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Finite-Length Bounds on Hypothesis Testing
Subject to Vanishing Type I Error Restrictions

Sebastian Espinosa, Jorge F. Silva⇤, and Pablo Piantanida,

Abstract—A central problem in Binary Hypothesis Testing

(BHT) is to determine the optimal tradeoff between the Type

I error (referred to as false alarm) and Type II (referred to as

miss) error. In this context, the exponential rate of convergence

of the optimal miss error probability — as the sample size tends

to infinity — given some (positive) restrictions on the false alarm

probabilities is a fundamental question to address in theory. Con-

sidering the more realistic context of a BHT with a finite number

of observations, this paper presents a new non-asymptotic result

for the scenario with monotonic (sub-exponential decreasing)

restriction on the Type I error probability, which extends the

result presented by Strassen in 2009. Building on the use of

concentration inequalities, we offer new upper and lower bounds

to the optimal Type II error probability for the case of finite

observations. Finally, the derived bounds are evaluated and

interpreted numerically (as a function of the number samples)

for some vanishing Type I error restrictions.

Index Terms—Hypothesis testing, performance bounds, finite-

length analysis, error exponent, concentration inequalities.

I. INTRODUCTION

Binary Hypothesis Testing (BHT) is a common problem in
statistics and it has been richly used as a method to statistical
signal detection [2], [3]. In particular, the celebrated Neyman-

Pearson lemma provides the optimal detection scheme for this
testing task [4]. On the specifics, let us consider the classical
n-length BHT setting given by

⇢
H0 : Xn

1 ⇠ Pn,
H1 : Xn

1 ⇠ Qn,

where P,Q 2 P(X) with D(PkQ) > 0. In this work, we
restrict our attention to the case of a finite-alphabet X, where
P(X) denotes the family of probabilities on X. A decision rule
�n of length n is a function �n : Xn

! ⇥ , {0, 1}, from
which two types of errors are induced [5]:

P0(�n) ⌘ Pn({xn
1 2 Xn : �n(xn

1 ) 6= 0}) , Pn(Ac(�n)),
P1(�n) ⌘ Qn({xn

1 2 Xn : �n(xn
1 ) = 0}) , Qn(A(�n)),
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with decision region A(�n) , {xn
1 2 Xn : �n(xn

1 ) = 0}.
For a given sequence (✏n)n of non-negative values such that

lim
n!1

✏n = 0, we study the solution to:

�n(✏n) ⌘ min
�n2�n

{P1(�n) : s.t. P0(�n)  ✏n}, 8n � 1, (1)

where �n ⌘ {�n : Xn
! ⇥} denotes the class of n-length

detectors. Importantly, (�n(✏n))n�1 represents the optimum
Type II error sequence that satisfies a sequence of fixed Type
I error constraints.

The Neyman-Pearson lemma [6] offers the optimal trade-
off between the two type of errors1. In this context, the
determination of the (exponential) rate of convergence of the
Type II error, which is known as the error exponent, has been
a central problem in HT’s analysis. Indeed, the error exponent
is seen as an indicator of the complexity of the decision
task (function of P0, P1 and (✏n)n) and has found numerous
applications [8], [9]. For the important case when ✏n = ✏ > 0
for all n, the celebrated Stein’s lemma establishes that the error
exponent of the Type II error is given by the KL divergence
D(PkQ) ⌘

P
x2X P (x) log P (x)

Q(x) [5], [10].

Lemma 1 (Stein’s lemma [11], [10]). For any fixed ✏ 2 (0, 1),
limn!1 �

1
n log(�n(✏)) = D(PkQ).

Importantly, the error exponent limit in Lemma 1 is in-
dependent of ✏ > 0. However, this limit changes when we
impose a setting with a monotonic decreasing Type I error
restrictions. In particular, Han et al. [12] studied the case
when the Type I error sequence has an exponential decreasing
behaviour. Nagakawa et al. [13] extended this analysis for a
family of decreasing sequence of Type I error restrictions:

Lemma 2. [13, Nakagawa] Let us assume that ✏n  e�rn

for some r 2 (0, D(PkQ)), then limn!1 �
1
n log(�n(✏n)) =

D(Pt⇤kQ), where Pt⇤(x) ⌘ Ct⇤P (x)1�t⇤Q(x)t
⇤
8x 2 X, and

t⇤ is the solution of D(Pt⇤kP ) = r.

A direct implication of Lemma 2 is the following result:

Corollary 1. [13] Let us assume that (1/✏n)n is o(ern) for

any r > 0, then limn!1 �
1
n log(�n(✏n)) = D(PkQ).

Importantly, Corollary 1 shows that the same error exponent
of the Stein’s lemma is obtained for these stringent family of
problems — where (✏n)n tends to zero at a sub-exponential
rate. In contrast, when the Type I error restriction tends to zero
exponentially fast (Lemma 2), the error exponent is strictly
smaller than D(PkQ).

1See [7] for a new proof based on properties of exponential density function
families.
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A. Finite-Length Context and Contribution

In many practical problems, the statistician has access only
to a finite number of observations. Consequently, it is critical
to obtain non-asymptotic bounds for the probability of error
�n(✏n) for a finite n. Concerning the non-asymptotic analysis
of this problem, the following result was derived by Strassen
for the specific regime when ✏n = ✏ > 0 for all n � 1 [14].

Lemma 3. [14] Let us consider ✏ 2 (0, 1), then even-

tually with n, it follows that �
log(�n(✏))

n = D(PkQ) +q
V (PkQ)

n ��1(✏) + logn
2n + O

�
1
n

�
, where V (PkQ) ⌘

X

x2X
P ({x})


log

✓
P ({x})

Q({x})

◆
�D(PkQ)

�2
.

Lemma 3 shows that
��D(PkQ)�

�
�

1
n log(�n(✏))

��� is
O

⇣
1p
n

⌘
, which expresses the velocity of convergence of

�
1
n log(�n(✏)) to its limit D(PkQ). Given the practical im-

portance of this type of finite length results, it is very relevant
to derive new results that extend Lemma 3 to our general
problem in (1), as a function of P , Q, (✏n)n and n. In addition,
it is critical that these bounds can be evaluated for its practical
use. This last aspect is not achieved in Lemma 3, which from
that perspective is an asymptotic (convergence) result.

The main contribution of this paper goes in this direction,
where we derive new upper and lower bounds for the dis-
crepancy between �

1
n log(�n(✏n)) and its information limit

D(PkQ) for any finite n � 1 when (✏n)n tends to zero at
a sub-exponential rate. These expressions can be evaluated
and interpreted numerically in any context where we know
the models (P and Q) and the parameters of the problem (✏n
and n). In addition, these new bounds stipulate the velocity
at which the error exponent is achieved as the sample size
tends to infinity. From this, we could assess how realistic the
information limits (asymptotic results) are in practice when
facing a problem with a finite number of observations. To
conclude our analysis, we numerically compute and evaluate
the expressions obtained by our result to show the derived
bounds’ tightness for some specific scenarios.

B. Related Work

In a Bayesian setting, Sason [15] obtained an upper bound
to the optimal Bayesian probability of error (non-asymptotic)
by bounding the Type I and Type II errors simultaneously in
such a way that they both decay to zero sub-exponentially
with n. It is worth to mention that this work differs from the
current setting in the sense that we are interested in bounding
the discrepancy between �

1
n log(�n(✏n)) and its information

limit and how this analysis depends on the vanishing Type I
error restrictions. In addition, we are interested in the velocity
of convergence of �

1
n log(�n(✏n)) to its information limit

and the impact of considering stringent restriction on Type
I errors (✏n)n. Complementing this paper, [16] studies a
distributed (two-terminal) version of the BHT problem subject
to communication (rates) constraints. Our results here do not
derive from [16] since the setups are very different from each
other, and different tools are used to address them. Finally,

a similar analysis of the Type I error has been addressed by
Bahadur [17]. In contrast to this work’s focus, this analysis
considers a fixed restriction on the power of a test (1�Type
II error) to determine the exponential rate of convergence of
their sizes (Type I error) as n tends to infinity.

C. Notations and Organization

(bn)n being o(an) indicates that lim supn!1 (bn/an) = 0
and (bn)n being O(an) indicates that lim supn!1|bn/an|<
1. We say that (f(n))n ⇡ (g(n))n if there exists a constant
C > 0 such that f(n) = Cg(n) eventually in n. The rest
of the paper is organized as follows: Section II presents the
main result of this work. Numerical analysis and discussions
are presented in Section III. The proof of is in Sect. IV.

II. MAIN RESULT

The main result of this letter extends Lemma 3 offering
new non-asymptotic bounds for �n(✏n) in (1) under sub-
exponential Type I error restrictions. In particular, the next
result provides upper and lower bounds for the discrepancy
between �

1
n log(�n(✏n)) and D(PkQ).

Theorem 1. Let us assume that P ⌧ Q and that (1/✏n)n is

o(ern) for any r > 0. Then, eventually in n, it follows that:

�
1
n log(�n(✏n)) � D(PkQ)� CX(P,Q)

r
2 ln(1/✏n)

n

�
1
n log(�n(✏n))  D(PkQ) +

log

✓
1

1� ✏n � �n

◆

n + �n

where CX(P,Q) ⌘ sup
x2X

���log
⇣

P ({x})
Q({x})

⌘��� and �n ⌘

CX(P,Q)
q

2 ln(1/✏n)
n .

A. Interpretation and Discussion of Theorem 1

1: This result establishes a non-asymptotic rate of
convergence for the Type II error when we impose a
vanishing condition on (✏n)n that is sub-exponential.
Interestingly, the bounds for the discrepancy �

1
n log(�n(✏n))

depend explicitly on the sequence (✏n)n.
2: It is worth noting that the dependency on (✏n)n observed in
our result is non-observed in the asymptotic limit in Corollary
1, which is D(PkQ) as long as (1/✏n)n is sub-exponential.
3: Adding on the previous point, the fact that the asymptotic
error exponent is invariant from the simpler fixed Type I setup
(in Lemma 1) to the more restrictive sub-exponential Type I
error decay setting (in Corollary 1), it is however manifested
in our non-asymptotic result in term of the rate of convergence
to the limit D(PkQ). In particular, there is a concrete penalty
O(
p

log(1/✏n)) on the velocity of convergence to zero of
the discrepancy (� 1

n log �n(✏n) � D(PkQ)) in our result
compared with what is obtained in Lemma 3.
4: The proof of the Theorem 1 has two parts: the constructive
and unfeasibility arguments. Both arguments are constructed
from concentration inequalities using the i.i.d. structure of
the observations. For the constructive argument, we apply
the bounded difference inequality [18]. On the unfeasibility
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argument, we use (concentration) results from typical
sequences [10] to construct a lower bound on the minimum
probability of Type II error.
5: If we impose a fixed value of ✏n = ✏ 2 (0, 1), our result
recovers the rate of convergence for the Type II error given
by Lemma 3. However, we obtained explicit bounds.

III. PRACTICAL IMPLICATIONS OF THEOREM 1

In this section, we show how Theorem 1 may be adopted by
a statistician to obtain bounds on �n(✏n) when n is finite. The
resulting bounds provide an interval of feasibility for �n(✏n):

UB(✏n) ⌘ exp
h
� n

⇣
D(PkQ)�

r
2 ln(1/✏n)

n
CX(P,Q)

⌘i
,

LB(✏n) ⌘ exp
h
� n

⇣
D(PkQ)�

1

n
log (1� ✏n � �n(✏n)

⌘

+ �n(✏n))
i
.

The length of [LB(✏n),UB(✏n)] indicates the precision of the
result and, at the same time, the interval [LB(✏n),UB(✏n)] can
be used to measure how close �n(✏n) is to e�nD(PkQ).

Table I presents the length of [LB(✏n),UB(✏n)] for three
regimes of: ✏n 2 {n�1, n�0.1, 1/log(n)}, and two models
P , Q where D(PkQ) = 1 with |X|= 15. First, we observe
that the length of [LB(✏n),UB(✏n)] vanishes exponentially
fast with the sample size. From this exponential decay, we
observe that the centered value predicted by Theorem 1,
i.e., the exponential behavior exp(�nD(PkQ)), is a good
approximation for �n(✏n) provided that n is sufficiently large.
This supports the idea that exp(�nD(PkQ)) is a useful proxy
for �n(✏n) provided that a Critical Sample Size (CSS) is
achieved (more details on this below). Table I also shows that
the result’s precision is affected by the velocity of convergence
of the Type I error restriction (✏n)n, which is consistent
with the statement and the analysis of our main result. In
particular, for a faster speed of convergence of (✏n)n to zero
(i.e., a stringer problem), the gap between the bounds is more
prominent, which means that the bounds of Theorem 1 are
expected to be less informative about �n(✏n).

Regarding the implications of the above bounds to measure
the gap between �n(✏n) and e�nD(PkQ), we address the
following question: given an arbitrary value of � > 0 of the
form 10�k with k 2 {1, . . . , 8}, and for two arbitrary models
P and Q, we want to predict from Theorem 1 the minimum
number of samples required to guarantee that �n(✏n) 2

(e�nD(PkQ)
��, e�nD(PkQ)+�). The exponential decay of the

length of [LB(✏n),UB(✏n)], observed in Table I, implies that
this should happen eventually with n very quickly. Indeed, we
can derive an upper bound for this critical number of samples
(CSS) from the expressions we have for LB(✏n) and UB(✏n).2
Figures 1 and 2 present the predicted CSS versus � = 10�k

for different scenarios of P , Q (in terms of D(PkQ)) and
(✏n)n. We consider two scenarios for P and Q (low divergence
D(PkQ) = 0.5 and high divergence D(PkQ) = 2.5) and we

2The predicted CSS is the first n � 1 such that max{UB(✏n) �
e�nD(PkQ), e�nD(PkQ) � LB(✏n)}  �, which is finite for any � > 0.

Fig. 1. Critical number of samples (CSS) predicted by Th. 1 across different
values of � = 10�k . High divergence case with D(PkQ) = 2.5 and
CX(P,Q) = 2.04.

Fig. 2. CSS predicted by Th. 1 across different values of � = 10�k . Low
divergence case with D(PkQ) = 0.5 and CX(P,Q) = 1.03. The dashed
lines show an estimation of the exact CSS obtained from �n(✏n) directly.

explore (✏n)n 2 {n�1, n�0.1, 1/log(n), 0.1}. Figures 1 and 2
show that even for really small precision � = 10�8 the point
at which �n(✏n) can be well approximated by e�nD(PkQ)

requires at most 16 samples and 60 samples for high and low
divergence cases, respectively, and the majority of (✏n)n. The
dependency of these curves on the magnitude of D(PkQ) and
(✏n)n is clearly expressed in these findings, which is consistent
with our previous analyses.

Finally, to evaluate the tightness of our predictions, we sim-
ulate i.i.d. samples according to P and Q from which a precise
empirical estimation of �n(✏n) is derived. In particular, given
P , Q and (✏n)n, we obtained empirical estimations of the error
probabilities (Type I and Type II) from which we estimate
�n(✏n). For this purpose, 2.5 · 106 realizations of P and Q
were used to have good estimations of these probabilities.
Using the estimated values of �n(✏n), we obtain the point
where �n(✏n) 2 (e�nD(PkQ)

� �, e�nD(PkQ) + �) directly.
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Number of observations n
✏n 50 150 250 350 450 550 650 750

1/log(n) 2.3587e-10 3.3962e-45 1.0595e-83 9.4592e-124 1.0229e-164 2.6103e-206 2.2862e-248 8.6970e-291
1/n0.1 7.8229e-17 8.1724e-57 9.1096e-99 1.3994e-141 6.4863e-185 1.3117e-228 1.4272e-272 9.5440e-317
1/n 0.5571 3.7757e-25 7.4403e-56 2.7823e-89 2.3527e-124 1.4443e-160 1.2489e-197 2.3163e-235

TABLE I
MAGNITUDE OF UB(✏n)� LB(✏n) FUNCTION OF ✏n AND n FOR THE CASE WHEN D(PkQ) = 1.

Figure 2 contrasts our predictions and the true (estimated)
values (the dashed lines) of the CSS. Consistent with our
result’s nature, our prediction of the CSS is more conservative
than the true CSS estimated from simulations. Importantly,
this discrepancy is not significant overall, expressing that our
bounds are useful for this analysis and can be adopted in cases
where it is impractical to estimate �n(✏n) from data. Indeed,
in this analysis, we face this issue, and it is very difficult
to obtain accurate estimates of �n(✏n) for high divergence
regimes. Notice that �n(✏n) is of order: O(e�nD(PkQ)) for
which around enD(PkQ) simulations (i.e., i.i.d. samples from
P and Q) are needed. This becomes impractical even for n
less than 30 when D(PkQ) is relatively large.

IV. PROOF OF THEOREM 1
We divide the proof of Theorem 1 in two parts.
1) Lower Bound Analysis: Under the assumption of Theo-

rem 1, let us verify that

D(PkQ)�

✓
�
1

n
log �n(✏n)

◆


r
2 ln(1/✏n)

n
CX(P,Q).

Let us consider the corresponding optimal decision regions
from the Neyman-Pearson Lemma parameterized in the fol-
lowing way: 8t > 0,

Bn,t =

⇢
xn
1 2 Xn :

Pn({xn
1})

Qn({xn
1})

> ent
�
. (2)

Considering the induced test �n,t(·) : Xn
7! {0, 1} such that

��1
n,t({0}) = Bn,t. The Type I error probability is given by

Pn(Bc
n,t). An upper bound for the Type II follows as:

Qn (Bn,t)  e�nt. (3)

Then, for any finite n > 0 and ✏n > 0, finding an achievable
Type II error exponent from this construction (and the bound
in Eq.(3)) reduces to solve the following problem:

t⇤n(✏n) , sup
t
{t : Pn(Bc

n,t)  ✏n}. (4)

It will be convenient to re-parameterize t with respect to the
value D(PkQ). More precisely, let us define

t� , D(PkQ)� �,

for any � > 0. Then using the bounded difference inequality
[18], we obtain

Pn
�
Bc

n,t�

�
= Pn

 
xn
1 2 Xn :

�����D̂(PkQ)�D(PkQ)

����� � �

!

 exp

✓
�n�2

2CX(P,Q)2

◆
, (5)

where D̂(PkQ) , 1
n

Pn
i=1 log

⇣
P ({xi})
Q({xi})

⌘
is the empirical

divergence. Finally, from Eq. (4) a lower bound for t⇤n(✏n)
can be determined from Eq. (5) by letting �̃n(✏n) to be the
solution of the following equality:

exp

 
�n�̃n(✏n)2

2CX(P,Q)2

!
= ✏n. (6)

Consequently, we have that

t⇤n(✏n) � t�̃n(✏n) , D(PkQ)�

r
2 log(1/✏n)

n
CX(P,Q). (7)

Finally, replacing the bound of (7) in (3) and taking logarithm
we have that:

D(PkQ)�

✓
�
1

n
log(�n(✏n))

◆


r
2 ln(1/✏n)

n
CX(P,Q),

(8)
which concludes this part.

2) Upper Bound Analysis: Let us consider the set

A
c
n,� ,

(
xn
1 2 Xn :

�����
1

n
log

✓
Pn({xn

1})

Qn({xn
1})

◆
�D(PkQ)

����� � �

)
,

(9)
for any � > 0. We have the following result:

Lemma 4. [10, Sect 11.8] For any set Bn ✓ Xn
and its

induced test �n
3

such that operates at Type I error ✏n (i.e.

Pn(Bc
n)  ✏n), then

Qn(Bn) � (1� ✏n � �)2�n(D(PkQ)+�). (10)

By construction, it is clear that there exists � > 0 such that
A

c
n,� operates at Type I error ✏n. In fact, we consider

�⇤n , sup{� : Pn(Ac
n,�)  ✏n}. (11)

Using the bounded difference inequality [18], we get that

Pn
�
A

c
n,�

�
= Pn

 
xn
1 2 Xn :

�����D̂(PkQ)�D(PkQ)

����� � �

!

 exp

✓
�n�2

2CX(P,Q)2

◆
. (12)

Using the same argument from the lower bound analysis, we
obtain a lower bound for �⇤n given by

�⇤n � �n ,
r

2 log(1/✏n)

n
CX(P,Q). (13)

3Meaning that �n(xn
1 ) = 0 if xn

1 2 Bn.
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Finally, replacing �n in Eq. (10) and taking logarithm, we
have that for any set Bn satisfying the assumptions of Lemma
4:

�
1

n
log(Qn(Bn))  D(PkQ) +

log
⇣

1
1�✏n��n

⌘

n
+ �n. (14)

Therefore, we can choose the optimum set which implies that

�
1

n
log(�n(✏n))  D(PkQ) +

log
⇣

1
1�✏n��n

⌘

n
+ �n. (15)

This concludes the proof.
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