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ABSTRACT 

Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), 

typically limited to a small set of interconnected cell-specific transcription factors (TFs). By 

mining global hepatic TF regulons, we provide a more complex organization of the 

transcriptional regulatory network controlling identity. We have identified that tight 

functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs 

beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides 

controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal 

transcriptional regulation with TFs of the CoRC. In homeostatic basal condition, this 

translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression 

including their rhythmic expression patterns. Importantly, a role for Hep-IDCONNECT TFs in 

the control of hepatocyte identity was revealed in dedifferentiated hepatocytes where Hep-

IDCONNECT TFs were able to reset CoRC TF expression. This was observed upon activation of 

NR1H3 or THRB in hepatocarcinoma or hepatocytes subjected to inflammation-induced loss 

of identity. Hence, our study establishes that hepatocyte identity is controlled by an extended 

array of TFs beyond the CoRC uncovering identity stabilization loops. 

 

Keywords: transcription factors / cell identity / core regulatory network / hepatocyte 

dedifferentiation / liver disease. 
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INTRODUCTION 

Multicellular organisms are built upon collaborative activities of phenotypically and 

functionally distinct cell-types. Individual cell identities and functions are acquired thanks to 

the activity of cell-specific transcription factors (TFs). Indeed, cell-specific TFs directly 

control the expression of non-TF genes exerting activities/functions characterizing individual 

cell-types, alternatively known as identity effector genes (Almeida et al, 2021; Arendt et al, 

2016). A limited set of identity TFs engaging into auto- and cross-regulatory loops typically 

defines the core transcriptional regulatory circuitry (CoRC) (Almeida et al., 2021; Arendt et 

al., 2016). CoRCs are considered cornerstones for establishment and maintenance of cell 

identities (Almeida et al., 2021; Arendt et al., 2016). Indeed, CoRCs allows to self-sustain 

high expression of identity TFs and their target effector genes in addition to being involved in 

the continuous modulation of the hepatic transcriptome in response to environmental stimuli 

(Almeida et al., 2021; Arendt et al., 2016; Boyer et al, 2005; Wilkinson et al, 2017). 

In line, hepatocyte identity is typically defined as relying on a handful of 

interconnected hepatocyte-specific CoRC TFs (hereafter called Hep-ID TFs) including 

HNF4A, FOXA or NR1H4 (FXR) (Tachmatzidi et al, 2021). However, many additional TFs 

beyond these hepatic identity CoRC TFs have been ascribed with roles in the control of 

hepatocyte activities (Bideyan et al, 2021). However, whether and how these additional TFs 

exert their functions in concert with the hepatic CoRC is not fully understood. Moreover, 

considering that sustained expression of Hep-ID TFs has a positive impact on hepatic 

pathological conditions (Berasain et al, 2022), better defining how CoRC TFs are functionally 

linked to additional TFs is of pathophysiological interest. Indeed, breakdown in liver 

functions in advanced stages of liver injuries and in cancer results from hepatocyte loss of 

identity stemming from compromised expression of the hepatic CoRC TFs (Berasain et al., 

2022; Dubois et al, 2020a).  
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As outlined hereabove, apprehending the transcriptional regulation of cell identity 

through the lens of CoRCs, by definition, only leads to consider the role of a very limited 

subset of TFs. In this context, the real architecture and outline of the hepatocyte identity TF 

network has not been clearly established beyond Hep-ID TFs. We postulated that focusing on 

TF interconnections at the genomic-scale would allow to define how the Hep-ID TF network 

spreads beyond the CoRC and would refine our understanding of hepatocyte identity 

transcriptional control. 

 

RESULTS 

Hepatocyte identity TFs extensively co-bind TF-encoding gene promoters beyond the 

CoRC 

 We defined the hepatocyte CoRC as a set of 13 Hep-ID TFs commonly defined in 

different studies as interconnected hepatocyte-specific TFs (D’Alessio et al, 2015; Dubois et 

al., 2020a; Kyrmizi et al, 2006; Zhou et al, 2017) (Table S1). Hep-ID TFs comprise the well-

accepted and thoroughly experimentally-verified drivers of hepatocyte identity (Reizel et al, 

2020; Tachmatzidi et al., 2021). As expected from our previous studies (Dubois-Chevalier et 

al, 2020; Dubois-Chevalier et al, 2017b; Dubois et al., 2020a), monitoring the mouse liver 

cistromes of 8 Hep-ID TFs (CEBPA, FOXA2, HNF4A, NR1H4, NR5A2, ONECUT1, 

PPARA, PROX1; Table S2) pointed to their extensive co-recruitment at the Hep-ID TF-

encoding gene promoters when compared to a control set of non-Hep-ID TF-encoding gene 

promoters (Fig.1A and Fig.S1A-B). This led us to define a strategy called Promoter-centric 

TF network analysis (ProTFnet) (Fig.1B) with the aim to establish global TF interconnections 

through promoter binding patterns. Indeed, this approach consists in mining TF cistromes to 

identify TF binding to all TF-encoding gene promoters. Here, hepatic TF cistromes (n=49; 

including those of Hep-ID TFs and extending to transcriptional cofactors) (Dubois-Chevalier 
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et al., 2017b; Dubois et al., 2020a) were used to monitor the binding to all TF-encoding gene 

promoters active in the mouse liver (n=925; see Materials and Methods for details). These 

promoters were grouped together based on their TF binding pattern similarity, i.e. cistromic-

based classification, using a self-organizing map (SOM) (Fig.S2) (Dubois-Chevalier et al, 

2017a). Hierarchical clustering was next performed and identified 7 main clusters of TF-

encoding gene promoters (Fig.1C and Fig.S3A). We annotated these clusters A to G based on 

progressive TF co-recruitment pattern complexity (Fig.1C-D, Fig.S3B-C and Fig.S4). 

Promoters from cluster G were also overall the most strongly active as revealed by chromatin 

accessibility (DHS), hepatic histone acetylation (H3K27ac) or mRNA expression levels of 

associated TF-encoding genes (Fig.1E and Fig.S5). Moreover, Hep-ID TF binding was also 

most pronounced at promoters from cluster G, both when considered individually (Fig.S3D-E 

and Fig.S4G) or collectively, i.e. Hep-ID TF co-recruitment (Fig.1F). Therefore, these data 

indicated that cluster G captured most of the TF-encoding gene promoters preferentially 

targeted by Hep-ID TFs. 

In order to further characterize TF-encoding genes from cluster G, we prepared an 

additional classification of TF-encoding gene promoters based on their levels of hepatic 

activity and specificity [hereafter referred to as promoter hepatic activity score; see Materials 

and Methods for a full description of how this score was obtained]. This second classification, 

which was used to discriminate 7 promoter classes (denoted 1 to 7) displaying a progressive 

increase in the promoter hepatic activity score (Fig.S6; Table S1), was compared with the 

previously obtained cistromic-based classification. This analysis confirmed that cluster G 

overall comprised promoters with the highest hepatic activity scores (Fig.1G) including, in 

particular, a group of promoters shared with class 7 (G-7 promoters, n=13; Fig.S7A-C). G-7 

promoters both displayed enrichment for Hep-ID TF-encoding genes (Fig.1H) and were 

strongly bound by these Hep-ID TFs (Fig.1I and Fig.S7D-F). Hence, G-7 is the prominent 
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subset of promoters capturing hepatic CoRC auto-/cross-binding. However, in addition to 

Hep-ID TFs, cluster G also comprised a majority of TF promoters with lower hepatic activity 

scores (G-4 to G-6 promoters, n=117) (Fig.1G and Fig.S7A-D; Table S1). To further 

characterize the TF-encoding gene heterogeneity in cluster G, we performed a meta-analysis 

of transcriptomic data from primary human and mouse cells (n=126 and 39 different cell-

types including hepatocytes, respectively) to define 3 groups of TFs displaying cell-type 

specific (CTS), cell-type enriched (CTE) or ubiquitous (UBQ) expression patterns (Fig.1J and 

Fig.S8; see Materials and Methods). This further highlighted that, besides Hep-ID TFs and an 

additional set of cell-specific TFs with well characterized hepatic functions (Nr1i3/Car, 

Rorc/Rorg, Hnf1a and Gata4) (Tachmatzidi et al., 2021), the majority of TFs from cluster G 

belonged to CTE or UBQ TFs (Fig.1K and Table S1). 

Altogether, these analyses indicated that extensive co-recruitment of Hep-ID TFs is 

not limited to their own highly hepatocyte-specific genes within the CoRC but extends to an 

additional set of TFs. 

Hep-IDCONNECT TFs are expressed under the control of and collaborate with Hep-ID TFs 

in the regulation of hepatocyte identity effector genes 

In order to further characterize the CTE/UBQ TFs from cluster G, we refined our 

analysis of their individual expression patterns by defining how their levels of expression in 

mouse primary hepatocytes (MPH) compare to those in other primary cells (n=38 different 

cell-types). Interestingly, we found that a subset of the CTE/UBQ TFs from cluster G, 

hereafter called Hep-IDCONNECT TFs, was nevertheless characterized by privileged hepatocyte 

expression (i.e. MPH ranked among the top 10 expressing cells and expression in MPH above 

average expression in other cells) (Fig.2A and Fig.S9). These data suggested that Hep-

IDCONNECT TFs might be directly dependent upon Hep-ID TFs for their enhanced hepatocyte 

expression. In line, expression of Hep-IDCONNECT TFs was decreased in transcriptomic data 
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obtained from MPH of adult mice with hepatocyte-specific deletion of the Hep-ID TF Hnf4a 

(Fig.2B). Moreover, reminiscent of Hep-ID TF-encoding genes, expression of Hep-IDCONNECT 

TFs was increased in the final hepatocyte differentiation stage occurring during liver postnatal 

maturation (Fig.2C). We and others have established that compromised hepatocyte identity 

due to decreased Hep-ID TF gene expression is commonly found in severe liver injuries in 

both mouse models and humans (Argemi et al, 2019; Berasain et al., 2022; Bou Saleh et al, 

2021; Dubois et al., 2020a; Gunewardena et al, 2022; Hyun et al, 2020; Loft et al, 2021). 

Therefore, we further mined Hep-IDCONNECT TF expression in a meta-analysis of 

transcriptomic data obtained from mouse liver injury models triggering hepatocyte 

dedifferentiation (Fig.S10). Interestingly, we found that Hep-IDCONNECT TFs showed reduced 

expression levels in the livers of these mouse models (Fig.2D). Similar observations were 

made using transcriptomic data obtained from microdissected hepatocytes from alcohol-

related human liver cirrhosis (Bou Saleh et al., 2021) (Fig.2E). Overall, observed changes in 

expression of Hep-IDCONNECT TFs were reminiscent of those of Hep-ID TFs, albeit often with 

a lower amplitude, and different from those of other TFs from cluster G. A similar 

observation was made when interrogating the breadth of H3K4me3 labelling at Hep-

IDCONNECT TF gene promoters, a feature positively linked to the role of TFs in the control of 

cell identity (Benayoun et al, 2014; Chen et al, 2015; Pekowska et al, 2010). Indeed, the 

breadth of H3K4me3 labelling at the promoters of Hep-IDCONNECT TF genes was also 

comprised in between that observed for the Hep-ID TF and other TF-encoding genes (Fig.2F). 

Moreover, H3K4me3 labelling at Hep-IDCONNECT TF genes displayed intermediate tissue-

specificity when compared to Hep-ID TF genes, on the one hand, and remaining TF-encoding 

genes from cluster G, on the other hand (Fig S11). Altogether, these data point to the potential 

importance of Hep-IDCONNECT TFs in fully differentiated hepatocytes. 
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Indeed, many Hep-IDCONNECT TFs have individually, i.e. without an identified 

unifying rationale, been ascribed, at least to some extent, a role in the control of hepatic 

metabolic activities (Fig.S12). In line, mining genes associated with phenotypes from the 

Mammalian Phenotype Ontology resource (Chen et al, 2007; Smith et al, 2005) revealed that, 

albeit less significant when compared to Hep-ID TFs, Hep-IDCONNECT TF-encoding genes are 

linked to abnormal liver phenotypes and metabolic functions (Fig.2G). Mining transcriptomic 

data obtained from the livers of mice with hepatocyte-specific deletion of individual Hep-

IDCONNECT TF-encoding genes (hep-/- mice) indicated that this is functionally underlain by a 

preferential dysregulation of downstream hepatocyte identity effector genes, i.e. non-TF genes 

with liver-specific broad H3K4me3 domains defined in (Dubois et al., 2020a) (Fig.2H). 

While such a bias was also observed in transcriptomic data obtained from the livers of mice 

deficient for individual Hep-ID TF genes, deletion of the general chromatin organizer Ctcf did 

not give rise to preferential dysregulation of hepatocyte identity effector genes (Fig.2H). In 

line, similar to Hep-ID TFs and different from CTCF, binding of most Hep-IDCONNECT TFs 

was stronger at hepatocyte identity effector gene promoters (Fig.2I). We found that 

preferential binding remained observable when using a more stringent control, i.e. promoters 

with comparable accessibility and activity (Activity matched control promoters; see Materials 

and Methods and Fig.S13 for further details). This ruled out that chromatin accessibility alone 

explains preferential binding to Hep-ID TF gene promoters (Fig.2I). Finally, binding of Hep-

ID and Hep-IDCONNECT TFs correlated at the promoter of these genes pointing to 

combinatorial transcriptional regulation (Fig.2J). 

Altogether, these data identified that Hep-ID TFs of the hepatic CoRC target Hep-

IDCONNECT TF genes, and that these 2 sets of TFs further collaborate to control identity 

effector genes. 
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Hep-IDCONNECT TFs are reciprocally targeting Hep-ID TF-encoding genes to finely tune 

their expression in homeostatic conditions 

We hypothesized that the intimate connection between Hep-ID and Hep-IDCONNECT 

TFs identified so far could further extend to reciprocal transcriptional regulation where Hep-

IDCONNECT TFs would bind and control expression of Hep-ID TF-encoding genes. Mining 

Hep-IDCONNECT TFs binding in mouse liver indicated greater recruitment to Hep-ID TF gene 

promoters when compared to control activity-matched TF-encoding gene promoters, 

reminiscent of data obtained for Hep-ID TFs (Fig.3A and Fig.S14). However, this only 

translated into moderate transcriptional changes in expression of Hep-ID TF-encoding genes. 

Indeed, only the deletion of a subset of the Hep-ID TF-encoding genes, and not that of Hep-

IDCONNECT TF genes, individually triggers global down-regulation of the Hep-ID TF gene 

expression (Fig.3B). This most probably relates to the intrinsic role of identity TF networks, 

which are built-up to allow robustness of individual cell-type transcriptional programs 

(Almeida et al., 2021; Kyrmizi et al., 2006).  

Severeal Hep-IDCONNECT TFs are central to establishment of rhythmic hepatocyte gene 

expression (Fig.S15) including both circadian (BHLHE40, CLOCK, DBP, NFIL3, NR1D1/2) 

(Mukherji et al, 2019) and ultradian (XBP1) (Meng et al, 2020; Pan et al, 2020) rhythms. 

Hence, rather than being instrumental for regulating steady-state expression levels of Hep-ID 

TF genes, we envisioned that Hep-IDCONNECT TFs might be involved in proper rhythmic 

expression of Hep-ID TF encoding genes. In line, mining data from (Meng et al., 2020) 

revealed that a majority of Hep-ID TF genes (9 out of 13), including for example Mlxipl, were 

characterized by XBP-1 dependent ultradian expression patterns (Fig.3C-D and Table S3). 

 

Activation of Hep-IDCONNECT TFs resets CoRC TF expression and hepatocyte identity in 

dedifferentiated hepatocytes 
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Recent studies have found that individual TF activities may only be fully revealed in 

non-basal conditions and that TFs may be important to (re-)establish rather than to maintain 

cell-specific transcriptomes (Hunter et al, 2020; Lo et al, 2022). Therefore, we envisioned 

that, at least for some Hep-IDCONNECT TFs, a role in controlling the Hep-ID TF network might 

be revealed in a biological context where hepatocyte identity is challenged such as cancer. 

Mining transcriptomics of human hepatocarcinoma (HCC) from the cancer genome atlas 

(TCGA; n=366) indicated that expression of Hep-ID TF genes exhibited a trend towards 

positive correlation with that of many Hep-IDCONNECT TFs (Fig.4A). Moreover, binging of 

Hep-IDCONNECT TFs to Hep-ID TF genes was also observed in hepatic cancer cells (Fig.4B) 

and overexpression or activation of several Hep-IDCONNECT TFs, GATA binding protein 6 

(GATA6), krüppel-like factor 9 (KLF9), T-box transcription factor 3 (TBX3) and the nuclear 

receptors liver X receptor alpha (NR1H3 also known as LXR alpha) and thyroid hormone 

receptor beta (THRB), has been shown to opposite hepatocarcinogenesis (Fig4A) (Kowalik et 

al, 2020; Liang et al, 2021; Lin et al, 2020; Sun et al, 2014; Tan et al, 2019). Mechanisms 

involved have largely remained undefined and we hypothesized that these HCC suppressive 

effects may be linked to a resetting of Hep-ID TF expression. Therefore, we leveraged 

transcriptomic analyses performed on HCC cell-lines treated with ligands activating NR1H3 

(Huh7 cells treated with GW3965) (Vazquez Salgado et al, 2022) or THRB (HepG2 cells 

treated with 3,3′,5-triiodo-L-thyronine (T3) or GC-1) (Yuan et al, 2012). In line with our 

hypothesis, we found that treatment with GW3965, T3 or GC-1 induced a global increase in 

Hep-ID TF gene expression in HCC cell-lines (Fig.4C). We were able to reproduce induction 

of Hep-ID TF gene expression by T3 and GC-1 in HepG2 cells, induction of DIO1 being used 

as a positive control in these assays (Fig.4D-E). In addition, THRB activation also increased 

the ratio of HNF4A adult promoter P1- to embryonic promoter P2-derived isoforms (Fig.4F), 

a phenomenon known to promote hepatocyte differentiation and function (Dubois et al, 
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2020b). Western blot assays confirmed T3-induced changes in Hep-ID TF levels (Fig.4G). 

Similar data were obtained using a non-cancerous human immortalized hepatic cell-line 

(IHH) used as another model of partially dedifferentiated hepatocytes (Schippers et al, 1997a) 

(Fig.S16). Moreover, interrogating the transcriptomic data obtained in a rat model of 

hepatocarcinogenesis (Kowalik et al., 2020) revealed that T3 was able to counteract the 

cancer-driven loss of expression of Hep-ID TFs (Fig.4H). Indeed, T3 treatment led to robust 

transcriptional induction of Hep-ID TF-encoding genes whose expression was most strongly 

down-regulated in the cancerous nodules (Fig.4I). This was in contrast with T3 not triggering 

a global rise in Hep-ID TF expression in healthy mice (Fig.S17) (Singh et al, 2018) further 

substantiating a role for THRB in controlling Hep-ID TF genes only in context of 

dedifferentiated hepatocytes. T3-mediated re-expression of Hep-ID TFs further translated into 

re-expression of the most strongly downregulated identity effector genes consistent with 

concomitant re-establishment of a transcriptional program closer to that of differentiated 

hepatocytes (Fig.4J). 

Beyond cancer, as stated earlier, we and others have reported that hepatocyte partial 

loss of identity is a hallmark of severe liver injuries [recently reviewed in (Berasain et al., 

2022)]. In particular, inflammation is a well-established common driver of hepatocyte 

dysfunction (Del Campo et al, 2018). For instance, tumor necrosis factor or interleukin 1 beta 

(IL1B) have been shown to trigger loss of hepatocyte identity (Hyun et al., 2020). In this 

context, we set-up an experimental model where mice were injected with IL1B for 3h before 

livers were collected. IL1B treatment indeed triggered loss of hepatocyte identity including 

decreased expression of several Hep-ID TF genes as assessed through transcriptomic analyses 

(Fig.S18A-B). We next determined whether T3 treatment promoted the recovery of Hep-ID 

TF gene expression in this model, i.e. mice were first injected with IL1B and 3h latter with or 

without T3 for an additional 3h (Fig.5A). This acute setting allowed us to investigate the 
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effect of T3 independent of its previously described pro-regenerative activities through 

modulation of hepatocyte proliferation (Tang et al, 2022). Inbred laboratory mice raised in 

standardized conditions nevertheless keep displaying high phenotypic trait variability 

(Gartner, 1990; Tuttle et al, 2018) and are prone to polyphenism, i.e several discrete 

phenotypes on the same genetic background (Dalgaard et al, 2016; Yang et al, 2022). Here, 

mice were subdivided into 3 groups (low, intermediate and high responsiveness groups) based 

on their response to T3 as judged using stimulation of the Dio1 and Hectd3 gene expression, 

which are previously identified THRB hepatic target genes (Fig.5B) (Paquette et al, 2011). 

Importantly, these differences were due to variability in the T3 response only, since IL1B-

mediated induction of pro-inflammatory genes was similar between the 3 groups and no 

negative correlation between T3 and IL1B responses was detected (Fig.5C and Fig.S17C). 

Interestingly, the IL1B+T3 high responsiveness group showed expression recovery of Hep-ID 

TF genes whose levels were higher in this group when compared to those in the IL1B only 

and/or IL1B+T3 low responsiveness groups (Fig.5D). 

Altogether, these data have identified the Hep-IDCONNECT TF THRB as an actionable 

target to reset expression of hepatic identity TF genes in partially dedifferentiated 

hepatocytes. 

 

DISCUSSION 

Our promoter-centric and multi-omics approach called ProTFnet allowed us to unveil 

the complexity of the TF network controlling hepatocyte identity and functions. Using this 

approach, we identified that Hep-ID TFs of the CoRC are tightly connected with an additional 

layer of TFs through reciprocal co-recruitment to their promoters. The CoRC, in addition to 

being instrumental for cell identity establishment and maintenance, comprises TFs which are 

also key for controlling and adapting mature cell functions to homeostatic requirements. In 
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this context, the tight connection between Hep-IDCONNECT TFs and the CoRC provides an 

additional layer of regulation to finely tune Hep-ID TF expression. For instance, Hep-

IDCONNECT TFs comprise regulators of rhythmic gene expression including XBP1. Other Hep-

IDCONNECT TFs, TBX3 and TCF7L2, have been identified as regulators of zonated hepatocyte 

transcriptional programs (González-Blas et al, 2022) pointing to a role of Hep-IDCONNECT TFs 

in specifying proper hepatic gene expression in both space and time. Importantly, ryhtmic and 

zonated hepatic gene expression are crucial to maintain appropriate liver metabolic and non-

metabolic activities (Meng et al., 2020; Mukherji et al., 2019; Pan et al., 2020; Paris & 

Henderson, 2022). 

While not being required to sustain Hep-ID TF gene expression and cell identity in 

basal condition, our data obtained with NR1H3 and THRB in dedifferentiated hepatocytes 

revealed that Hep-IDCONNECT TF activation can be leveraged to reset the CoRC and hepatocyte 

identity. These findings are consistent with other recent observations where TF binding to 

cell-specific target genes translates into a more critical role in (re)establishment and dynamic 

regulation rather than maintenance of steady-state gene expression levels (Lo et al., 2022). 

Our study is also consistent with recent insights into the understanding of cell fate choice, 

which have suggested a more distributed form of control relying on combinatorial activities of 

dozens of TFs rather than an organization strictly dominated by a few master TFs (Chubb et 

al, 2021; Mittnenzweig et al, 2021). In this context, we propose that Hep-IDCONNECT TFs are 

involved in identity stabilization loops, whose functional importance with regards to cell 

identity is revealed in pathophysiological situations of dedifferentiation (Fig.6). Context-

dependent activities is an intrinsic property of TFs and precisely defining how Hep-IDCONNECT 

TFs sense the cellular state to adapt their functions will require additional studies. 

Loss of hepatocyte identity is a main feature of tumorigenesis, but is now ascribed a 

broader pathophysiological relevance including loss of activity of severely injured livers 
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(Berasain et al., 2022). In both situations, resetting hepatocyte identity through re-expression 

of CoRC TFs is considered of potential therapeutic interest (Berasain et al., 2022; Chao et al, 

2020). By identifying the Hep-IDCONNECT TF-controlled identity stabilization loops, our study 

has identified new avenues to achieve this goal. In particular, our data with agonists of the 

nuclear receptors NR1H3 and THRB are particularly relevant as several of those are being 

considered for treatment of liver diseases (Hatziagelaki et al, 2022; Russo-Savage & 

Schulman, 2021). With regards to HCC, our data provide explanation for the reported 

beneficial effects exerted by NR1H3 and THRB. Many Hep-IDCONNECT TFs, including 

NR1H3 and THRB, do not display typically used features to define hepatocyte identity TFs 

such as hepatocyte-specific expression and association with super-enhancers (Dubois et al., 

2020a; Hnisz et al, 2013) (Table S4). Hence, our study has allowed to uncover an unforeseen 

role for an extended transcriptional regulatory network beyond the CoRC in the control of 

hepatocyte identity (Fig.6). 

 

MATERIALS AND METHODS 

Data retrieval 

Public functional genomics data used in this study were downloaded from the Gene 

Expression Omnibus (GEO) (Barrett et al, 2013), ArrayExpress (Sarkans et al, 2021), 

ENCODE (Yue et al.  2014), the UCSC Genome Browser (Raney et al.  2011), FANTOM5 

(Lizio et al, 2015) or from BioGPS (Wu et al.  2009) and are listed in Table S2.  

Hep-ID TFs were defined as hepatocyte-identity TFs retrieved in at least 2 out of 3 

independent studies (D’Alessio et al., 2015; Dubois et al., 2020a; Zhou et al., 2017). The top 

20 TFs were used for (D’Alessio et al., 2015). 

Mouse liver active promoters were defined based on Precision nuclear Run-On 

Sequencing (PRO-Seq) data (Wang et al, 2018). HepG2 active promoters were defined as the 
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transcriptional start sites (TSSs) from Gencode v32 (Frankish et al, 2018) with H3K27ac 

ChIP-seq signal (ENCODE, Table S2) with at least 2-fold enrichment over control within a 1 

kilobase (+/- 500 bp of TSS) window. Only the most active TSS per gene, i.e. highest 

H3K27ac ChIP-seq signal, were kept. 

The IDR thresholded peaks issued from ChIP-seq analyses of flag-tagged Hep-

IDCONNECT TFs (n=14) in HepG2 cells were obtained from ENCODE (Table S2). 

Tau indexes of tissue-specific expression were retrieved from (Kryuchkova-Mostacci 

& Robinson-Rechavi, 2017). 

 

Self-Organizing Maps (SOM) analyses 

Active promoters in the mouse liver were defined as cis-regulatory modules, i.e. 

genomic regions bound by at least 2 different transcriptional regulators (Fig.S2A-B) as in 

(Dubois-Chevalier et al., 2017a), which overlap active TSSs identified as PRO-seq data 

summits in (Wang et al., 2018). Non-unique associations between TSSs and genes in the 

PRO-seq data were discarded. Only transcription factor (TF) encoding genes, retrieved using 

a manually curated gene list originally obtained from the AnimalTFDB2.0 database (Zhang et 

al, 2015), were considered. Transcriptional regulator co-recruitment analyses made use of 

mouse liver ChIP-seq data for 49 factors (Table S2), which were uniformly processed 

including quality control checks as described in (Dubois-Chevalier et al., 2017a). All these 

data were obtained using the liver of untreated adult mice. In line with the vast majority of the 

liver chromatin stemming from hepatocytes (which are the prominent cell-type in the liver 

and are, moreover, mostly polyploid cells - up to 85% in mice with mainly tetraploid 

hepatocytes) (Duncan et al, 2010), hepatic TF cistromes can be faithfully inferred from mouse 

liver ChIP-seq data (Dubois-Chevalier et al., 2017a; Dubois et al., 2020a; Kyrmizi et al., 

2006; Schmidt et al, 2010; Sommars et al, 2019). 
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The SOM were generated using the R package kohonen2 (Wehrens & Buydens, 2007) 

as described in (Dubois-Chevalier et al., 2017a). Cells containing promoters with similar 

transcriptional regulator binding patterns (Fig.S2C-D) were further grouped into clusters 

(denoted A-G) based on hierarchical clustering performed using the hclust function of the R 

package Stats (R_Core_Team, 2015). We used the Ward agglomeration method and the best 

representative transcriptional regulator combination (prototype) for each individual cell. The 

number of clusters was chosen according to homogeneity analyses 

(http://lastresortsoftware.blogspot.fr/2010/08/homogeneity-analysis-of-hierarchical.html) 

(Bedward et al, 1992) and biological significance. A planar projection of the toroidal map was 

used for data visualization. 

 

Analyses of transcriptional regulator co-recruitment patterns in SOM-derived clusters 

Transcriptional regulator co-occurrence in clusters A-G was used to calculate 

Tanimoto distance matrices, which were used to draw heatmaps and perform hierarchical 

clustering or perform multi-dimensionnal scaling (MDS) analyses using R (R_Core_Team, 

2015) as described in (Dubois-Chevalier et al., 2017a). To analyze the combinations of 

transcriptional regulators bound at the different promoters of a given cluster, a “frequent 

itemsets” search (combinations of 2 to 49 regulators) was performed using the arules R 

package (Hahsler et al, 2005). Only itemsets occurring in at least 50% of promoters of a given 

cluster were considered and defined as the core co-recruitment nodes. Finally, the percentage 

of occurrence of each transcriptional regulator in these nodes was retrieved. 

 

Transcriptomic data analyses 

Processing of raw data and differential gene expression analyses 



18 
 

Raw transcriptomic data from Affymetrix microarrays were normalized on a local 

instance of Galaxy (Afgan et al, 2018) using the GIANT APTtool (Affymetrix Power Tools; 

www.thermofisher.com/fr/fr/home/life-science/microarray-analysis/microarray-analysis-

partners-programs/affymetrix-developers-network/affymetrix-power-tools.html) (with options 

: gc correction when available, scale intensity and rma at probeset level) from the GIANT 

toolbox (Vandel et al, 2020). Normalized expressions were averaged per Gene Symbol 

(NetAffx Annotation Release 36, July, 2016). Raw transcriptomic data from Agilent 

microarrays were processed with the limma R package (Ritchie et al, 2015) used to normalize 

the data through the “backgroundCorrect” function (parameters used were method 

:”normexp" and normexp.method : "rma") and to filter out low expressed probes. Normalized 

data from Illumina Bead Chips were retrieved from the Gene Expression Omnibus database 

and annotated using GPL6101_Illumina_RatRef-12_V1_0_R1_11222119. Orthologous 

mouse genes were retrieved using Ensembl annotations (release 105) (Howe et al, 2021). 

Differential expression analyses were performed with GIANT using the limma tool (FDR 

cutoff set at 0.15). 

RNA-seq data were analyzed using the Galaxy web platform (Afgan et al., 2018). 

Mapping of reads on mm10 was performed with HISAT2 (version 2.21; options: default) 

(Kim et al, 2019). Mapped reads mapping to exons were subsequently retrieved and merged 

by gene_id with Htseq-count (version 0.9.1) (Anders et al, 2015) using the mm10 annotation 

of Ensembl (release 102) (Yates et al, 2020) (with the following options, mode: union, 

minimum alignment quality: 10, “do not count non uniquely or ambiguously mapped reads”, 

stranded: no). Normalization and differential analyses were performed with EdgeR (version 

3.36.0) (Liu et al, 2015; Robinson et al, 2010) (options: lowly expressed genes filtered out, 

cutoff: <1CPM in n samples - with n corresponding to number of biological replicates in one 

condition, FDR<0.15, normalization method: TMM, Robust settings: True). Normalized gene 
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expressions were obtained by averaging data per Gene Symbol using the Ensembl annotation 

(release 105) (Howe et al., 2021). Dot plots displaying dysregulation in transcriptomic data 

were performed with the ggplot2 R package (Wickham, 2016). 

Mining of CAGE-seq data to define CTS (cell-type specific), CTE (cell-type enriched) and 

UBQ (ubiquitous) TFs 

CAGE-seq data from FANTOM5 (Lizio et al., 2015) were used to define CTS, CTE 

and UBQ TF-encoding genes based on their patterns of expression in primary human and 

mouse cells. Human and mouse orthologous genes were defined using the Ensembl annotation 

(version 105) (Howe et al., 2021). Only TF-encoding genes retrieved in both the human and 

mouse CAGE-seq data (n=1009) were considered. Their expression levels in mouse and 

human cells were stacked in a unique matrix centered and scaled, which was used to perform 

a Multiple Factor Analysis (MFA) using the MFA function of the R package FactoMineR (Lê 

et al, 2008) considering expression in mouse and human cells as two distinct groups of 

variables and TFs as individuals (parameters were set as follows, type: c(‘s’,’s’), ncp: 5). The 

2 first components of this MFA accompted for approximately 84% of the variability of the 

two combined datasets. A hierarchical clustering was performed on these 5 first components 

using the HCPC function of the FactoMineR package (parameters were set as follows, 

nbclust: 3, metric: ”euclidean”, method: ”ward”). This identified 3 clusters of TFs 

characterized by an increasing number of cell-types displaying high expression from CTS to 

UBQ TFs (Fig.S8). 

Mining of transcriptomic data to monitor hepatic dedifferentiation 

To monitor hepatocyte dedifferentiation in mouse liver injury models, all liver injury 

transcriptomic data were batch corrected against the liver development transcriptomic data 

used as a reference. This was performed with the ComBat function of the R package SVA 

(parameters were set as follows, mean.only: T, par.prior: T, control samples for the batch 
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correction were the adult livers for the differentiation study and the livers from wild-type or 

untreated mice for the injury studies) (Leek et al, 2022). Then a principal component analysis 

(PCA) was computed on the liver differentiation study using the R package FactoMineR 

(scale.unit set to F) (Lê et al., 2008). Since the first component, representing 64% of the 

dataset variability, allowed to separate the different stages of liver differentiation, it was used 

to project the liver injury studies. Fold changes between injured and control livers were 

computed on the batch corrected data and the median log2 fold change for individual genes 

across the different studies was recovered and plotted. 

Mining transcriptional changes in identity genes versus control gene sets 

Transcriptional modulations of identity effector and TF-encoding genes were 

compared to those in control genes matched for mouse liver promoter activity. A hierarchical 

clustering was performed based on promoter DHS-seq and H3K27ac ChIP-seq signals 

together with mouse liver gene expression levels considering all active non-TF genes 

(Fig.S13) or only TF-encoding genes (Fig.S14). Individual signals were scaled and clustering 

was performed using log2-transformed data. This allowed to define 4 clusters of promoters 

with different activity levels among both non-TF and TF-encoding genes. Groups of control 

genes were defined by randomly selecting an equivalent number of non-identity genes 

matching the distribution of identity effector or TF genes in these clusters. This was 

performed 1000 times (without replacement) to compare the identity genes to the individual 

control gene sets (Fig.S13 and Fig.S14). Results of Wilcoxon rank sum tests were recorded 

and the mode of the p-value distribution was used to select a representative control gene set 

among the 1000 subsamples. Selected representative control groups were in main figures. 

Gene expression correlation in human HCC 

The cbBioPortal (https://www.cbioportal.org/) (Gao et al, 2013) was used to retrieved 

spearman correlations between the log2 mRNA expression of individual Hep-IDCONNECT TF 
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genes with that of Hep-ID TF genes in HCC within "Liver Hepatocellular Carcinoma (TCGA, 

Firehose Legacy)" (n=366 samples). 

 

DHS-seq and histone ChIP-seq data analyses 

Uniform reprocessing of the data including peak calling and genome-wide average 

signal has been described in (Dubois-Chevalier et al., 2017a). ChIP-seq signals were also 

alternatively used as enrichments over input, which were obtained as follows. First, input 

datasets from several mouse liver ChIP-seq studies (Table S2) were merged into a “meta-

input” file after removal of duplicated reads and false-positives regions identified by 

ENCODE (blacklisted regions v1) (Amemiya et al, 2019) or defined as repeatedly enriched in 

inputs and IgG ChIP-seq in our previous study (Dubois-Chevalier et al., 2017a). Then, the 

Bam file for each TF ChIP-seq dataset was used to run MACS2 callpeak (-g=1.89e9, -q=0.05, 

--keep-dup=all, --scale-to=small, B) using the “meta-input” Bam file as control. Finally, the 

two BedGraph files issued from MACS2 callpeak were used in MACS2 bdgcmp (m=logFE) 

to obtain the genome-wide log2 fold enrichment track files over input for each TF (MACS2 

version 2.2.7.1) (Zhang et al, 2008). DHS-seq or ChIP-seq signal at a given promoter was 

defined as the maximum signal within TF binding sites (i.e. cis-regulatory modules as defined 

hereabove) encompassing this promoter retrieved using the extract bed function of bwtool 

version 1.0 (Pohl & Beato, 2014). Comparison of individual TF binding to identity and 

control gene promoters involved reiterative comparisons with independent matched control 

groups as described hereabove for transcriptomics analyses. Combinatorial binding of Hep-ID 

TFs, Hep-IDCONNECT and CTCF on effector gene promoters was compared using the distance 

correlation provided by the dcor function of the Rfast package in R (Papadakis et al, 2022). 

Visualization of ChIP-seq data at selected genes was performed using the Integrated 

Genome Browser (IGB 9.1.4) (Freese et al, 2016) 
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H3K4me3 ENCODE ChIP-seq data from mouse tissues (Shen et al, 2012) were used 

to call H3K4me3-enriched regions using the broad peak calling option of MACS2 as 

described in (Chen et al., 2015). Genes were assigned to H3K4me3-enriched regions using 

the closestBed function (with parameters -t all, -k 1, -d, -mdb) of the BEDTools version 2.3.0 

(Quinlan & Hall, 2010), i.e. active gene TSS from the mouse liver PRO-Seq data (Wang et 

al., 2018) were assigned H3K4me3-enriched regions when distance was 0. Calling of super-

enhancers (SE) and target gene assignation, essentially performed as in (Loven et al, 2013; 

Whyte et al, 2013), was previously described (Dubois-Chevalier et al., 2020). 

 

Classification of TFs based on their promoter hepatic activity score 

In order to monitor liver specificity, the DHS-seq or H3K27ac ChIP-seq signals were 

extracted considering a region spanning +/- 500 base pairs around active promoters (summits 

of PRO-seq data) (Wang et al., 2018). The DHS and H3K27ac signals for each tissue were 

normalized using the Spark method (Nielsen et al, 2012), which takes into account signal 

median and variance on all genes in a tissue. Liver specificity indexes were computed by 

dividing the normalized signals in the liver by the average normalized signals in other tissues 

(Table S2). A gene expression liver specificity index was similarly computed using 

normalized gene expressions extracted from the BioGPS Mouse MOE430 Gene Atlas (Wu et 

al, 2016) (Table S2). Log2-transformed signals, gene expressions and liver-specificity indexes 

were combined in a matrix, which was centered and scaled and further used for hierarchical 

clustering using the hclust function of R (parameters were set as follows, method: “Ward.D2” 

on Euclidean distance matrix) (R_Core_Team, 2015). This allowed to define 7 TF-encoding 

gene promoter classes characterized by increasing liver activity and specificity together 

referred to as hepatic activity score (Fig.S6). Heatmaps were plotted with heatmap.2 from the 

gplots R package (Warnes et al, 2022). 
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H3K27ac ChIP-seq data from purified mouse primary hepatocytes versus non-

hepatocytes (Roh et al, 2017) were further used to characterize the obtained clusters. CAGE-

seq data from FANTOM5 (Table S2) were also leveraged to calculate gene expression in 

hepatocytes when compared to average expression in other primary cell-types. 

TF-encoding gene promoters were grouped according to both clustering based on 

transcriptional regulator co-recruitment (clusters A-G) and based on hepatic activity and 

specificity (classes 1-7). 

 

Hep-IDCONNECT TF binding to Hep-ID TF encoding genes in HepG2 cells 

  

 

Mouse phenotype ontology and literature mining 

 Enrichments within the mouse phenotype ontology or biological pathway data were 

defined using ToppCluster (Chen et al., 2007; Kaimal et al, 2010). Default parameters were 

used and only terms linked to >5 TF-encoding genes were considered. 

References to Hep-IDCONNECT TFs in the scientific literature related to liver/hepatocyte 

metabolic functions were retrieved using the easyPubMed package (https://www.data-

pulse.com/dev_site/easypubmed/) in R. Articles with co-occurrence of a given Hep-

IDCONNECT TF gene name and (“hepatocyte” or “liver”) and “metabolism” in their title or 

abstract were considered. The number of retrieved manuscripts for each Hep-IDCONNECT TF 

was visualized as a heatmap prepared using the heatmap.2 function of the R package gplots. 

 

Cell culture and treatments 

The human cell line HepG2 (ATCC, HB-8065) was cultured in minimum essential 

medium (MEM) (Gibco, 11095080) supplemented with 10% fetal bovine serum (FBS; 
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Dutscher, 500105H1), MEM non-essential amino acids (Gibco, 11140035), 1 mM sodium 

pyruvate (Gibco, 11360070) and 100 U/mL penicillin-streptomycin (Gibco, 15140). 

Immortalized human hepatocytes (IHH) (Schippers et al, 1997b) were cultured in William’s E 

medium (Gibco, 22551022) supplemented with 10% FBS (Dutscher, SV30160.03), 20 

mU/mL bovin insulin (Sigma, I5500), 50 nM dexamethasone (Sigma, D1756) and 100 U/mL 

penicillin-streptomycin (Gibco, 15140). Cell culture was performed in a humidified 

atmosphere of 5% CO2 in a 37 °C incubator. Cells were grown in media containing 10% 

dextran-coated charcoal stripped serum for 48h and then treated with 10 nM T3 (T6397, 

Sigma-Aldrich) or 10 nM GC-1 (SML1900, Sigma-Aldrich) for 24 or 96h before being 

harvested for RNA or protein extraction. For serum stripping, activated charcaol solution 

(C9157, Sigma-Aldrich) was washed 3 times and prepared in ultra-pure water at final 

concentration 5%. Dextran T70 (2.5g ; 31390, Sigma-Aldrich) was added to the pellet and 

charcoal-coated dextran was mixed with 500 mL of serum and incubated overnight at 4°C. 

After centrifugation (20 min, 4000g, room temperature), the serum was filtered using a 0.2 

µm filter and heat inactivated at 56°C for 45 min. 

 

Mouse experiments 

Young adult male C57BL/6J wild-type (WT) mice (7-11 weeks old) were purchased from 

Charles River and housed in standard cages in a temperature-controlled room (22–24°C) with 

a 12-h dark–light cycle. They had ad libitum access to tap water and standard chow and were 

allowed to acclimate for 2 weeks prior to initiation of the experimental protocol. Acute liver 

inflammation was induced by intraperitoneal injection of recombinant mouse IL1B using 0.5 

µg/ mouse (575102, BioLegend) or vehicle (PBS) for 3h followed by T3 treatment 0.2 mpk 

(T6397, Sigma-Aldrich). Livers were collected 3h later. Mice with hepatocyte-specific 

deletion of Thrb have been described in (Billon et al, 2014). 
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All animal studies were performed in compliance with EU specifications regarding the use 

of laboratory animals and have been approved by the Nord-Pas de Calais Ethical Committee 

(APAFIS#30322-202102221656794 v4). 

 

RNA expression analyses 

Tissues were homogenized using Minilys and 1.4 mm ceramic beads (Bertin 

Technologies). Total RNA was extracted from cell lines and tissues using the Nucleospin® 

RNA kit (Macherey-Nagel) according to the manufacturer’s protocol.  

RNA was reverse-transcribed using the High-Capacity cDNA Reverse Transcription 

Kit (Applied Biosystem). Quantitative PCR (qPCR) was performed on an Fast Applied 

(Applied Biosystem, Life Technologies, Cergy Pontoise, France) using the Takyon kit 

(Agilent Technologies). The specificity of the amplification was checked by recording the 

dissociation curves, and the efficiency was verified to be above 95% for each primer pair. 

mRNA levels were normalized to the expression of housekeeping genes and the fold 

induction was calculated using the cycle threshold (ΔΔCT) method. The sequences of primers 

used are listed in Table S5. 

For transcriptomic analyses, RNA integrity and quantity were evaluated using the 

Agilent 2100 Bioanalyser (Agilent Technologies). RNA was then processed for 

transcriptomic analysis using Affymetrix GeneChip arrays (MoGene 2.0) or high-throughput 

sequencing (RNA-seq) as previously described (Bobowski-Gerard et al, 2022). 

 

Protein extraction 

Proteins from the chromatin fraction were prepared as in (Dubois et al., 2020a). Cells 

were scraped in ice-cold Phosphate-Buffered Saline (PBS), pelleted by centrifugation at 400 g 

for 5 min, lysed in Buffer A (50 mM HEPES pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 340 mM 
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sucrose, 10% glycerol, 1 mM DTT and protease inhibitor cocktail from Roche) and incubated 

for 10 min at 4°C. Samples were centrifuged at 1,300 g for 5 min at 4°C and supernatants 

were discarded. Nuclear pellets were washed with Buffer A and subsequently lysed in 

solution B (3 mM EDTA, 0.2 mM EGTA, 1 mM DTT, and protease inhibitor cocktail). After 

incubation for 30 min at 4°C, samples were centrifuged at 1,700 g for 5 min at 4°C and 

supernatants were discarded. Chromatin pellets were washed with solution B, resuspended in 

Buffer C (50 mM Tris–HCl pH 8.0, 1 mM MgCl2, and 83 U/µl benzonase) and incubated for 

20 min at 4°C. Laemmli buffer 6× was added before loading for Western immunoblotting. 

 

Western blot assays 

Protein extraction and western blotting were performed as described in (Dubois et al., 

2020a). Protein concentrations were determined using the PierceTM BCA protein assay kit 

(Thermo scientific). Then, 20 µg of proteins were separated by 10% SDS-PAGE and 

immunodetected by Western immunoblotting using the primary antibodies listed in the Table 

S6. Primary antibodies were detected using HRP-conjugated secondary antibodies (Sigma-

Aldrich). Images were acquired using the iBrightTM CL1500 Imaging System (Thermo Fisher 

Scientific). 

 

Statistical analyses 

Statistical analyses were performed using the Prism software (GraphPad, San Diego, 

CA) and R (R_Core_Team, 2015). The specific tests and corrections for multiple testing 

which were used as well as the number of mice or independent biological replicates are 

indicated in the figure legends. Two-sided tests were used unless specified in the figure 

legends. All bar graphs show means ± SD (standard deviations). Box plots are composed of a 

box from the 25th to the 75th percentile with the median as a line. Unless specified in the 
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figure legend, whiskers extent to the most extreme data point which is no more than 1.5 times 

the interquartile range from the box. 
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Figure legends: 

Fig.1. Promoter-centric mining of the hepatic TF network using ProTFnet. 

A) The cistromes of 8 Hep-ID TFs (CEBPA, FOXA2, HNF4A, NR1H4, NR5A2, ONECUT1, 

PPARA, PROX1; Table S2) were used to define the percentage of those TFs binding to Hep-

ID TF (n=13) or non-Hep-ID TF (Control TF genes; n=13) encoding gene promoters. The 

control group used was selected for providing data representative of those obtained with 1000 

reiterations of this analysis. Wilcoxon rank sum test with continuity correction was used to 

assess statistical significance. *p<0.05. B) Overview of the ProTFnet strategy implemented in 

this study where (identity) TF binding to TF-encoding gene promoters is monitored and 

subsequently used to define distinct clusters of promoters through SOM and hierarchical 

clustering. Clusters are subsequently characterized using multi-omics (cistromic, epigenomic 

and transcriptomic) data mining to explore the complexity of the identity TF network. C) 

Planar view of the toroidal map issued from the SOM analysis was used here to display 

clusters A-G and hereafter to visualize different features of these clusters (panels D-E and 

Fig.S3E). The dendrogram issued from the hierarchical clustering analysis is shown on the 

right. D) The map issued from the SOM analyses was used to show the average number of co-

recruited TFs at gene promoters contained in individual cells. Bold orange lines indicate the 

borders of clusters A-G. E) The map issued from the SOM analyses was used to show the 

average ChIP-seq signal for mouse liver H3K27ac at gene promoters contained in individual 

cells. Bold black lines indicate the borders of clusters A-G. F) Heatmap showing the 

occurrence (percentage) of individual transcriptional regulators in the core co-recruitment 

nodes of clusters A-G, i.e. binding combinations found in at least 50% of the promoters of a 

given cluster. G) Heatmap displaying the distribution (percentage) of promoters for each one 

of clusters A-G into clusters 1-7, where promoters were grouped according to increasing 

hepatic activity score (Fig.S6). H) Enrichment for Hep-ID TF genes (Table S1) within the 
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different groups of TF gene promoters. Here, and in all subsequent analyses of the clusters A-

G and 1-7 cross-comparison, groups containing less than 10 promoters were not displayed. I) 

The normalized cistromes of 8 Hep-ID TFs (see A) were used to define the median Hep-ID 

TF ChIP-seq signal at promoters found in the different groups. J) Principal component 

analysis (PCA) of TF gene expression in mouse (n=39) and human (n=126) primary cell-

types (see Materials and Methods). Individual TFs are displayed as dots projected on the first 

2 components and the 3 main clusters issued from hierarchical clustering are shown and 

labelled as UBQ (ubiquitous), CTE (cell-type enriched) and CTS (cell-type specific) (Fig.S8). 

K) The data from panel J were used to selectively display TF genes from cluster G. 
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Fig.2. Identification and characterization of Hep-IDCONNECT TFs. 

A) The CTE/UBQ TFs from cluster G (Fig.1K) were plotted based on their expression in 

mouse primary hepatocytes (MPH) when compared to other primary mouse cell-types (n=38). 

For each individual TF, cells were first ranked according to decreasing gene expression and 

the rank of MPH was plotted on the x axis (i.e. rank 1 indicates highest expression is in 

MPH). Second, expression in MPH was divided by the average expression in all other 

primary cells and plotted on the y axis as log2 fold difference. Hep-IDCONNECT TF-encoding 

genes were defined as those preferentially expressed in MPH (rank ≤10 and FC>0). For 

comparison, Hep-ID TF genes were plotted in an additional box on the right of the one 

highlighting Hep-IDCONNECT TFs. B-E) Expression of Hep-ID, Hep-IDCONNECT and remaining 

TF-encoding genes from cluster G (Others) was monitored in indicated transcriptomic data 

(Table S2). Box plots show log2 fold changes between MPH of Hnf4ahep-/- (Hnf4a KO) versus 

wild-type mice (B), adult versus newborn mouse livers (C), a meta-analysis of severe mouse 

liver injuries versus control livers (D; see Materials and Methods and Fig.S10) and 

microdissected hepatocytes from alcohol-related human liver cirrhosis (alcoholic 

steatohepatitis) versus control livers (E). Statistical significance was assessed using one-sided 

one-sample t-test with Benjamini-Hochberg correction for multiple testing to determine if the 

mean log2 FC was statistically lower (B, D, E) or higher (C) than 0. *q<0.05. F) Distribution 

of H3K4me3 domain length at the TSS of Hep-ID, Hep-IDCONNECT and remaining TF-

encoding genes from cluster G (Others) as defined through broad peak calling on mouse liver 

H3K4me3 ChIP-seq data. Statistical difference between groups was defined using Kruskal-

Wallis with Wilcoxon pairwise comparison tests followed by Benjamini-Hochberg correction 

for multiple testing correction. *q<0.05. G) Mouse phenotypes associated with Hep-ID, Hep-

IDCONNECT and remaining TF-encoding genes from cluster G (Others) were defined using 

ToppCluster. Dendrograms of hierarchical clustering are shown. ToppCluster uses 
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hypergeometric tests and Bonferroni correction. H) Enrichment for identity effector genes 

among the top 1000 transcriptionally dysregulated genes in the MPH/livers of indicated 

genetically deficient mice. Log2 odds ratios were computed to compare the proportion of 

dysregulated versus non-dysregulated genes within identity effector genes or control non-TF-

encoding genes. Then a two-sided Fisher exact test was performed to assess if the proportion 

of dysregulated genes was significatively different within the identity and control gene groups 

with Benjamini-Hochberg correction. *q<0.05. I) Binding of indicated Hep-ID and Hep-

IDCONNECT TFs to the promoter of identity effector genes and a control group of non-TF-

encoding genes of similar size (n=424) was monitored using mouse liver ChIP-seq data. A 

control group of non-TF-encoding genes (n=424) matched for their promoter mouse liver 

activity was also used (Fig.S13). The control groups used were selected for providing data 

representative of those obtained with 1000 reiterations of this analysis (see Materials and 

Methods; Fig.S13). The distribution of ChIP-seq signals is shown using box plots. Pairwise 

Wilcoxon Rank Sum Tests with Benjamini-Hochberg correction was used to define whether 

the binding at identity effector genes versus control genes was significantly different for each 

analyzed TF recruitment. *q<0.05. J) Correlation between Hep-ID TFs, Hep-IDCONNECT TFs 

and CTCF recruitment, as judged through the mining of mouse liver ChIP-seq data, to identity 

effector genes. The dendrogram is issued from hierarchical clustering analysis. 
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Fig.3. Hep-IDCONNECT TF binding to and regulation of Hep-ID TF encoding genes in 

basal conditions. 

A) Binding of indicated Hep-ID and Hep-IDCONNECT TFs to the promoter of Hep-ID TF genes 

and a control group of non-Hep-ID TF-encoding genes matched for their promoter activity 

(Fig.S14) of similar size (n=13) was monitored using mouse liver ChIP-seq data. The control 

group used was selected for providing data representative of those obtained with 1000 

reiterations of this analysis (see Materials and Methods; Fig.S14). The distribution of ChIP-

seq signals is shown using box plots. One-sided Wilcoxon rank sum tests with Benjamini-

Hochberg correction was used to define whether the binding on Hep-ID TF gene promoters 

was greater than on control genes for each individual TF ChIP-seq dataset. *q<0.05. B) 

Transcriptional modulation of Hep-ID TFs and a control group of non-Hep-ID TF-encoding 

genes matched for their promoter activity (Fig.S14) of similar size (n=13) in mouse 

liver/MPH of mice deleted for the indicated Hep-ID or Hep-IDCONNECT TF genes. The control 

group used was selected for providing data representative of those obtained with 1000 

reiterations of this analysis (see Materials and Methods; Fig.S14). The distribution of log2 fold 

changes is shown using box plots. Wilcoxon rank sum tests with Benjamini-Hochberg 

correction was used to define whether transcriptional regulation of Hep-ID TF genes was 

different from that of the control genes for each individual transcriptomic dataset. *q<0.05. C) 

12hr gene expression oscillation analyses in the mouse liver performed by Meng et al. (Meng 

et al., 2020) from WT and XBP1hep-/- animals were used to identify XBP1-dependent 

oscillating expression patterns for Hep-ID TF genes (Table S3). D) Average gene expression 

levels of Mlxipl in the livers of WT and XBP1hep-/- mice across circadian time. 

 

Fig.4. Resetting Hep-ID TF gene expression through Hep-IDCONNECT TF activation in 

hepatocellular carcinoma. 
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A) Distribution of the spearman correlations between Hep-ID TF genes and individual Hep-

IDCONNECT TF genes in human HCC shown using box plots. Hep-IDCONNECT TFs which have 

been ascribed with HCC suppressive functions are indicated on the right. B) Cistromes for 13 

Hep-IDCONNECT TFs in HepG2 cells were mined for binding to Hep-ID TF encoding genes. 

Peaks localized +/- 10 kilobases from transcriptional start sites were considered in these 

analyses. C) Transcriptional modulation of Hep-ID TFs and a control group of non-Hep-ID 

TF-encoding genes matched for their promoter activity (Fig.S14) of similar size (n=13) in 

Huh7 or HepG2 cells treated with GW3965, T3 or GC-1, respectively. The control group used 

was selected for providing data representative of those obtained with 1000 reiterations of this 

analysis (see Materials and Methods; Fig.S14). The distribution of log2 fold changes is shown 

using box plots. Wilcoxon rank sum tests with Benjamini-Hochberg correction was used to 

define whether transcriptional regulation of Hep-ID TF genes was different from that of the 

control genes for each individual transcriptomic dataset. *q<0.05. D-F) mRNA expression of 

the indicated genes was monitored using RT-qPCR in HepG2 cells treated with T3 or GC-1 

for 24h or 96h. Bar graphs show mean ±SD of log2 fold changes in treated versus untreated 

HepG2 cells. For Hnf4a, the log2 fold change in the ratio of P1 over P2 promoter-derived 

isoforms is also shown. Gray dots show the results obtained from 3 independent biological 

replicates, each performed in technical triplicates. One-sample t-test with Benjamini-

Hochberg correction for multiple testing was used to determine if the mean log2 FC was 

statistically different from 0. *q<0.05. G) Western blots assays performed using antibodies 

against the indicated proteins on extracts from HepG2 cells treated or not with T3 for 24h. 

Rep#1-3 indicates the 3 independent biological replicates analyzed. H) Modulation of Hep-ID 

TF gene expression in precancerous nodules compared to control rat livers and in liver 

nodules of rats treated with T3 compared to nodules of non-treated rats. A control group of 

non-Hep-ID TF-encoding genes matched for their promoter activity (Fig.S14) of similar size 
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(n=13) is also shown. The control group used was selected for providing data representative 

of those obtained with 1000 reiterations of this analysis (see Materials and Methods; Fig.S14). 

Box plots show the log2 fold changes. Wilcoxon rank sum tests with Benjamini-Hochberg 

correction was used to define whether transcriptional regulation of Hep-ID TF genes was 

different from that of the control genes for each individual transcriptomic dataset. *q<0.05. I) 

Dot plots showing the transcriptional regulation of individual Hep-ID TF gene expression in 

precancerous nodules compared to control rat livers (left; Nodules/Control) and in liver 

nodules of rats treated with T3 compared to nodules of non-treated rats (right; 

Nodules+T3/Nodules). No data were recovered for Onecut2, Prox1 and Mlxipl. J) Identity 

effector genes significantly downregulated in Nodules/Control (q<0.05) were split in 3 groups 

according to their log2 fold changes (i.e. low, intermediate and high repression; pink boxes) 

and then monitored for induction in Nodules+T3/Nodules (green boxes). Statistical 

differences between the High repression and the other groups regarding the Nodules/Control 

comparison, on the one hand, or the Nodules+T3/Nodules comparison, on the other hand, 

were defined using Kruskal-Wallis with Wilcoxon pairwise comparison tests followed by 

Benjamini-Hochberg correction for multiple testing correction. *q<0.05. 

 

Fig.5. Resetting Hep-ID TF gene expression through THRB activation in inflammation-

induced hepatocyte dedifferentiation. 

A) Experimental protocol for acute inflammation-induced loss of hepatocyte identity in vivo. 

Mice were injected with IL1B (IL1B; n=17), IL1B followed by T3 (IL1B+T3; n=30) or a 

control group (PBS; n=14). All livers were collected 6h after the initial injection. 

B-D) mRNA expression of the indicated genes was monitored in mouse livers using RT-

qPCR. Mice treated with IL1B+T3 were subdivided into tertiles (n=10) based on the mean 

expression of the Dio1 and Hectd3 genes and defined as low, intermediate or high T3 
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responsiveness groups (Low resp., Int. resp. and High resp., respectively). Fold change 

relative to the mean of the control (PBS) group is shown using box plots whose whiskers 

extend to the maximum and minimum values. Statistical differences between the High resp. 

and the other IL1B-treated groups were defined using Kruskal-Wallis with Wilcoxon pairwise 

comparison tests followed by Benjamini-Hochberg correction for multiple testing correction. 

*q<0.05. 

 

Figure 6. Proposed model for the control of hepatocyte identity by an extended 

transcription factor network. Schematic summarizing the main findings of our study 

pointing to an extended hepatic TF identity network which includes THRB. See discussion for 

greater details. 
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Fig.3

IGB snapshots mouse liver and HepG2 ?
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