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Abstract—We consider the problem of distributed lossless
computation of a function of two sources by one common user.
To do so, we first build a bipartite graph, where two disjoint
parts denote the individual source outcomes. We then project
the bipartite graph onto each source to obtain an edge-weighted
characteristic graph (EWCG), where edge weights capture the
function’s structure, by how much the source outcomes are to be
distinguished, generalizing the classical notion of characteristic
graphs. Via exploiting the notions of characteristic graphs, the
fractional coloring of such graphs, and edge weights, the sources
separately build multi-fold graphs that capture vector-valued
source sequences, determine vertex colorings for such graphs,
encode these colorings, and send them to the user that performs
minimum-entropy decoding on its received information to re-
cover the desired function in an asymptotically lossless manner.
For the proposed EWCG compression setup, we characterize
the fundamental limits of distributed compression, verify the
communication complexity through an example, contrast it with
traditional coloring schemes, and demonstrate that we can attain
compression gains higher than %30 over traditional coloring.

I. INTRODUCTION

Over the past years, we have been experiencing an ever-
increasing demand for computationally-intensive tasks, moti-
vating us to devise new parallel processing techniques to speed
up and efficiently distribute computations across groups of
servers. In modern distributed computing, a primary concern
is communication cost. While parallel processing to distribute
communication can reduce the need for coordination and
alleviate this cost, reduction of the same communication cost
is challenged due to issues of scalability [1], accuracy [2], low
capacity edges [3], and stragglers [4] in distributed computing.

A. Related Work

Distributed coded computation. There have been various
efforts to mitigate the communication cost in distributed
computing following Yao’s seminal work in [5] on communi-
cation complexity. Some recent breakthroughs in this direction
include coded computing [6]–[8], and distributed computation
of, e.g., matrix products [9]–[12], matrix multiplication with
stragglers [13], and linearly separable functions [14]–[16].

Distributed source and functional compression. Other
attempts have been inspired from the seminal work of
Slepian-Wolf [17] on distributed source compression, the rate-
distortion coding models of Wyner-Ziv with side informa-
tion [18], and for lossy source coding [19], toward function
computation. These works include [20]–[23] that consider
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function computation over networks, as well as [23] and [24],
considering the generalization to functional rate-distortion, and
[25] and [26], focusing on hypergraph-based source coding
and function approximation under maximal distortion. Re-
cent works also include hyperbinning for distributed function
quantization [27], generalizing the orthogonal binning ideas
in Slepian-Wolf coding [28], and fractional coloring-based
distributed computation [29] that reduces complexity of [21].

Coding for specific functions and channels. The commu-
nication cost is also affected by the nature of the computed
function. Examples include Körner-Marton’ encoding problem
for computing modulo-two sum of binary sources [30], the
generalization of Körner-Marton’s problem to a two-terminal
source coding scheme with common sum reconstruction [31],
which has applications in distributed stochastic gradient de-
scent, and Max-Lloyd’s algorithms [32] to compute large-scale
averages. Han and Kobayashi have established necessary and
sufficient conditions on functions such that the Slepian-Wolf
region is optimal for distributed lossless computing [33]. The
authors in [34]–[36] have explored the combinatorial aspects
of source coding to compress correlated sources separately
or with decoder side information. The joint source-channel
scheme of Cover, El Gamal, and Salehi uses the source corre-
lations to achieve a collaborative gain and create channel input
distributions adapted to the channel [37]. To that end, Nazer
and Gastpar have devised designs for distributed computing
over multiple access channels [38], and structured coding [39].

B. Overview and Contributions

We focus on distributed computing of a function of two
jointly distributed finite alphabet sources at a user. We
pose this problem as an edge-weighted characteristic graph
(EWCG) compression problem. To do so, we build a bipartite
graph1 where two disjoint parts denote the individual source
outcomes, and the edges capture the joint source distribution.

Our main contributions can be summarized as follows:
• Edge-weighted b-fold compression. We propose an EWCG

encoding scheme to provide low-complexity compression
for computing, where we describe the weights by the joint
source distribution and the function. An EWCG is a fraction-
ally colored characteristic graph built by each source as an
edge-weighted projection of the bipartite graph (Sect. II).
To capture the unequal edge weights, the source devises
b characteristic graphs (one graph per source coordinate,

1Important classes of bipartite networks are the collaboration network
and the opinion network. They are significant in information and economic
systems, social networks, opinion networks and recommendation systems [40].



see [41, App. A]), where the edge weights in EWCG are
quantized across these graphs (that we detail via Example 1).
In an EWCG, a vertex captures a b-fold, i.e., vector-valued,
source value, and is given b colors out of a available colors,
where b captures the quantization depth of each source. The
edge weights are used to determine a, b, and the overlap of
colorings for any vertex pair (Sect. III), upon which each
source establishes and encodes the colorings of its EWCG.

• Edge-weighted fractional chromatic entropy. The fractional
chromatic number χf – given by the limit in (13) in [41,
App. A] – determines the communication complexity when
the edges have unit weights. Using OR power graphs,
we can exploit the gains in complexity through fractional
coloring as the blocklength n tends to infinity [42, Ch. 3].
To that end, we generalize the definition of χf via EWCGs
to provide a lower communication complexity (Sect. III).

• Joint quantization and distributed functional compression
via EWCGs. In the edge-weighted fractional coloring of
vector-valued sources, b is the quantization depth. The
encoding rates for EWCGs are lower versus traditional or
fractional coloring of graphs because the higher the value of
b is, the more refined the weights in an EWCG are, enabling
a lower rate of compression per source coordinate. We
characterize in (3) the number of disjoint colors between two
vertices of an EWCG. We provide in Theorem 1 (Sect. III)
the encoding rate for a b-fold fractional coloring of EWCGs.

• Numerical experiments. Contrasting it with the existing
techniques via an example, EWCG exhibits significant sav-
ings in communication complexity by taking into account
the structures of the sources (via the Slepian-Wolf theorem
[17]) and the function (via the edge weights).

C. Notation
For a random variable X with a finite alphabet X , PX

denotes its probability mass function (PMF). Similarly, for
variables X1 and X2, PX1,X2

denotes the joint PMF. We
denote the probability of an event A by P(A). Let the entropy
function of a PMF p be h(p) = −

∑
i pi log pi where the

logarithm is in base 2, h(p) be the binary entropy function with
parameter p, and H(X) = E[− logPX(X)] be the Shannon
entropy of X . We denote by Xn

1 = X11, X12, . . . , X1n ∈ Xn
1

the length n sequence of X1 sampled from an n-fold finite
alphabet Xn

1 . We let [N ] = {1, 2, . . . , N}, N ∈ Z+.

II. MODEL AND PROBLEM STATEMENT

We pose the problem of distributed computation of a func-
tion f(X1, X2) of the two sources X1 and X2 as a compres-
sion problem for the edge-weighted projections of a bipartite
graph that captures PX1,X2 . For this partially distributed
setting, we will devise an encoding scheme for EWCGs and
quantify the sum rate for computing f(X1, X2), by exploiting
the notions of characteristic graphs and their entropy [20]–[23]
and the concept of bipartite graph projection.

A. Bipartite Graph Representation
We construct a bipartite graph representation Gf =

(X1,X2, E) to compute the function f(X1, X2), whose par-

tition has the parts X1 and X2, which correspond to the set
of realizations of the sources X1 and X2, respectively, and
E denotes the set of edges of Gf . The bipartite graph Gf is
derived from the joint distribution PX1, X2

, and E captures the
correlation between X1 and X2. More specifically,

1) The set of vertices X1 and X2 that partition Gf are disjoint.
2) Gf is a balanced bipartite graph with |X1| = |X2|, i.e., the

two subsets of vertices have the same cardinality.
3) There is an edge between vertices uk ∈ X1 and vl ∈ X2,

i.e., (uk, vl) ∈ E, if and only if P(X1 = uk, X2 = vl) > 0.
4) If uk ∈ X1 and vl ∈ X2 are connected, i.e., (uk, vl) ∈ E,

and (vl, uk) ∈ E, then the symmetry of the edges does not
imply that both edges yield the same function outcome.

If Gf is complete, it has |X1| · |X2| edges and the number
of distinct function outcomes is determined by the structure
of f(X1, X2). On the other hand, if Gf is not connected,
it may have more than one bipartition [43]. In that case,
encoding of f(X1, X2) is facilitated upon the extraction of the
bipartition information. We note that the sources do not have
the full knowledge of E, as determined by PX1,X2

, but only
the weights jointly determined by PX1,X2

and f(X1, X2). We
assume that the edge weights are available, and can be learned
via feedback, the study of which is left as future work.

B. Weighted Bipartite Graphs through Projections of Gf

Source one X1 observes a weighted projection of Gf onto
a graph – the X1 projection of Gf – denoted by Gw

X1
, and

similarly for source two. For the EWCG of X1, given by Gw
X1

,
the edge weight between uk1 , uk2 ∈ X1 of Gw

X1
, denoted by

w(uk1
, uk2

), is set to be the weighted number of common
neighbors in X2. Hence, the notion Gw

X1
generalizes the con-

cept of the characteristic graph GX1
detailed in [41, App. A].

In this paper, we determine {w(uk1
, uk2

), uk1
, uk2

∈ X1} as

w(uk1 , uk2) =
∑

vl∈X2: f(uk1
,vl )̸=f(uk2

,vl)∏
k∈{k1,k2} PX1,X2

(uk,vl)>0

PX1,X2([uk1 , uk2 ], vl) , (1)

where PX1,X2([uk1 , uk2 ], vl) =
∑

k∈{k1,k2} PX1,X2(uk, vl).
The idea is similar for determining w(vl1 , vl2) of Gw

X2
.

Similarly, towards realizing the limits of compression, for
the n-th power graph of Gw

X1
, namely Gn,w

X1
, the edge weight

between the vertices un
i ,u

n
j ∈ Xn

1 of Gn,w
X1

is given as

w(un
i ,u

n
j ) =

∑
vn
l ∈Xn

2 : f(un
i ,v

n
l ) ̸=f(un

j ,v
n
l )∏

k∈{i,j} PXn
1 ,Xn

2
(un

k
,vn

l
)>0

PXn
1 ,X

n
2
([un

i ,u
n
j ],v

n
l ) .

We can note that for the standard construction GX1
of X1

[44], [21], as detailed in [41, App. A], the edge weights satisfy

1∣∣{vl∈X2 :
∏

k∈{k1,k2} PX1,X2
(uk,vl)>0, f(uk1

,vl) ̸=f(uk2
,vl)

}∣∣>0
.

In distributed compression, exploiting the notion of jointly
typical sequences, it is possible for the user to estimate the
number of Xn

2 sequences jointly typical with Xn
1 given Xn

1 .
Hence, as a simplification of this paper’s model in (1), while



still generalizing GX1
, the weight w(uk1

, uk2
) for uk1

, uk2
∈

X1 can be set as the number of common neighbors in X2:∑
vl∈X2

1∏
k∈{k1,k2} PX1,X2

(uk,vl)>0, f(uk1
,vl )̸=f(uk2

,vl) . (2)

The edge weights in (1) affect the quantization of the source
outcomes through a b-tuple of graphs, which we detail next.

III. MAIN RESULTS

In this section, we provide an achievable encoding and
decoding approach for asymptotically lossless distributed com-
putation of f(X1, X2), which is based on projecting the
bipartite graph Gf onto EWCGs and compressing the EWCGs.

A. Valid Colorings of Edge-Weighted Graphs

In traditional coloring of an unweighted graph GX1 , we
note that given a pair of vertices uk1

, uk2
∈ X1 such that

w(uk1
, uk2

) = 0, it implies that the two vertices can have
identical colors cGX1

(uk1
) = cGX1

(uk2
). On the other hand,

w(uk1 , uk2) > 0 implies cGX1
(uk1) ̸= cGX1

(uk2).
In fractional coloring of EWCGs, prior to a valid coloring

of vertices of Gw
X1

and Gw
X2

, we normalize each weight
in (1) by max {w(uk1 , uk2), uk1 , uk2 ∈ X1}, and similarly
for {w(vl1 , vl2), vl1 , vl2 ∈ X2} of Gw

X2
.

We next let cfGw
X1

(uk1
), uk1

∈ X1 be a valid fractional
coloring with a b-fold coloring, where uk1 is assigned b colors
out of a available colors. Note that the distance between colors
cfGw

X1

(uk1
) and cfGw

X1

(uk2
), i.e., dist(cfGw

X1

(uk1
), cfGw

X1

(uk2
)),

is an increasing function of w(uk1
, uk2

) [45]. To that end,
we stretch Defns. (1) and (2) in [41, App. A] of the standard
a : b coloring, and adopt the following model. As in traditional
coloring, for a given uk1 , uk2 ∈ X1, when w(uk1 , uk2) =
0, then the b-fold colors cfGw

X1

(uk1) and cfGw
X1

(uk2) could

be identical, i.e., dist(cfGw
X1

(uk1
), cfGw

X1

(uk2
)) = 0. On the

other hand, when w(uk1
, uk2

) = 1, then the b-fold col-
ors cfGw

X1

(uk1
) and cfGw

X1

(uk2
) can have no overlaps, i.e.,

dist(cfGw
X1

(uk1), c
f
Gw

X1

(uk2)) = b. More generally, a valid a : b

coloring of Gw
X1

is such that given w(uk1 , uk2), the minimum
number of disjoint colors between uk1

and uk2
of Gw

X1
is

dist(cfGw
X1

(uk1
), cfGw

X1

(uk2
)) = ⌈w(uk1

, uk2
) · b⌉ , (3)

meaning that if w(uk1
, uk2

) ∈
(

b−(k+1)
b , b−k

b

]
for k ∈

{0} ∪ [b − 1], then vertices uk1
and uk2

are assigned b − k
distinct colors, and only if w(uk1

, uk2
) = 0 they are assigned

exactly the same b colors. We note that the number of different
colors between two vertices of Gw

X1
changes as a function of

the edge weight, as given in (3). The neighboring vertices in
Gw

X1i
have at least one different color, and the endpoints of

edges with large weights have a higher number of disjoint
colors. Clearly, this coloring scheme generalizes the notion of
fractional chromatic number (Defn. 2 in [41, App. A]).

We next expand Gw
X1

into a b-tuple of graphs represented by
Gw

X1(S) = {Gw
X1i

: i ∈ S, |S| = b}, where Gw
X1i

, i ∈ S is an
i-th replica of Gw

X1
. We jointly color the set of graphs Gw

X1(S)

such that cGX1(S)
(X1(S)) = {cGw

X1i
(X1i) : i ∈ S, |S| = b}

and w(uk1 , uk2) =
1
b

∑
i∈S

wi(uk1
, uk2

) is split such that

wi(uk1
, uk2

) (4)

= min
{
1, max

{
b · w(uk1 , uk2)− b

i−1∑
i′=1

wi′(uk1 , uk2), 0
}}

denotes the weight between uk1
and uk2

of Gw
X1i

, i ∈ S,
i.e., the i-th replica of Gw

X1
. Note that (4) yields a sequence

of monotone decreasing edge weights wi(uk1 , uk2) for i ∈ S
that jointly determine the traditional colorings for the set of
graphs Gw

X1(S). In Fig. 1, we show a joint coloring for an
example |S| = 2-tuple EWCG. We will detail this example in
Sect. III-C to indicate the achievable gains in compression.

We next explore the fundamental rate limits for distributed
computing of f(X1, X2), by exploiting the notions of charac-
teristic graph entropy, and EWCGs, where we determine the
weights according to (4), following the bipartite projection
scheme. To that end, we next detail encoding and decoding of
Gw

X1
for asymptotically lossless compression of f(Xn

1 , X
n
2 ).

B. An Achievable Coloring Scheme for Edge-Weighted Graphs

In this part, we detail the encoding and decoding principle
of EWCGs for distributed computing of f(X1, X2). We next
describe the encoding of b-fold colors. Note that the compu-
tation of f is lossless independent of the value of b ∈ Z+.

a) Encoding: Given Gf , the encoding phase includes the
projections of Gf onto Gw

X1
and Gw

X2
by determining the

corresponding edge weights using (1) followed by their nor-
malization. Each source then builds a b-tuple of characteristic
graphs, Gw

X1(S) and Gw
X2(S), respectively, for |S| = b. The

sources can then compress their weighted graphs asymptoti-
cally at rates Hf

Gw
X1

(X1) and Hf
Gw

X1

(X2), where we next give
the conditional fractional graph entropy of the EWCG Gw

X1
.

Theorem 1. The fractional graph entropy of Gw
X1

is equal to

Hf
Gw

X1

(X1 |X2) = lim
n→∞

1

n
inf
b

1

b
min
cf
G

n,w
X1

{H(cf
Gn,w

X1

(X1)) :

cf
Gn,w

X1

(X1) is a valid a : b coloring of Gn,w
X1

|X2} , (5)

where cf
Gn,w

X1

(X1) is a fractional coloring variable for Gn,w
X1

with an a : b coloring of each vertex of Gn,w
X1

.

Proof. A proof sketch is given in [41, App. B].

b) Decoding: For lossless decoding, the user needs to
be instructed on PX1,X2 , f , b, and the look-up table for
recovering f(Xn

1 , X
n
2 ) using the received fractional colorings

of the b-tuple of graphs from each source. The user first per-
forms minimum-entropy decoding on its received information
[46]. Via Slepian-Wolf decoding, it achieves the sequences
cf
Gn,w

X1

(X1) and cf
Gn,w

X2

(X2) that model the b-fold color tuples.

The user then uses a look-up table to compute f(Xn
1 , X

n
2 ).

To demonstrate the procedure for encoding and decoding
of an EWCG Gw

X1
, determining the edge weights in (4), and



Fig. 1. Distributed computation of f(X1, X2): an end-to-end multi-fold encoding and decoding scheme for EWCGs. The encoding phase consists of
determining the EWCG tuples and their colorings, followed by Slepian-Wolf encoding on the b-fold colors. Decoding relies on recovering the b-fold colors
using Slepian-Wolf decoding followed by recovering the outcomes using a look-up table. We note that PX1

= (0.2, 0.15, 0.32, 0.24, 0.09), and the edge
weights are given in Example 1. In the bottom figure, the graph encoder for each source is independent – output is a b-tuple color sequence – with Slepian-Wolf
encoding. In this example, the user uses 4 fractional colors received (b = 2 from each source per transmission) to reconstruct the function outcome.

sending a pair of b-tuples of coloring sequences for recovery of
f(Xn

1 , X
n
2 ) by the user in an asymptotically lossless manner,

we next detail an end-to-end distributed computing example
with a b = 2-fold coloring of Gw

X1
, which is shown in Fig. 1.

C. An Example toward Edge-Weighted Encoding-Decoding

We present an example to illustrate how to build an EWCG
and how to encode and decode the coloring, to obtain the
desired function outcomes. Through this example, we also
contrast the performance of our scheme with that of traditional
graph coloring that does not exploit the weight information.

Example 1. An EWCG and its chromatic entropy. The
source variables X1 and X2 share a common alphabet such
that X = {−2, −1, 0, 1, 2}. The ordered marginal PMFs
are X1 ∼ p1 = (0.2, 0.15, 0.32, 0.24, 0.09) and X2 ∼ p2 =
(0.2, 0.3, 0.32, 0.08, 0.1), and PX1,X2 is given as follows:

PX1, X2 =


0.1 0.1 0 0 0
0.1 0 0 0 0.05
0 0.2 0.12 0 0
0 0 0.2 0.04 0
0 0 0 0.04 0.05

 . (6)

We note that the entropy of X1 satisfies H(X1) =
h(0.2, 0.15, 0.32, 0.24, 0.09) = 2.2078 < H(X1,u) = 2.32,
with X1,u ∼ PX1,u

, where PX1,u
is uniform over X .

Unweighted scenario. Without taking into account the edge
weights, the minimum entropy coloring of GX1 is given as
H(cGX1

) = h(0.44, 0.47, 0.09) = 1.35. The entropy with
a 5 : 2 fractional coloring with χf (GX1

) = 2.5 satisfies
1
2H(cfGX1

) = 1
2h(0.22, 0.235, 0.205, 0.145, 0.195) = 1.15.

Similarly, for G2
X1

, with an 8 : 1 coloring, and a PMF [23]

cG2
X1

∼ (0.176, 0.188, 0.018, 0.176,

0.188, 0.036, 0.036, 0.182) ,

we get 1
2H(cG2

X1
) = 1.34. For a 13 : 2 coloring, 1

4H(cf
G2

X1

) =

0.91. For X1,u uniform, it holds that 1
2H(cfGX1,u

) = 1
2 log 5 =

1.16, and for X1,u uniform, 1
4H(cf

G2
X1,u

) = 1
4 log 13 = 0.92.

Weighted scenario. We next take into account the edge
weights. Using (1), the edge weights are w(−2,−1) = 0.2,
w(−2, 0) = 0.3, w(0, 1) = 0.32, w(1, 2) = 0.08, and
w(−1, 2) = 0.1. Note that for this specific example, W ∼ p2.

We next decompose Gw
X1

into b = 2 graphs, as shown in
Fig. 1 (top row). Normalizing the edge weights, and then using
(4), the weights are w1(−2,−1) = w1(−2, 0) = w1(0, 1) =
1, w1(1, 2) = 0.5, and w1(−1, 2) = 0.625 for Gw

X11
, and

w2(−2,−1) = 0.25, w2(−2, 0) = 0.875, w2(0, 1) = 1, and
w2(1, 2) = w2(−1, 2) = 0 for Gw

X12
. This yields a valid 5 : 2

coloring of Gw
X1(S) for |S| = 2, as also shown in the top row.

Using the joint coloring information of Gw
X1(S), i.e., for

Gw
X11

and Gw
X12

, the color PMF for the 5 : 2 fractional col-
oring of Gw

X1
for the set of ordered colors {c1 = Blue, c2 =

Orange, c3 = Green, c4 = Purple, c5 = Y ellow} satisfies

P
c
f
Gw

X1

(c1) =
1

2
(p1(−2) + p1(1)) =

0.44

2
= 0.22 ,

P
c
f
Gw

X1

(c2) =
1

2
(p1(−1) + p1(0)) =

0.47

2
= 0.235 ,

P
c
f
Gw

X1

(c3) =
1

2
p1(2) = 0.045 ,

P
c
f
Gw

X1

(c4) =
1

2
(p1(−2) + p1(1)) =

0.44

2
= 0.22 ,

P
c
f
Gw

X1

(c5) =
1

2
(p1(−1) + p1(0) + p1(2)) =

0.56

2
= 0.28 , (7)

which yields from (5) that 1
2H(cfGw

X1

) = 1.08 < 1
2H(cfGX1

) =

1.15 < H(cGX1
) = 1.35. Hence, for b = 2, capturing the edge

weights yields a saving of %16 over traditional coloring and
does not offer enhancement over standard fractional coloring.



Fig. 2. A fractional coloring scheme for distributed computation of f(X1, X2) with a 6 : 3 coloring.

For the same example, with b = 3 and with the inclusion
of a sixth color, where c6 = V iolet, we can achieve a 6 : 3
coloring as shown in Fig. 2, and the coloring PMF is

P
c
f
Gw

X1

(c1) = P
c
f
Gw

X1

(c4) =
1

3
(p1(−2) + p1(1)) =

0.44

3
,

P
c
f
Gw

X1

(c2) =
1

3
(p1(−1) + p1(0)) =

0.47

3
,

P
c
f
Gw

X1

(c3) =
1

3
(p1(2) + p1(0)) =

0.41

3
,

P
c
f
Gw

X1

(c5) =
1

3
(p1(−1) + p1(0) + p1(2)) =

0.56

3
,

P
c
f
Gw

X1

(c6) =
1

3
(1− p1(0)) =

0.68

3
. (8)

Then, a valid 6 : 3 coloring of Gw
X1

yields 1
3H(cfGw

X1

) = 0.85,
providing a saving of %37 over traditional coloring. Hence,
a larger b can capture the edge weights more accurately.

We next consider the second power graph G2,w
X1

. We note
that χf (G

w
X1

) = 2.5, and χf (G
2,w
X1

) = χ2
f (G

w
X1

) = 6.25.
Hence, a 12 : 2 coloring is not possible for n = 2. We show a
valid 13 : 2 coloring of G2,w

X1
in Fig. 3, given the ordered set

{c1 = Blue, c2 = Y ellow, c3 = Green, c4 = Orange, c5 =
Purple, c6 = LightBlue, c7 = Brown, c8 = V iolet, c9 =
BrickRed, c10 = DarkGreen, c11 = Black, c12 =
Gray, c13 = Navy}. Its coloring PMF can be derived from
that for Gw

X1
and can be shown to satisfy

P
c
f

G
2,w
X1

(cm) =
2

5
P
c
f
Gw

X1

(c1) = 0.088 , m ∈ {1, 11, 12} ,

P
c
f

G
2,w
X1

(c2) =
2

5
P
c
f
Gw

X1

(c5) = 0.112 ,

P
c
f

G
2,w
X1

(c3) =
1

5
(P

c
f
Gw

X1

(c3) + P
c
f
Gw

X1

(c2)) = 0.056 ,

P
c
f

G
2,w
X1

(c4) =
2

5
P
c
f
Gw

X1

(c2) = 0.094 ,

P
c
f

G
2,w
X1

(c5) =
1

5
(P

c
f
Gw

X1

(c4) + P
c
f
Gw

X1

(c3)) = 0.053 ,

P
c
f

G
2,w
X1

(c6) =
1

5
(P

c
f
Gw

X1

(c4) + P
c
f
Gw

X1

(c5)) = 0.1 ,

P
c
f

G
2,w
X1

(c7) =
1

5
(P

c
f
Gw

X1

(c1) + P
c
f
Gw

X1

(c2)) = 0.091 ,

P
c
f

G
2,w
X1

(c8) =
2

5
P
c
f
Gw

X1

(c3) = 0.018,

P
c
f

G
2,w
X1

(c9) =
1

5
(P

c
f
Gw

X1

(c3) + P
c
f
Gw

X1

(c5)) = 0.065 ,

P
c
f

G
2,w
X1

(c10) =
1

5
(P

c
f
Gw

X1

(c2) + P
c
f
Gw

X1

(c5)) = 0.103 ,

P
c
f

G
2,w
X1

(c13) =
1

5
P
c
f
Gw

X1

(c4) = 0.044 ,

which yields from (5) that 1
4H(cf

G2,w
X1

(X1)) = 0.9 =
1
4H(cf

G2
X1

) = 0.91 < 1
2H(cG2

X1
) = 1.34. Hence, capturing

the edge weights yields a saving of %32 over traditional
coloring, and does not have much gain over the fractional
coloring approach that does not capture the weights. Increas-
ing b allows us to capture the edge weights more accurately.

Fig. 3. A valid 13 : 2 fractional coloring of G2,w
X1

for Example 1, where
χf (G

2,w
X1

) = χ2
f (G

w
X1

) = (2.5)2 = 6.25.

Similarly, we can determine the compression rate for gen-
eral n. Exploiting [42, Cor. 3.4.3], χ(Gn

X1
) ≈ χn

f (GX1) as n
goes to infinity. Hence, we can derive the n-th power graph,
Gn,w

X1
, along with its a : b fractional coloring, cf

Gn,w
X1

(X1).

From Example 1, as b increases, we have a finer-grained
quantization of the graph edge weights. As the skew of the
edge weights increases, the efficiency in compressing the b-
tuples of Gw

X1
increases (e.g., in Fig. 1 some edges have rela-

tively low weights, e.g., w(1, 2) = 0.08, and w(−1, 2) = 0.1,
yielding a fewer number of distinct colors between these two
end vertices). As the value of b increases, the edge weights will
be captured with greater precision, leading to a more refined
fractional coloring (more skewed) and a reduced total number
of colors and smaller graph entropy Hf

Gw
X1

(X1) given by (5).
When the total bit budget for quantization and compression

is limited, there is a tradeoff between b that determines the fold
of coloring, and the complexity of encoding the characteristic
graph. That is, the number of bits spent on quantizing the edge
weights determines the attainable gains in compression.
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