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Abstract

The complex differentiation method (CDM) is applied to the sensitivity analysis of the noise generated by two-

dimensional mixing layers, simulated by Direct Numerical Simulation (DNS), in order to investigate its capabilities

to highlight the effects of a key parameter on the aerodynamic noise. For this purpose, simulations are carried out

using the CDM for different flow Mach numbers, Reynolds numbers and mesh spacings. In each case, the derivatives

of the noise levels with respect to one of the three parameters are obtained using the CDM, implemented by adding

a small imaginary perturbation to the parameter under study. In most cases, vortex pairings occur in the mixing

layers and produce acoustic waves at a single frequency. The derivatives of the acoustic intensity obtained using

the CDM show that the sound radiation is stronger and less directed downstream as the Mach number increases,

in agreement with dimensional analyses. They also indicate that the radiation is more intense and directive as the

Reynolds number increases. The magnitude of the derivatives of the acoustic intensity with respect to the mesh size

decreases for finer meshes, showing that the grid sensitivity of the radiated noise is reduced for the latter meshes, as

expected. In all cases, the derivatives obtained using the CDM are in good agreement with results from parametric

studies. This suggests that the CDM can be used to describe the effects of physical parameters and of the grid

resolution on the sound produced by a high-speed flow.

Keywords: complex differentiation method, sensitivity analysis, grid sensitivity, mixing layer, direct numerical

simulation, aeroacoustics

1. Introduction

Reducing the noise produced by flows is required in many industrial applications. To develop suitable strategies

for that, it is often necessary to highlight the effects of flow parameters such as the Mach and Reynolds numbers on

the noise generation mechanisms. Parametric studies are often conducted using high-fidelity simulations to bring

these effects to light. For instance, to examine the effects of the Mach number on the noise produced by a jet,

several simulations of the jet at different Mach numbers should be analyzed. For a high-Reynolds number flow,

a huge number of mesh points are required to accurately resolve the aerodynamic and acoustic fields, leading to

parametric studies of prohibitive cost.

A sensitivity analysis can be seen as an alternative. It enables to estimate the derivatives of the flow solutions

with respect to a parameter, namely, the flow sensitivities. For example, the derivative of a function f (e.g., noise
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level) with respect to a parameter α, at a point α = α0, can be written as

df

dα
(α0) = lim

ϵ→0

f(α0 + ϵ)− f(α0)

ϵ
, (1)

where ϵ is a real number. A high value of the derivative indicates a strong sensitivity of the function f to a variation

of the parameter α at α = α0. Conversely, a low value of the derivative means that the function is only slightly

affected by the parameter variation.

Various sensitivity analysis methods are available in the literature, as documented in the review by Martins

& Hwang [1]. The most notable ones are methods based on Taylor approximations [2], the sensitivity equation

method [2, 3, 4, 5, 6] and the complex differentiation method [2, 7, 8, 9], also called the complex-step method. With

a method based on Taylor approximations, values of the derivatives of the flow solutions with respect to a parameter

are estimated by carrying out several simulations. For instance, a first-order approximation of the derivative of a

function f can be written as
df

dα
(α0) ≃

f(α0 + h)− f(α0)

h
, (2)

where h is a real number denoting a perturbation magnitude. To estimate the derivative using this approximation,

it is necessary to carry out a simulation for α = α0 + h and another one for α = α0. The truncation error of

a Taylor approximation is reduced as the perturbation magnitude h decreases. Therefore, it is recommended to

consider very small values for h. However, when h is excessively small, f(α0 + h) and f(α0) are so close that their

difference is lower than the rounding errors and thus the derivative df/dα increases as h becomes smaller, as shown

by Anderson et al. [8] and Martins et al. [10], among others. Finding a value of the perturbation magnitude h to

accurately evaluate the derivatives of interest therefore may require several trials.

Flow sensitivities can also be estimated using the sensitivity equation method (SEM). This method consists in

solving the sensitivity equations obtained by differentiating the Navier-Stokes equations with respect to a parameter.

The solutions of these equations are the derivatives of the flow variables with respect to the parameter and can thus

be used to determine the flow sensitivities. The flow variables are involved in the sensitivity equations due to the

non-linearity of the Navier-Stokes equations. To apply the SEM, it is thus required to solve the sensitivity equations

in conjunction with the Navier-Stokes equations to compute the flow variables and the flow sensitivities. SEM has

been used several times to study unsteady incompressible flows. For instance, Hristova et al. [5] investigated the

sensitivity of a two-dimensional pulsed flow around a square cylinder with respect to the mean flow velocity, the

amplitude and the period of the pulsation using SEM. Their results showed that the asymmetrical vortex shedding

downstream of the cylinder appears more clearly and earlier in the flow sensitivity fields than in the flow solution

fields. The SEM was first applied to a three-dimensional turbulent flow by Kirkman & Metzger [11] to describe

the effects of the Reynolds number on a channel flow. The variations of the mean flow fields with the Reynolds

number, predicted by the flow sensitivities obtained by the authors, were in good agreement with the results of

parametric studies. Zayernouri & Metzger [6] studied the effects of the Reynolds and Prandtl numbers on vortices

in a non-isothermal two-dimensional mixing layer using the SEM. The vorticity fields and their derivatives with

respect to these numbers estimated by the authors indicated that the vortices are more isolated from each other as

the Reynolds number increases and that the temperature is less homogeneous within the vortices when the Prandtl

number is higher.
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Finally, the complex differentiation method (CDM) can be used to obtain the flow sensitivities. It is related

to the Taylor approximations. However, it allows to determine the derivatives of the flow solutions with respect

to a parameter by performing a single simulation, and without round-off errors [12]. It consists in adding a small

imaginary perturbation to the parameter and solving the Navier-Stokes equations using complex arithmetic. It can

be implemented in a simple way in a computational code dealing only with real variables [8, 10, 13]. The complex

differentiation method was introduced by Lyness & Moler [7], and then been applied by Squire & Trapp [12]

to evaluate the derivatives of analytical real functions. It was later used by Anderson et al. [8] and Vatsa [13]

for turbulent flows by solving the time-dependent Reynolds-averaged Navier-Stokes equations, and by Cerviño et

al. [14] and Lu & Sagaut [9] for two-dimensional compressible unsteady flows using DNS. The method was then

used by Vergnault & Sagaut [15] in conjunction with the Lattice Boltzmann Method to analyze the sensitivity

of a flow around a cylinder with respect to the Reynolds number. Subsequently, the CDM was coupled with a

time-reversal technique to localize noise sources within a two-dimensional mixing layer [16]. Finally, Kirkman &

Metzger [2] studied the sensitivity of a channel flow to the channel height, the viscosity and the pressure gradient

using second-order Taylor approximations, the SEM and CDM. The results obtained by these authors indicate that

among these three approaches, the CDM is the most accurate and the cheapest in terms of numerical cost.

Given the preceding, CDM appears to be a straightforward and accurate method for performing sensitivity

analyses. However, it is still unclear if it can be used to study the effects of physical parameters on the noise

produced by a flow. Another question is whether a sensitivity analysis can help to characterize the accuracy of

acoustic variables computed by direct numerical simulations. A grid sensitivity study is the standard method to

assess this accuracy. It consists in carrying out simulations using finer and finer meshes. The convergence of the

flow solutions with mesh refinement is then chosen as a criterion for numerical accuracy [17]. The derivatives of

the flow solutions with respect to the mesh spacing may provide useful information to study this convergence, since

they indicate how the flow solutions vary with a small change in the grid resolution. To the best of the authors’

knowledge, the CDM has not been applied yet to conduct a grid sensitivity analysis of the aerodynamic and acoustic

fields of a high-speed flow computed by direct numerical simulation.

To answer the above questions, CDM is applied in this work to study the effects of the Mach number, the

Reynolds number, and the mesh spacing on the noise produced by a two-dimensional subsonic mixing layer. The

mixing layer is controlled with a harmonic excitation so that vortex pairings occur and produce acoustic waves at a

single frequency, as in other studies in the literature [16, 18, 19]. Parametric studies are conducted by carrying out

direct numerical simulations of the mixing layer for different Mach and Reynolds numbers, based on the velocity

difference between the fast and the slow flows of the mixing layer and on the inlet vorticity thickness δω, and using

several meshes. The values of the Mach number are between 0.2 and 0.4 and those of the Reynolds number are

between 400 and 12800. Four non-uniform structured grids, differing from each other by the mesh spacing at the

center of the mixing layer, denoted ∆y0, which varies from 0.1δω to 0.8δω, are considered. In each simulation, the

complex differentiation method is used to estimate the derivatives of acoustic variables with respect to the Mach

number, the Reynolds number or the mesh spacing parameter ∆y0. In this way, comparisons between the flow

sensitivities obtained using the CDM and the results of the parametric studies can be made.

The paper is organized as follows. The compressible Navier-Stokes equations, the complex differentiation
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method, the complex Navier-Stokes equations and the sensivity equations are presented in Section 2. In Sec-

tion 3, the parameters of the mixing layer and the numerical parameters of the simulations are given. In Section 4,

the accuracy of the complex differentiation method is compared with that of a first-order approximation by es-

timating the derivative of the acoustic power of mixing layers at different Reynolds numbers with respect to the

latter parameter. The approach employed to estimate the flow sensitivities with respect to the Reynolds and Mach

numbers, and to the mesh spacing ∆y0 using the complex differentiation method is described in Section 5. The

results are given in Section 6. The effects of the Mach number on the sound radiation of the mixing layer are first

described by analyzing the properties of acoustic fields, such as the root-mean-square values of pressure fluctuations.

They are then compared to the derivatives of the sound intensities with respect to the Mach number estimated

using the CDM. To investigate the efficiency of the CDM, the derivatives of the noise levels provided by the flow

sensitivities are compared with the noise levels values. The results obtained from the simulations performed with

different Reynolds number and grids are analyzed with the same approach.

2. Governing equations and complex differentiation method

2.1. Navier-Stokes equations

The compressible Navier-Stokes equations in their conservative form are considered. They describe the evolution

of density ρ, momentum m = ρu, where u is the velocity vector, and total energy E = p/ (γ − 1) + (m ·m) /2ρ,

where p is the pressure, γ is the adiabatic index, and the interpunct denotes the scalar product. They can be

written as follows
∂ρ

∂t
+∇ ·m = 0 , (3)

∂m

∂t
+∇ ·

(
m⊗m

ρ

)
= −∇p+∇ · τ , (4)

∂E

∂t
+∇ ·

(
Em

ρ

)
= −∇ ·

(
pm

ρ

)
+∇ ·

(
m · τ
ρ

)
−∇ ·q , (5)

where the symbol ⊗ denotes the outer product, τ is the viscous stress and q is the heat flux, defined by

τ = −2µ
(
∇u+ (∇u)

T
)
− 2

3
µ (∇ ·u) I , (6)

q = −µcp
Pr

∇T , (7)

where µ the dynamic viscosity, T is the temperature, cp is the heat capacity at constant pressure, Pr is the Prandtl

number and I is the identity matrix.

2.2. Complex differentiation method

To explain the complex differentiation method, the Taylor series of a function f(α) depending on a complex

number α = α0 + ih, where h is a real number, is considered. It can be written as:

f(α0 + ih) = f(α0) + ih
df

dα
(α0)−

h2

2

d2f

dα2
(α0) +O(h3) . (8)
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In this formula, it can be noticed that approximate values of the function and its derivative at α = α0 can be

obtained, respectively by the real part of f(α0 + ih) and from the imaginary part of f(α0 + ih) as

df

dα
(α0) =

Im [f(α0 + ih)]

h
+O(h2) . (9)

The flow solutions and their derivatives with respect to a parameter can thus be estimated by carrying out a single

simulation in which a small imaginary part is introduced to the parameter of interest.

2.3. Complex Navier-Stokes equations and sensitivity equations

Since the parameter under study should contain an imaginary part in the complex differentiation method, the

other flow variables are also complex numbers and the Navier-Stokes equations are solved in a complex form. In

the following, the flow variables are split into real and imaginary parts using the subscripts r and i. For example,

the density can be written as

ρ = ρr + iρi . (10)

where ρr is the real part and ρi is the imaginary part of the density. By decomposing the Navier-Stokes equations

into real and imaginary parts, two systems of equations are obtained. The first one describes the evolution of the

real parts of flow variables and the second one their imaginary parts. These systems can be written as

∂ρr
∂t

+∇ ·mr = 0 , (11)

∂mr

∂t
+∇ ·

[
ρr (mr ⊗mr −mi ⊗mi) + ρi (mr ⊗mi +mr ⊗mi)

ρ2r + ρ2i

]
= −∇pr +∇ · τr , (12)

∂Er

∂t
+∇ ·

[
ρr (Ermr − Eimi) + ρi (Ermi + Eimr)

ρ2r + ρ2i

]
=−∇ ·

[
ρr (prmr − pimi) + ρi (prmi + pimr)

ρ2r + ρ2i

]

+∇ ·
[
ρr (mr · τr −mi · τi) + ρi (mr · τi +mi · τr)

ρ2r + ρ2i

]

−∇ ·qr ,

(13)

and
∂ρi
∂t

+∇ ·mi = 0 , (14)

∂mi

∂t
+∇ ·

[
ρr (mr ⊗mi +mi ⊗mr) + ρi (mi ⊗mi −mr ⊗mr)

ρ2r + ρ2i

]
= −∇pi +∇ · τi , (15)

∂Ei

∂t
+∇ ·

[
ρr (Ermi + Eimr) + ρi (Eimi − Ermr)

ρ2r + ρ2i

]
=−∇ ·

[
ρr (prmi + pimr) + ρi (pimi − prmr)

ρ2r + ρ2i

]

+∇ ·
[
ρr (mr · τi +mi · τr) + ρi (mi · τi −mr · τr)

ρ2r + ρ2i

]

−∇ ·qi .

(16)

Assuming that the order of magnitude of the real parts of the variables is much larger than that of their imaginary

parts, the products of imaginary variables can be neglected. The real part of the complex Navier-Stokes equations

can then be rewritten as
∂ρr
∂t

+∇ ·mr = 0 , (17)
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∂mr

∂t
+∇ ·

(
mr ⊗mr

ρr

)
= −∇pr +∇ · τr , (18)

∂Er

∂t
+∇ ·

(
Ermr

ρr

)
= −∇ ·

(
prmr

ρr

)
+∇ ·

(
mr · τr

ρr

)
−∇ ·qr , (19)

giving equations identical to the real Navier-Stokes equations. In the same way, the imaginary part of the complex

Navier-Stokes equations can be rewritten as

∂ρi
∂t

+∇ ·mi = 0 , (20)

∂mi

∂t
+∇ ·

[
(mr ⊗mi +mi ⊗mr)

ρr
− ρimr ⊗mr

ρ2r

]
= −∇pi +∇ · τi , (21)

∂Ei

∂t
+∇ ·

[
(Ermi + Eimr)

ρr
− ρiErmr

ρ2r

]
=−∇ ·

[
(prmi + pimr)

ρr
− ρiprmr

ρ2r

]

+∇ ·
[
(mr · τi +mi · τr)

ρr
− ρimr · τr

ρ2r

]
−∇ ·qi .

(22)

The sensitivity equations are obtained by replacing the imaginary variables by the derivatives of the flow variables

in the imaginary part of the complex Navier-Stokes equations. They describe the evolution of the derivatives of the

flow variables with respect to a parameter. They can be written as

∂ρ′

∂t
+∇ ·m′ = 0 , (23)

∂m′

∂t
+∇ ·

(
m′ ⊗m+m⊗m′

ρ
− ρ′m⊗m

ρ2

)
= −∇p′ +∇ · τ ′ , (24)

∂E′

∂t
+∇ ·

(
E′m+ Em′

ρ
− ρ′Em

ρ2

)
=−∇ ·

(
p′m+ pm′

ρ
− ρ′pm

ρ2

)

+∇ ·
(
m′ · τ +m · τ ′

ρ
− ρ′m · τ

ρ2

)
−∇ ·q′ ,

(25)

where the prime notation denotes derivatives. If the order of magnitude of the imaginary parts is much smaller than

that of the real parts, the imaginary parts of the flow variables therefore follow the same spatio-temporal evolution

as the derivatives of the flow variables. In order to estimate the flow solutions and sensitivities at the same time,

it is thus only necessary to define as complex numbers the variables in a computational code dealing only with real

numbers and to use complex arithmetic. Because of this, the implementation of the complex differentiation method

in an in-house solver is straightforward.

3. Mixing layer parameters

The mixing layer configuration is similar to that considered in the simulations of Colonius et al. [18], Bogey

et al. [19] and Moser et al. [20]. For illustration purpose, the mean streamwise velocity profile and snapshots of

vorticity and pressure are presented in Figure 1. The streamwise component of the velocity imposed at the inlet

boundary at x = 0 is given by the hyperbolic tangent profile

u0(y) = Uc −
∆U

2
tanh

(
2y

δω

)
, (26)

where Uc = (U1+U2)/2 is the velocity at the center of the mixing layer, ∆U = U2−U1 is the velocity difference and

δω = ∆U/max (|du0/dy|) is the vorticity thickness, at the inlet. The velocities of the slow and fast flows are given

6



by U1 = Uc−∆U/2 and U2 = Uc+∆U/2. At the inlet, temperature is fixed at T0 = 293K, pressure at p0 = 105 Pa

and density is evaluated from the ideal gas law. Molecular viscosity is expressed as a function of temperature using

Sutherland’s law. The thermal conductivity λ is determined from the Prandtl number Pr = µcp/λ = 0.75, where

µ = νρ and ν is the kinematic viscosity. The value of 1.4 is considered for the adiabatic index γ. The Reynolds

number based on the velocity difference is given by Reω = δω∆U/ν. The Mach number is defined by M = ∆U/c0,

where c0 =
√
γp0/ρ0 is the speed of sound in the ambient medium.

y

x0

U2

U1

Figure 1: Schematic view of the mixing layer. Instantaneous vorticity and fluctuating pressure fields are represented at the center and

on the periphery of the shear zone. The mean velocity profile is plotted on the left not to scale. The upstream boundary is represented

by a green line. The sponge zone is in grey. Only a part of the computational domain is shown.

The aerodynamic development of the mixing layer is controlled by an excitation to focus on the acoustic radiation

produced by the first stage of vortex pairings. The mixing layer is excited at a frequency f0 and at the first

subharmonic f0/2 by introducing vortical disturbances at the center of the shear zone near the upstream boundary

at x = 10δω. The frequency f0, given by the Strouhal number Stω = f0Uc/δω = 0.132, is close to the frequency of

the most amplified instability waves developing in the velocity profile (26) [21]. More information on the excitation

procedure can be found in Bogey et al. [19]. The flow development and the acoustic radiation of the mixing layer

obtained by the excitation procedure detailed above are illustrated in Figure 1. Vortices form in the center of

the shear zone due to the amplification and saturation of the amplitude of instability waves downstream of the

upstream boundary. Subsequently, vortex pairings occur at the frequency f0/2 and at a fixed location. These

pairings produce acoustic waves which can be observed in Figure 1 on each side of the shear zone.

3.1. Simulation parameters

Three sets of simulations were carried out considering different Mach and Reynolds numbers, and several meshes.

They are referred to as set-Mach, set-Reynolds and set-Mesh. The values of the Mach and Reynolds numbers, of

the transverse mesh spacing at the center of the mixing layer, and the numbers of points in the streamwise and

transverse directions nx and ny are given in Table 1. In set-Mach, mixing layers at Mach numbers M = 0.2, 0.25,

0.3, 0.35 and 0.4 with Uc = 0.5c0 were considered. If the excitation frequency f0 varies with the Mach number,

the derivatives of the flow variables with respect to the Mach number, estimated using the complex differentiation

method, are likely to increase with time because the derivative of a sine wave with respect to its frequency increases
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with time. This increase makes it difficult to accurately estimate the derivatives of time-averaged variables. To

compute the derivatives of acoustic variables with respect to the Mach number, the excitation frequency f0 is thus

set to f0 = StωUc/δω, where δω = Reων/∆U , assuming a Reynolds number of 2000 and a velocity difference of 0.2c0,

in the simulations of set-Mach. Therefore, the Reynolds number increases with the Mach number in set-Mach. As

a result of this, the derivatives obtained with the complex differentiation method can be compared in a relevant

way with the results of the parametric study.

In the simulations of set-Reynolds, mixing layers at Reynolds numbers Reω = 400, 800, 1600, 3200, 6400 and

12800, with M = 0.3 and Uc = 0.5c0, were considered. A simulation of a mixing layer at a Reynolds number of 1012

which can be assumed as non-viscous was also performed. In these cases, the inlet vorticity thickness is provided

by the Reynolds number.

In all cases mentioned above, the mesh spacing in the transverse direction at the center of the shear layer is

∆y0 = 0.1δω. To investigate the grid sensitivity of the flow solutions, four simulations of mixing layers at a Reynolds

number of 3000, with M = 0.3 and Uc = 0.5c0, were carried out on grids with mesh spacings ∆y0 = 0.1δω, 0.2δω,

0.4δω, and 0.8δω. They constitute the simulations set-Mesh.

The unsteady pressure have been recorded in the entire computational domain at a sampling frequency of 20f0

for set-Mach, 10f0 for set-Reynolds, and 20f0 for set-Mesh, after a transient period of more than 300Tp, where

Tp = 2/f0 is the vortex pairing period. In all cases, the recording time is equal to 10Tp.

3.2. Numerical methods

The direct numerical simulations are carried out with an in-house code [19] which solves the unsteady com-

pressible Navier-Stokes equations in Cartesian coordinates (x, y) using low-dissipation and low-dispersion explicit

schemes. Fourth-order eleven-point centered finite differences are used for spatial discretization. A second-order

six-stage Runge-Kutta algorithm is implemented for time integration [22]. To remove grid-to-grid oscillations with-

out affecting the wavenumbers accurately resolved, a sixth-order eleven-point centered filter [23] is applied explicitly

to the flow variables at the end of each time step. Non-centered finite differences and filters are used near the grid

boundaries [24]. The radiation conditions of Tam & Dong [25] are applied at the boundaries to avoid significant

spurious reflections. A sponge zone combining mesh stretching, Laplacian filtering and a procedure to keep the

mean values of density and pressure around their ambient values is implemented at the downstream boundary.

3.3. Computational parameters

Domains of length Lx = 1200δω and width Ly varying from 400δω to 1200δω are used. In set-Mach and set-

Reynolds, the mesh spacing in the transverse direction at the center of the mixing layer is equal to ∆y0 = 0.1δω.

From y = 0, it is stretched on both sides of the mixing layer at a rate of 4% until it reaches a length of ∆y ≃ 5δω

at y = ±124δω and then is constant until y = ±Ly/2, where Ly = 400δω. In set-Mesh, the transverse mesh spacing

at the center of the mixing layer is equal to 0.1δω, 0.2δω, 0.4δω or 0.8δω. It is stretched on both sides of the mixing

layer at a rate of 2% until y = ±Ly/2, where Ly = 1200δω.

At the inlet, the mesh spacing in the streamwise direction is equal to ∆x0 = 0.2δω. It is constant down to

x = xsz, where xsz is the position of the beginning of the sponge zone, then increases at a rate of 2% down to
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Table 1: Mixing layer parameters for the three sets of simulations referred to as set-Mach, set-Reynolds and set-Mesh: Mach number

M = ∆U/c0, Reynolds number Reω = δω∆U/ν, transverse mesh spacing at the center of the mixing layer ∆y0, numbers of points in

the streamwise and transverse directions nx and ny .

Set M Reω ∆y0/δω nx ny

set-Mach

0.2 2000

0.1

1731

235

0.25 2500 1435

0.3 3000 1286

0.35 3500 1237

0.4 4000 1138

set-Reynolds 0.3

400

0.1 1286 235

800

1600

3200

6400

12800

1012

set-Mesh 0.3 3000

0.1

1286

491

0.2 419

0.4 349

0.8 283
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Table 2: Sponge zone parameters: Mach number M, position of the beginning of the sponge zone xsz, and length xσ along which the

intensity of the Laplacian filter increases.

M 0.2 0.25 0.3 0.35 0.4

xsz/δω 300 240 210 200 180

xσ/δω 200 200 150 150 100

x = Lx. In the sponge zone, a Laplacian filter is applied to density, velocity, and pressure fluctuations. Its intensity

σsz is given by

σsz(x, y) =





σmax

(
x− xsz

xσ

)
exp

(
− ln (2)

y2

b2sz

)
for xsz < x ≤ xsz + xσ ,

σmax exp

(
− ln (2)

y2

b2sz

)
for x > xsz + xσ ,

(27)

where σmax = 0.2 and xσ is a length varying between 100δω and 200δω. A Gaussian function of half thickness

bsz = 3δω centered at y = 0 is introduced to avoid that the Laplacian filter affects the acoustic waves produced by

the vortex pairings outside the shear-flow.

The velocity difference ∆U = U2 −U1 increases with the Mach number, hence the velocity ratio R = ∆U/(2Uc)

also increases. Monkewitz and Huerre [21] have shown using linear stability analyses that the growth rates of the

instability waves developing near the inlet are proportional to the velocity ratio. Therefore, vortex pairings are

expected to be located further upstream as the Mach number increases. To isolate the acoustic radiation produced

by the pairings, the position of the beginning of the sponge zone xsz thus varies in the simulations. The length xσ

along which the intensity of the Laplacian filter increases is also adjusted. The values considered for xsz and xσ

are given in Table 2, depending on the Mach number. The position of the beginning of the sponge zone decreases

from xsz = 300δω for M = 0.2 down to xsz = 180δω for M = 0.4 and the length xσ decreases from xσ = 200δω for

M = 0.2 down to xσ = 100δω for M = 0.4. To ensure the stability of the simulations in all cases, the time step is

set to ∆t = 0.9∆yCFL/c0, where ∆yCFL = 0.1δω.

4. Comparison between a first-order approximation and the complex differentiation method

In this section, the accuracies of a first-order approximation and the complex differentiation method are studied

by estimating the derivative of the acoustic power of mixing layers at different Reynolds number with respect to the

latter parameter. Mixing layers at Reω = 400, 3000 and 12800 that are expected to be strongly, weakly and very

weakly sensitive to viscous effects have been considered to vary the value of the derivative of interest and thus to be

able to investigate the influence of the magnitude of this derivative on the accuracy of each method. In each case,

the Mach number is equal to 0.3, Uc is equal to 0.5c0, the inlet vorticity thickness is determined from the Reynolds

number, and the grid is the same as in the simulations of set-Mach and set-Reynolds.

Using the first-order approximation, the derivative is computed by performing two DNS, one for a value of the

viscosity ν0 = δω∆U/Reω and another one for ν = ν0(1 + h), where h is a real number denoting a perturbation

magnitude, and by applying the formula

dW

dReω
=

dW

dν

dν

dReω
≃ −W (ν0 (1 + h))−W (ν0)

hReω
, (28)
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where W is the acoustic power estimated by integrating the sound intensity over circles of radius r = 200δω centered

on the vortex pairings. Using the complex differentiation method, the derivative is estimated by performing a DNS

with a viscosity ν = ν0 (1 + ih) and from the imaginary part of the acoustic power by

dW

dReω
≃ − Im [W (ν0 (1 + ih))]

hReω
. (29)

To investigate the influence of the perturbation magnitude h on the accuracy of the first-order approximation

and the complex differentiation method, simulations have been carrying out for values of h ranging from 10−10 to 1.

In each case, the relative error, defined as

Err (h) =

∣∣∣∣∣
dW

dReω
(h)− dW

dReω

ref
∣∣∣∣∣

dW

dReω

ref
, (30)

where dW/dReω
ref

is a reference value estimated by applying the complex differentiation method with h = 10−100,

has been evaluated. The reference values computed for Reω = 400, 3000 and 12800 are not given for brevity but

their variations with the Reynolds number are described in the following. They decrease with the Reynolds number,

indicating that the acoustic power of the mixing layer is less sensitive to viscous effects as the Reynolds number

increases, as expected. For instance, for Reω = 400, the reference value is almost 20 times higher than the one

determined for Reω = 12800. For h = 10−1 and h = 1, the simulations performed with the complex differentiation

method have diverged due to numerical instabilities increasing with time. These instabilities develop earlier as the

value of h increases, which suggests that they are related to the effects of the imaginary parts of the flow variables

on their real parts. Indeed, if the order of magnitude of the imaginary part of the flow variables is close to or

greater than that of the real part of the latter, the products of imaginary variables can no longer be neglected in

the real parts of the complex Navier-Stokes equations and the latter equations are therefore no longer an accurate

approximation of the Navier-Stokes equations.

The relative errors obtained for Reω = 400, 3000 and 12800 are plotted in Figures 2(a), 2(b) and 2(c) as

a function of the perturbation magnitude h using a logarithmic scale. The values calculated for the first-order

approximation and for the complex differentiation method are displayed. Lines corresponding to the leading terms

of the truncation error of the two approaches, varying according to h and h2, are also plotted. In all cases, the error

obtained using the complex differentiation method is smaller than that of the first-order approximation, showing

that the first method is more accurate than the second one. For Reω = 400 in Figure 2(a), the error determined

by the two methods is reduced as the perturbation magnitude h decreases from h = 1 to h = 10−5. For this range

of h, the error varies as the truncation errors of the two methods. As h decreases from 10−5 to 10−10, the error

obtained using the first-order approximation increases as the inverse of h. This result indicates that the values

of W (ν(1 + h)) with h ≤ 10−5 and W (ν) are so close that their difference is of the order of the round-off errors,

in agreement with results obtained by Anderson et al. [8]. The error evaluated using the complex differentiation

method does not vary significantly between h = 10−5 and h = 10−10. For Reω = 3000 and Reω = 12800 in

Figures 2(b,c), the variations of the errors with h estimated using the first-order approximation and the complex

differentiation method are similar to those obtained for Reω = 400. This indicates that the accuracy of the complex

11



Table 3: CPU time to perform one temporal iteration and memory needed for a simulation with and without the complex differentiation

method.

CPU time [s] Memory [Mb]

without CDM 0.200 89.8

with CDM 0.406 167

differentiation method does not depend on the perturbation magnitude h for h < 10−5 for the three values of the

Reynolds number considered. Since the reference value of the derivative of the acoustic power decreases with the

Reynolds number, the results also suggest that the accuracy of the complex differentiation method is not affected

by the magnitude of the derivative of interest. Similar results, not shown her for brevity, were obtained for mixing

layers at Mach numbers equal to 0.2 and 0.4, and considering grids with mesh spacings ∆y0 = 0.2δω and 0.4δω.

Therefore, the perturbation magnitude h is set to 10−5 in the following sections.
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Figure 2: Variations of the relative error on the derivative of the acoustic power with respect to the Reynolds number with the

perturbation magnitude h obtained with a first-order approximation and the complex differentiation method for (a) Reω = 400,

(b) Reω = 3000 and (c) Reω = 12800, and variations of the order of magnitude of the truncation error of the first-order

approximation and the complex differentiation method.

To compare the numerical cost of the complex differentiation method with that of the first-order approximation,

the CPU time to perform one temporal iteration and the memory required for simulations carried out with and

without the complex differentiation method are reported in Table 3. The CPU time is doubled and the memory

increases by 85% when the complex differentiation method is used. These results can be expected to vary with the

computer and the code used. For comparison, Martins et al. [26] reported factors of 2.2 to 4.8 between the time of

simulations with and without the complex differentiation method using various computing platforms, and Anderson

et al. [8] indicated a doubling of the memory required when the complex differentiation method is implemented.

5. Sensitivity analysis using the complex differentiation method

5.1. Mach number sensitivity

In each of the simulations of set-Mach, the complex differentiation method is implemented to estimate the deriva-

tives of acoustic variables with respect to the Mach number. For this purpose, a small imaginary perturbation ih

12



is introduced in the formula (26) of the inlet velocity profile

u0(y) = Uc −
∆U

2
(1 + ih) tanh

(
2y

δω

)
. (31)

An approximate value of the derivative of a function f with respect to the Mach number can then be determined

from the imaginary part of f by
df

dM
≃ Im [f ]

hM
. (32)

Therefore, the imaginary part of f provides information on the sensitivity of the function f to the Mach number.

A small perturbation is added to the velocity difference ∆U in equation (31), but since the inlet vorticity thickness

δω is fixed, the Reynolds number Reω = δω∆U/ν is also influenced by the perturbation. The imaginary part of

f is thus also linked to the effects of the Reynolds number on f . However, the influence of the viscosity on the

flow variables is weak for a high Reynolds number flow, which is the case for the mixing layers of set-Mach with

Reω ≥ 2000. Therefore, the imaginary part of f is mainly associated with the Mach number sensitivity.

5.2. Reynolds number sensitivity

In the simulations of set-Reynolds, the viscosity is set to ν(1 + ih). In this way, the derivative of a function f

with respect to the Reynolds number is linked to the imaginary part of f by

df

dReω
=

df

dν

dν

dReω
≃ − Im [f ]

hReω
. (33)

Thus, the imaginary part of f provides information on the sensivity of f to the Reynolds number.

5.3. Grid sensitivity

To study the influence of the grid resolution on the flow solutions, the transverse mesh spacing at the center of

the mixing layer is set to ∆y0(1 + ih) in each simulation of set-Mesh. An approximate value of the derivative of a

function f with respect to ∆y0 can then be estimated at nodes yi. This derivative can be written as

df

d∆y0
(yi) = lim

ϵ→0

f(∆y0 + ϵ, yi(∆y0 + ϵ))− f(∆y0, yi(∆y0))

ϵ
, (34)

where ϵ is a real number. This derivative can be obtained from the imaginary part of f by

df

d∆y0
(yi) ≃

Im [f ]

h∆y0
(yi) . (35)

In the right hand side of the definition (34), the function f evaluated at a given node yi but at two different positions:

y = yi(∆y0 + ϵ) and y = yi(∆y0). The derivative obtained from the difference between f(∆y0 + ϵ, yi(∆y0 + ϵ)) and

f(∆y0, yi(∆y0)) thus does not indicate the effects of a small modification of the mesh spacing ∆y0 on the values of

the function f computed at a given location y. Indeed, these effects are provided by the partial derivative

∂f

∂∆y0
(yi) = lim

ϵ→0

f(∆y0 + ϵ, yi)− f(∆y0, yi)

ϵ
, (36)

which is defined from the difference between f(∆y0 + ϵ) and f(∆y0) obtained at the same location y = yi(∆y0).

This derivative can be estimated using the chain rule as follows

∂f

∂∆y0
(yi) =

df

d∆y0
(yi)−

∂f

∂y
(yi)

dy

d∆y0
(yi) , (37)
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where df/d∆y0 is obtained from the imaginary part of f using the complex differentiation method and the for-

mula (35), ∂f/∂y is evaluated by differentiating the real part of f with respect to the coordinate y, and dy/d∆y0

is given by

dy

d∆y0
(yi) =





i∑

j=0

rjy for i = 0, ..., (ny − 1)/2,

−
−i−1∑

j=0

rjy for i = −(ny − 1)/2, ...,−1,

(38)

where ry = 1.02 is the stretching rate in the transverse direction.

6. Results

6.1. Mach number sensitivity

To illustrate the effects of the Mach number on the aerodynamic development and acoustic radiation of the

mixing layers, snapshots of vorticity and fluctuating pressure are provided in Figures 3(a-c) for the mixing layers

at M = 0.2, 0.3 and 0.4 of set-Mach. In all cases and downstream of the inlet forcing, the amplitude of the

perturbations in the shear zone increases with the streamwise direction and then saturates, leading to the formation

of vortices at the frequency f0. Subsequently, vortex pairings occur at the frequency f0/2 as in the simulations

carried out by Bogey et al. [19] and Moser et al. [20]. Vortex rolling-ups and pairings take place at fixed axial

positions. They move upstream as the Mach number increases, because the shear layer is more unstable as the

velocity ratio R = ∆U/(2Uc) increases [21]. For example, the vorticity sheet starts to roll up near x = 100δω for

M = 0.2 and near x = 60δω for M = 0.4, and vortex pairings occur near x = 225δω for M = 0.2 and near x = 125δω

for M = 0.4.

The pairings produce acoustic waves propagating on both sides of the mixing layers, as expected. The amplitude

of the sound waves increases strongly with the Mach number. This result is consistent with dimensional analyses [27,

28] which have shown that the noise produced by a two-dimensional free flow is proportional to the seventh power

of the Mach number. For θ = 90◦, where θ is the polar angle defined with the respect to the streamwise direction

and by polar coordinates (r, θ) where r = 0 is the location of the vortex pairing, the wavelength of the sound waves

is equal to λ = c0/(f0/2) ≃ 30δω in all cases. It is smaller upstream of the vortex pairings for θ > 90◦ and larger

downstream for θ < 90◦ due to the effects of the mean flow on the acoustic wave propagation [29].

Sound directivities

To quantify the effects of Mach number on the noise radiation of the mixing layers, the acoustic intensity

I =
p′RMS

2

ρ20c
4
0

, (39)

where p′RMS is the root-mean-square (RMS) value of the pressure flucutations, has been evaluated on circles of

radius r = 200δω centered on the vortex pairings. It is plotted for all Mach numbers as a function of the polar

angle θ for −120◦ ≤ θ ≤ 120◦ in Figure 4 using a logarithmic scale. For all angles, except for θ = 0, the levels

increase with the Mach number. In addition, the noise radiation is less oriented downstream as the Mach number

increases from 0.25 to 0.4. For example, the peak intensity in the slow flow region (y > 0) is reached at θ ≃ 15◦ for
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Figure 3: Instantaneous vorticity and fluctuating pressure fields for (a) M = 0.2, (b) M = 0.3 and (c) M = 0.4. The colour scale ranges

from 0 to ∆U/δω for vorticity, from white to black.

M = 0.25, θ ≃ 30◦ for M = 0.3 and θ ≃ 60◦ for M = 0.4. In order to explain this result, the fluctuating part of the

Lighthill stress tensor [29] is considered without the viscous and entropy terms. It can be written as

T′ = ρ⟨u⟩ ⊗ u′ + ρu′ ⊗ ⟨u⟩︸ ︷︷ ︸
Tshear-noise

+ ρu′ ⊗ u′
︸ ︷︷ ︸
Tself-noise

, (40)

where Tshear-noise and Tself-noise are linear and non-linear with respect to the velocity fluctuations u′. The order of

magnitude of the mean velocity vector corresponds to the inlet velocity at the center of the mixing layers, wich is

Uc = (U1 +U2)/2 = 0.5c0 and the order of magnitude of the vector of velocity fluctuations is the velocity difference

∆U = U2 − U1. Therefore, the orders of magnitude of the tensors Tshear-noise and Tself-noise are given by

Tshear-noise ∼ ρ0Uc∆U , (41)

Tself-noise ∼ ρ0∆U2 . (42)

As the Mach number M = ∆U/c0 increases, the magnitude of the non-linear tensor Tself-noise thus increases more

than the magnitude of the tensor Tshear-noise. Ribner [30] by analytical developments and Freund [31] by analyzing

a direct numerical simulation of a jet at M = 0.9 have shown that the acoustic radiation linked to the tensor

Tshear-noise is more oriented downstream than the acoustic radiation linked to the tensor Tself-noise. Therefore, the

noise radiation produced by the mixing layers is less oriented downstream as the Mach number increases.
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Figure 4: Variations of the acoustic intensity on circle of radius r = 200δω centered on the vortex pairings, as a function of the polar

angle θ for M = 0.2, M = 0.25, M = 0.3, M = 0.35 and M = 0.4.

Sound intensities and their derivatives with respect to the Mach number

The RMS values of pressure fluctuations and their derivatives with respect to the Mach number, obtained using

the complex differentiation method for M = 0.2, 0.3 and 0.4, are displayed in Figures 5(a,b,c) and 5(d,e,f). In all

cases, the pressure fluctuations are strongest near the center of the mixing layers due to aerodynamic instability

waves developing in the shear zone. In the acoustic fields, the sound levels are highest in two lobes pointing

downstream and originating from the vortex-pairing location, as expected. In these lobes, the acoustic levels

increase strongly with the Mach number. The lobes are oriented less downstream as the Mach number increases, in

agreement with the dimensional analysis. Bands of low sound levels are observed downstream of the vortex pairings

for M = 0.4 in Figure 5(c). Simulations of mixing layers at M = 0.4 carried out with sponge zones starting at

different streamwise positions, not shown here for brevity, revealed that these bands are not related to sponge zone

effects. Therefore, the bands may be due to interactions between the acoustic radiation produced by the vortex

pairings and that of weaker noise sources located between the pairings and near the beginning of the sponge zone.

The derivatives of the pressure fluctuation levels with respect to the Mach number in Figures 5(d,e,f) are mostly

positive in the acoustic field since the noise levels increase with this parameter. They are stronger as the Mach

number increases. Therefore, they indicate that the noise levels increase more with the Mach number at high Mach

numbers than at low Mach numbers, which is consistent with the seventh power law. In all cases, the derivatives

are negative in narrow bands located downstream of the vortex pairings. Negative derivative values indicate that a

small increase in the Mach number value leads to a reduction of the noise levels. The results thus suggest that the

sound levels decrease with the Mach number in the narrow bands mentioned above. In these bands, the derivatives

are higher, in absolute value, as the Mach number increases. This indicates that the noise levels in the bands are

more sensitive to the Mach number effects as the latter parameter increases.
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Figure 5: Fields of (a,b,c) the RMS values of pressure fluctuations and (d,e,f) their derivatives with respect to the Mach number for

(a,d) M = 0.2, (b,e) M = 0.3 and (c,f) M = 0.4.

Dimensional law and acoustic power

The maximum values of the sound intensity at r = 200δω of the vortex-pairings location in the fast and slow

flows of the mixing layers are compared with those found by Moser et al. [20] for two-dimensional mixing layers

at Mach numbers between 0.2 and 0.4 computed by DNS. The mixing layers considered by Moser et al. [20] are

at lower Reynolds number (Reω = 400) and are excited at lower frequencies than those in the present study. In

addition, the velocity Uc = (U1 + U2)/2 is not the same in the two studies. The results from Moser et al. [20] and

the present study are therefore expected to differ. In addition, in Moser et al. [20], the intensity was evaluated at

r = 300δω, whereas the calculation domain extends only to y = 200δω in the present study. Therefore, the intensity

given by Moser et al. [20] has been approximated at r = 200δω by assuming the classical decay of the intensity in

1/r for a two-dimensional flow. The maximum values thus obtained are plotted as a function of the Mach number

in Figure 6(a) using a logarithmic scale. In both studies, the levels increase strongly with the Mach number. For all

Mach numbers, the values obtained by Moser et al. [20] are higher than those in the present study. The agreement

is better as the Mach number increases.

The effects of the Mach number on the sound power levels are now investigated. These levels are estimated

from the acoustic power W evaluated over circles of radius r = 200δω centered on the vortex pairings, from θ = 5◦

to θ = 150◦ in the upper flow, and from θ = −150◦ to θ = −5◦ in the lower flow. They are defined by

LW = 10 log

(
W

Wref

)
, (43)
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where Wref = 10−12 kg.m2.s−3. They are plotted in Figure 6 as a function of the Mach number using a logarithmic

scale. A line indicating the seventh power law is also represented for comparison. The sound power levels increase

strongly with the Mach number for M < 0.3 and more weakly thereafter. For M ≥ 0.3, the increase is consistent

with the seventh power of the Mach number, in good agreement with results obtained by Ffowcs-Williams [27] and

Guo [28] using analytical developments and by Moser et al. [20] using DNS of two-dimensional mixing layers at

Mach numbers between 0.2 and 0.4.

The derivatives of the power levels with respect to the Mach number were obtained using the complex differenti-

ation method. They are represented in Figure 6 by red segments of arbitrarily chosen lengths. Their values increase

with the Mach number for M ≤ 0.25, decrease from M = 0.25 to M = 0.3 and does not seem to vary thereafter.

The red segments follow the variations of the power levels. The derivatives of these levels with respect to the Mach

number thus provide a good estimation of the sensitivity of the noise levels to the Mach number.
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Figure 6: Variations of (a) the maximum intensity computed in the present study in the fast (y < 0) and slow (y > 0) flows

of the mixing layers, and by Moser et al. [20] in the fast and slow flows, and (b) the acoustic power levels and their

derivatives with respect to the Mach number; M7 law.

6.2. Reynolds number sensitivity

Vorticity and pressure fields

Snapshots of vorticity and fluctuating pressure obtained from the simulations of set-Reynolds for Reω = 400,

800, 1600, 3200, 6400 and 12800 are provided in Figures 7(a-f). In all cases, vortex rolling-ups and pairings occur.

The pairings produce acoustic waves which propagate on both sides of the shear zone. The amplitudes of the

sound waves increase with the Reynolds number. They increase strongly between Reω = 400 and Reω = 800, then

more weakly between Reω = 800 and Reω = 1600, and not seem to vary significantly with the Reynolds number for

Reω ≥ 1600. The acoustic radiation of the mixing layers is thus weakly dependent on viscous effects for Reω ≥ 1600.

The wavelength of the sound waves does not vary with the Reynolds number and is equal to λ = c0/(f0/2) ≃ 30δω

for a polar angle of 90◦.
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Figure 7: Instantaneous vorticity and fluctuating pressure fields for (a) Reω = 400, (b) Reω = 800, (c) Reω = 1600, (d) Reω = 3200,

(e) Reω = 6400 and (f) Reω = 12800. The colour scale ranges from 0 to ∆U/δω for vorticity, from white to black.

Sound directivities

The sound pressure levels obtained at r = 200δω from the vortex pairings for Reω = 400, 800, 1600, 3200 and

1012 are presented in Figure 8 for polar angles θ between −120◦ and 120◦. For Reω ≤ 3200, the levels increase

with the Reynolds number downstream of the pairings, for −90◦ < θ < 90◦. The increase is less pronounced as

the Reynolds number increases. It is strong between Reω = 400 and Reω = 800, moderate between Reω = 800 and

Reω = 1600, and weak between Reω = 1600 and Reω = 3200. The values obtained for Reω = 3200 and Reω = 1012

are very close, showing that viscosity has a weak influence on the noise intensity for Reω > 3200.

Sound intensities and their derivatives with respect to the Reynolds number

The RMS values of the pressure fluctuations and their derivatives with respect to the Reynolds number obtained

using the complex differentiation method for Reω = 400, 800, 1600 and 3200 are shown in Figures 9(a,b,c,d)

and 9(e,f,g,h). In all cases, the RMS levels are highest near the middle of the mixing layer, where aerodynamic

fluctuations predominate. In the acoustic field for Reω = 400 in Figure 9(a), they are very low, making difficult to

visualize the radiation pattern. For Reω ≥ 800 in Figures 9(b,c,d), the acoustic intensity is significant within two

lobes oriented downstream originating from the position of the vortex pairings. The sound levels increase with the

Reynolds number downstream of the pairings, especially in the direction of the lobes for polar angles of ±35◦. As

a result, the acoustic radiation becomes more directive as the Reynolds number increases.
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Figure 8: Variations of the acoustic intensity at r = 200δω from the vortex pairings as a function of the polar angle θ for Reω = 400,

Reω = 800, Reω = 1600, Reω = 3200 and Reω = 1012.

For all Reynolds numbers, the derivatives of the RMS values of pressure fluctuations are mostly positive on

both sides of the mixing layer, since the noise levels increase with the Reynolds number. For Reω = 400 and

Reω = 800 in Figures 9(e,f), the derivatives are positive downstream of the vortex pairings, showing that the sound

levels increase with the Reynolds number downstream of the pairings in these cases, in agreement with the sound

intensity fields provided for Reω ≤ 1600 in Figures 9(a,b,c). For Reω = 800, 1600 and 3200 in Figures 9(f,g,h), the

values of the derivatives are highest in two lobes originating from the vortex pairing location and oriented in the

main radiation direction, for polar angles of ±35◦, indicating that the acoustic radiation is more directional as the

Reynolds number increases. In the shear zone and in the acoustic field, the magnitude of the derivatives decreases

with the Reynolds number. This result shows that the effects of the viscosity on the sound radiation are reduced

as the Reynolds number increases. For Reω = 3200, the derivatives are negative in two narrow bands oriented

downstream and originating slightly further downstream from the position of the vortex pairings, near x = 200δω.

This indicates that a small increase of the Reynolds number leads to a decrease of the sound levels in these two

bands for this case.

Acoustic power levels

To quantify the effects of the Reynolds number on the noise levels, the acoustic power levels obtained by

integrating the sound intensity determined for the cases with Reω ≤ 12800 are plotted in Figure 10 as a function

of the Reynolds number. The value estimated for the assumed inviscid case (Reω = 1012) is also provided for

comparison. The levels increase strongly from Reω = 400 to Reω = 1600, then weakly from Reω = 1600 to

Reω = 12800. The value obtained for Reω = 12800 is very close to the one determined with the assumed inviscid

simulation, as expected.

Red segments of arbitrarily chosen lengths with slopes equal to the derivatives of the power levels with respect
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Figure 9: Fields of (a,b,c,d) the RMS values of pressure fluctuations and (d,e,f,g,h) their derivatives with respect to the Reynolds

number for (a,e) Reω = 400, (b,f) Reω = 800, (c,g) Reω = 1600 and (d,h) Reω = 3200.

to the Reynolds number are also represented in Figure 10. The slopes are positive since the sound levels increase

with the Reynolds number. The values of the derivatives decrease with the Reynolds number, which shows that the

sensitivity of the power levels to viscous effects decreases with that flow parameter. The red segments in Figure 10

appear to follow the variations of the sound levels with the Reynolds number. The values of the derivatives of the

power levels obtained with the complex differentiation method are thus consistent with the variations of the noise

levels values.
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Figure 10: Variations of the acoustic power levels and their derivatives with the Reynolds number; power levels for an

assumed inviscid flow (Reω = 1012).
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6.3. Grid sensitivity

To highlight the effects of the grid resolution on the development of the mixing layer, snapshots of vorticity and

of their derivatives with respect to ∆y0, obtained from the simulations of set-Mesh for ∆y0 = 0.1δω, 0.2δω, 0.4δω

and 0.8δω, are displayed in Figures 11(a,c,e,g) and 11(b,d,f,h). For ∆y0 = 0.8δω in Figure 11(a), the vorticity layer

is uniform in the streamwise direction, and do not show any vortices. For ∆y0 = 0.4δω in Figure 11(c), vortices

roll-up near x = 100δω and merge near x = 160δω. In this case, numerical oscillations are seen around the vortices

between x ≃ 100δω and x ≃ 200δω. As the mesh spacing decreases from ∆y0 = 0.4δω to ∆y0 = 0.2δω, the vortex

rolling-ups and pairings occur earlier near x = 75δω and x = 150δω, respectively. For ∆y0 = 0.2δω in Figure 11(e),

no numerical oscillations are visible, which suggests that those observed for ∆y0 = 0.4δω are due to discretization

errors. The vorticity fields provided for ∆y0 = 0.2δω and ∆y0 = 0.1δω are similar, supporting that the aerodynamic

development of the mixing layer is well resolved for ∆y0 ≤ 0.2δω.

For ∆y0 = 0.8δω, the derivative of the vorticity in Figure 11(b) is negative at the center of the mixing layer

and positive on both sides of the shear zone. This suggests that the vorticity sheet becomes thinner as the mesh

spacing ∆y0 decreases in this case, in agreement with the vorticity in Figures 11(a,c) obtained for ∆y0 = 0.4δω

and ∆y0 = 0.8δω. For ∆y0 = 0.8δω, the footprint of the instability waves growing in the shear zone can be seen

in the field of the derivatives of the vorticity for x ≥ 175δω. For ∆y0 ≤ 0.4δω in Figures 11(d,f,h), the derivatives

have significant values near the vortices. The magnitude of the derivatives become weaker as the mesh spacing

∆y0 decreases. This indicates that the sensitivity of the vortices to the mesh spacing ∆y0 is reduced when the

latter decreases, as expected. For ∆y0 = 0.4δω, numerical oscillations similar to the ones observed in the vorticity

field obtained for this case are visible. They are more apparent in the derivative field than in the vorticity field.

Therefore, the vortices and the numerical oscillations depend on the mesh spacing ∆y0. For ∆y0 = 0.2δω and

∆y0 = 0.1δω in Figures 11(f,h), the highest values of the derivatives are found near the vortex rolling-ups and

pairings.

Intensity of velocity fluctuations and instability growth rate

The RMS values of the transverse velocity fluctuations obtained at y = 0 are plotted in Figure 12(a) using

a logarithmic scale. For ∆y0 ≤ 0.4δω, the levels first increase strongly, reach a local maximum near the vortex

rolling-ups, then decrease slightly, increase thereafter until a maximum is reached in the vicinity of the vortex

pairings, and finally do not vary appreciably with the streamwise direction. The RMS values obtained upstream of

the vortex rolling-ups decrease with the mesh spacing ∆y0. The levels for ∆y0 = 0.1δω are however close to those

for ∆y0 = 0.2δω. For ∆y0 = 0.8δω, they increase in the streamwise direction while no vortex is observed in this

case.

The curves in Figure 12(a) correspond approximately to straight lines between x = 20δω and the position of the

vortex rolling-ups, indicating that the amplitude of the velocity fluctuations grow exponentially in the streamwise

direction. This exponential growth can be characterized by a growth rate –ki, yielding for velocity fluctuations

v′(x, y, t) = v̂(y) cos(krx+ ωt) exp (–kix), (44)

where v̂(y) is the amplitude, kr is the wavenumber and ω is the pulsation. The growth rate –ki is given by the

slopes of the straight lines observed in Figure 12(a). It is obtained using a linear fit applied between x = 20δω
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Figure 11: Fields of (a,c,e,g) vorticity Ωz and (b,d,f,h) their derivatives with respect to ∆y0 for (a,b) ∆y0 = 0.8δω , (c,d) ∆y0 = 0.4δω ,

(e,f) ∆y0 = 0.2δω and (g,h) ∆y0 = 0.1δω .

and the position where the RMS levels are equal to one third of their values at the first maximum. The growth

rates thus estimated are plotted in Figure 12(b) as a function of the mesh spacing ∆y0. They decrease by 3% from

∆y0 = 0.1δω to ∆y0 = 0.2δω, then by 24% from ∆y0 = 0.2δω to ∆y0 = 0.4δω and finally by 81% from ∆y0 = 0.4δω

to ∆y0 = 0.8δω.

The derivatives of the growth rates with respect to ∆y0 determined using the complex differentiation method

are also represented in Figure 12(b). In all cases, the derivatives are negative since the growth rate of the instability

waves decreases with the mesh spacing ∆y0. The magnitude of the derivative increases weakly from ∆y0 = 0.1δω

to ∆y0 = 0.2δω, more strongly from ∆y0 = 0.2δω to ∆y0 = 0.4δω, and weakly from ∆y0 = 0.4δω to ∆y0 = 0.8δω.

They are consistent with the computed growth rates. The value of the derivative of the growth rate for ∆y0 = 0.1δω

is small. This suggests that the growth rate determined for this case is weakly affected by the mesh spacing ∆y0,

and thus that it is accurately estimated for ∆y0 = 0.1δω.
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Figure 12: Variations of (a) the RMS values of the transverse velocity fluctuations at the center of the mixing layer for ∆y0 = 0.1δω ,

∆y0 = 0.2δω , ∆y0 = 0.4δω and ∆y0 = 0.8δω and (b) the growth rate of the instability waves developing initially in

the mixing layer and the derivatives d(−kiδω)/d∆y0 as a function of ∆y0. The values of the derivatives are indicated by the

red curves.

Pressure fields

Fields of vorticity and fluctuating pressure obtained in the three cases with ∆y0 ≤ 0.4δω for which vortex

pairings occur are displayed in Figures 13(a-c). The acoustic pattern is similar to that observed in the case with

M = 0.3 and Reω = 3200 provided in Figure 7(d). It does not vary significantly with the mesh spacing ∆y0. For

∆y0 = 0.4δω and ∆y0 = 0.2δω in Figures 13(a,b), the amplitude of the pressure fluctuations increases slightly as

∆y0 decreases. The increase in levels is more pronounced in the main radiation direction, for polar angles θ ≃ ±30◦.

The pressure fields for ∆y0 = 0.2δω and ∆y0 = 0.1δω are similar, which indicates that the transverse mesh spacing

weakly affects the acoustic radiation of the mixing layers for ∆y0 ≤ 0.2δω.
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Figure 13: Instantaneous vorticity and fluctuating pressure fields for (a) ∆y0 = 0.4δω , (b) ∆y0 = 0.2δω and (c) ∆y0 = 0.1δω . The

colour scales range from 0 to ∆U/δω for vorticity, from white to black.
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Sound directivities

The variations of the sound intensity at r = 200δω from the vortex pairings with the polar angle for ∆y0 = 0.1δω,

0.2δω and 0.4δω are presented in Figure 14. The noise levels increase as the mesh spacing decreases from ∆y0 = 0.4δω

down to ∆y0 = 0.2δω and do not vary significantly between ∆y0 = 0.2δω and ∆y0 = 0.1δω. In the slow flow for

θ > 0◦, the intensity is maximum for θ ≃ 15◦ for ∆y0 = 0.4δω and for θ ≃ 30◦ for ∆y0 ≤ 0.2δω. In the fast flow for

θ < 0◦, it is maximum for θ ≃ 30◦ for ∆y0 = 0.4δω and for θ ≃ 37.5◦ for ∆y0 ≤ 0.2δω. The acoustic radiation is

thus more oriented upstream as the mesh spacing decreases from ∆y0 = 0.4δω to ∆y0 = 0.2δω.
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Figure 14: Variations of the acoustic intensity at r = 200δω from the vortex pairings as a function of the polar angle θ for ∆y0 =

0.4δω , ∆y0 = 0.2δω and ∆y0 = 0.1δω .

Sound intensities and their derivatives with respect to the mesh spacing

The RMS values of the pressure fluctuations and their derivatives with respect to ∆y0 obtained with the complex

differentiation method for ∆y0 ≤ 0.4δω are represented in Figures 15(a,b,c) and 15(d,e,f), respectively. As the mesh

spacing decreases, the sound levels increase from ∆y0 = 0.4δω to ∆y0 = 0.2δω and do not seem to vary from

∆y0 = 0.2δω to ∆y0 = 0.1δω.

For ∆y0 = 0.4δω in Figure 15(d), the derivatives of the sound intensity are mostly negative in the acoustic field.

This indicates that the noise levels decrease with the mesh spacing ∆y0 in this case, in agreement with the acoustic

intensities in Figures 15(a,b). In addition, for ∆y0 = 0.4δω, the magnitude of the derivative is higher in the slow

flow region for y > 0 than in the fast flow region for y < 0, suggesting that the sound levels increase more in the

first region than is the second one as the mesh spacing ∆y0 decreases in this case. As the mesh spacing decreases

from ∆y0 = 0.4δω to ∆y0 = 0.2δω, the magnitudes of the derivatives become lower, indicating that the sensitivity of

the sound levels to ∆y0 is reduced as the grids become finer. For ∆y0 = 0.2δω and ∆y0 = 0.1δω in Figures 15(e,f),

the derivatives are significant in lobes originating from the vortices between x ≃ 100δω and x ≃ 250δω. In these

lobes, they are positive or negative, which suggests that the noise levels increase or decrease at specific positions in

the acoustic field as the mesh spacing ∆y0 varies.
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Figure 15: Fields of (a,b,c) the RMS values of pressure fluctuations and (d,e,f) their derivatives with respect to ∆y0 for (a,d) ∆y0 = 0.4δω ,

(b,e) ∆y0 = 0.2δω and (c,f) ∆y0 = 0.1δω .

Acoustic power and its sensitivity to the mesh spacing

The acoustic power levels and their derivatives with respect to ∆y0 are represented in Figure 16 as a function

of the mesh spacing ∆y0. The sound levels increase by 0.1 dB from ∆y0 = 0.1δω to ∆y0 = 0.2δω and decrease

by 2.8 dB from ∆y0 = 0.2δω to ∆y0 = 0.4δω. For ∆y0 = 0.1δω, the derivative is positive, suggesting that the noise

levels increase with the mesh spacing in this case. For ∆y0 = 0.2δω and ∆y0 = 0.4δω, the derivatives are negative,

showing that the levels decrease as the mesh spacing increases in these cases. Moreover, the absolute values of the

derivatives increase with ∆y0 for ∆y0 ≥ 0.2δω. This shows that the sound levels are more affected by the mesh

spacing as ∆y0 increases from ∆y0 = 0.2δω to ∆y0 = 0.4δω and, therefore, that the sensitivity of the noise levels

to the grid resolution is higher when the mesh is coarser. For ∆y0 = 0.1δω and ∆y0 = 0.2δω, the magnitudes of

the derivative are very low compared to the case with ∆y0 = 0.4δω. This indicates that the noise levels are well

estimated for ∆y0 ≤ 0.2δω.

Quantification of the grid sensitivity

To quantify the sensitivity of the noise levels to the mesh spacing, a grid sensitivity coefficient defined by

SW (h) = LW (∆y0 (1 + h))− LW (∆y0) , (45)
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Figure 16: Variations of the sound power levels and their derivatives with the mesh spacing ∆y0.

Table 4: Grid sensitivity coefficient of the sound power levels SW for h = 0.1.

∆y0/δω 0.1 0.2 0.4

SW 0.012 dB −0.012 dB −0.73 dB

where h ≪ 1 is a small real number, is considered. In the formula (45), LW (∆y0 (1 + h)) is the sound power level

in dB estimated using a first-order approximation by

LW (∆y0 (1 + h)) ≃ 10 log



W0 + h∆y0

∂W0

∂∆y0
Wref


 , (46)

where W0 is the acoustic power and ∂W0/∂∆y0 is the derivative of the acoustic power with respect to ∆y0 obtained

for a given mesh spacing ∆y0. For instance, for h = 0.1, the grid sensitivity coefficient SW provides a first-order

approximation of the gain or loss in dB of the sound power level as the mesh spacing increases by 10%. Therefore,

it allows us to quantify the sensitivity of the noise levels to the grid using only the results of a simulation carried

out for a given mesh spacing. For example, in the present study, values of SW have been computed for ∆y0 = 0.1δω,

0.2δω and 0.4δω for h = 0.1. They are reported in Table 4. For ∆y0 = 0.1δω and ∆y0 = 0.2δω, SW is approximately

only of 0.1 dB in absolute value. This indicates that the noise levels are almost insensitive to the mesh spacing for

∆y0 ≤ 0.2δω. In contrast, for ∆y0 = 0.4δω, the sensitivity coefficient is higher and close to 1 dB in absolute value,

showing that the sensitivity of the noise levels to the grid is much stronger in this case.

7. Conclusion

In this paper, the complex differentiation method has been applied to the sensitivity analysis of the noise

produced by two-dimensional mixing layers to assess its capabilities to describe the effects of key parameters on the

aerodynamic noise. For this purpose, simulations of mixing layers were carried out for Mach numbers between 0.2

and 0.4 and Reynolds numbers between 400 and 12800 on different grids, and the complex differentiation method

was applied in each simulation to estimate the derivatives of the sound levels with respect to the parameters under

study. Comparisons between derivatives computed using the complex differentiation method and using a first-order
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approximation have shown that the first method is more accurate than the second one. The derivatives of the noise

levels with respect to the Mach number have highlighted that the acoustic radiation produced by the mixing layer

is more intense and less directed downstream as Mach number increases, in good agreement with results obtained

using DNS and dimensional analysis. The derivatives of the noise levels with respect to the Reynolds number have

indicated that the acoustic radiation is stronger and more pronounced in its main direction as the Reynolds number

increases. The complex differentiation method has also been applied to investigate the effects of the transverse

mesh spacing at the center of the mixing layer, ∆y0, on the aerodynamic and acoustic fields of a mixing layer by

considering grids with ∆y0 = 0.1δω, 0.2δω, 0.4δω and 0.8δω. The derivatives of the sound levels with respect to the

mesh parameter have shown that the noise levels decrease with the mesh spacing ∆y0, in agreement with results

from parametric studies. The results provided in this paper thus suggest that the complex differentiation method

can be applied using DNS to investigate the sensitivity of the noise produced by a flow to physical parameters,

and to perform grid sensitivity analyses of this noise. In future studies, it may be interesting to use the complex

differentiation method to study the grid sensitivity of three-dimensional turbulent flows computed using large-eddy

simulations.
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