≤ α < 1 3 , lim inf n→+∞ λ n > 0 and β n → +∞, the weak convergence of

Next, let us give an example where the condition (65) is verified.

Example 4.2. Take K = [0, 1] × [0, 1] and L the closed convex-concave function defined on K by L(u, v) = u 2 (1 + v). Then, the set of saddle points of L, which is also the solution set S f , is

and then

To ensure (65), we check

and

and then (65) is satisfied, whenever

Numerical experiment

In this section, we present a numerical experiment to illustrate the convergence of the proposed algorithm. Let us consider the constrained minimization problem (HMP), with

Since ψ is convex and smooth, the minimum set of ψ is M = argmin For

Since the function t → α(t) = (t -x 1 ) 2 + (t + x 2 -4) 2 is strongly convex and

Note that the associated bifunctions are defined for all x, y ∈ K by f (x, y) = ψ(y) -ψ(x) and g(x, y) = ϕ(y) -ϕ(x), that f and g are monotone and that weak and strong convergences coincide in finite dimension.

By using the proximal operator of ϕ + β n ψ, the drawing in Figure 1 displays the asymptotic behavior of the trajectories x n = (y n , z n ) from the initial values (y 0 , z 0 ) = (0, 0.5) and (y 1 , z 1 ) = (0, 0.5) with α = 0.1, λ n = 1 n and different values of β n . We also use the iterate error x n -x 2 as a measure to describe the computational performance of our algorithm. The numerical results in Figure 2 illustrate the rate of convergence of x n -x 2 for different choices of β n and α = 0.1, while Figure 3 displays the convergence rate of x n -x 2 for different choices of α and β n = (1 + n).