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Smart meters (SMs) play a pivotal rule in the smart grid by being able to report the electricity usage of consumers to the utility provider (UP) almost in real-time. However, this could leak sensitive information about the consumers to the UP or a third-party. Recent works have leveraged the availability of energy storage devices, e.g., a rechargeable battery (RB), in order to provide privacy to the consumers with minimal additional energy cost. In this paper, a privacy-cost management unit (PCMU) is proposed based on a model-free deep reinforcement learning algorithm, called deep double Q-learning (DDQL). Empirical results evaluated on actual SMs data are presented to compare DDQL with the state-of-the-art, i.e., classical Q-learning (CQL). Additionally, the performance of the method is investigated for two concrete cases where attackers aim to infer the actual demand load and the occupancy status of dwellings. Finally, an abstract information-theoretic characterization is provided.

I. Introduction

S MART meters (SMs) play an important rule in the modern electricity network, known as the smart grid (SG), by providing fine-grained power consumption measurements of households to the utility provider (UP) almost in a real-time basis. Although these high-resolution SMs measurements can improve the e ciency, reliability, and flexibility of power infrastructures, they might be used by adversaries or malicious third-parties to violate the privacy of households [START_REF] Giaconi | Privacy-aware smart metering: Progress and challenges[END_REF]. For instance, by using non-intrusive load monitoring (NILM) approaches, an adversary with access to the power consumption load profiles can readily infer sensitive information related to consumers' daily habits and types of appliances owned.

To protect consumers' sensitive information, two main families of SM data privacy enabling techniques have been proposed in the literature: i) SM data manipulation methods [START_REF] Sankar | Smart meter privacy: A theoretical framework[END_REF]- [START_REF] Shateri | Deep directed information-based learning for privacy-preserving smart meter data release[END_REF]; and ii) demand shaping methods [START_REF] Kalogridis | Privacy for smart meters: Towards undetectable appliance load signatures[END_REF]- [START_REF] Erdemir | Privacy-cost trade-o↵ in a smart meter system with a renewable energy source and a rechargeable battery[END_REF]. In the first family, the SM data are processed and manipulated, e.g., by adding random noise, before sharing that with the UP. However, this might cause a significant loss in terms of the utility of the SM data [START_REF] Giaconi | Privacy-aware smart metering: Progress and challenges[END_REF]. On the other hand, approaches of the second family rely on using physical resources available at the dwelling such as a rechargeable battery (RB), electric vehicles (EVs), heating, ventilation, and air conditioning (HVAC) units, renewable energy source (RES), or a combination of them, to shape the way that energy is consumed by the user from the grid. In this case, the goal is to find an optimum energy management strategy, under the physical limitations of the resources, which provides maximum privacy with minimal household energy expenses.

In [START_REF] Li | Information-theoretic privacy for smart metering systems with a rechargeable battery[END_REF], the problem of finding an optimum strategy was formulated as a Markov decision process (MDP) and solved using dynamic programming. Concretely, a single-letter expression of the minimum information leakage was provided for the case that demand load is independent and identically distributed (i.i.d.). However, this result is mostly of theoretical value since the demand load is not i.i.d. in practice. In addition, the energy cost was not included in this problem formulation. In another study, the joint optimization of privacy, measured by fluctuations of the grid load around a constant load, and energy cost was considered and modeled as an MDP [START_REF] Sun | Smart meter privacy: Exploiting the potential of household energy storage units[END_REF]. To solve this MDP, a classical model-free algorithm from reinforcement learning called Q-learning [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] was used. This tabular algorithm iteratively learns the optimal state-action value function Q ⇤ from which an optimal policy for using the physical resources is readily obtained. Nevertheless, the classical Q-learning (CQL) convergence properties can be poor when the state and/or action spaces are large or infinite.

In this paper, we adopt the MDP formulation introduced in [START_REF] Sun | Smart meter privacy: Exploiting the potential of household energy storage units[END_REF] and use a deep learning approximation of the CQL algorithm called deep double Q-learning (DDQL) to overcome the previously discussed limitation of the classical algorithm. To the best of our knowledge, this is the first work that uses deep reinforcement learning to design a privacy-preserving mechanism for smart meters. For the sake of simplicity, we only consider an RB and assume that no energy can be sold to the grid (however, the problem formulation can be easily extended to di↵erent scenarios). In addition, the formulation of the cost is revised to take into account not only the total electricity cost but also the cost associated with the wear and tear of the battery. The performance of the DDQL algorithm is assessed using actual SMs data both from practical and theoretical perspectives. For the former evaluation, we consider two scenarios modeling di↵erent privacy threats. In the first scenario, an attacker observes the grid load and attempts to infer the consumer's demand load; while in the second scenario an attacker is trained to infer the occupancy status of the household. The latter evaluation is done by studying the trade-o↵ between the cost and the mutual information between the demand and grid loads. Fig. 1 shows the privacy-preserving framework for a household based on a single rechargeable battery (RB). Here, the attacker can be the UP itself, an eavesdropper or a third-party. In this framework, a privacy-cost management unit (PCMU) is designed to determine the optimal charging/discharging rate of the battery with the purpose of masking the consumer's demand load while minimizing the total electricity cost. Let y t be the consumer's demand load/power at time t, where t 2 T = {1, . . . , T }. Given the demand load y t and the level of charge of battery LOC RB,t 2 [0, 1] at time t, the PCMU should determine the optimum charging/discharging rate q RB,t to hide the consumer's demand load. Therefore, the SM measures and reports the masked demand load (i.e., the grid load) given by z t = y t + q RB,t .

(

The PCMU should be able to limit the performance of a potential attacker trying to infer sensitive information (which could be either y t or a correlated variable) from z t . In this framework, there is a trade-o↵ between privacy and cost associated to energy and wear and tear of the battery.

B. Markov Decision Process (MDP) Model

The problem of finding an optimal policy for the PCMU (i.e., the reinforcement learning agent in our problem) can be formalized using the framework of Markov decision processes (MDPs) [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF], as in [START_REF] Sun | Smart meter privacy: Exploiting the potential of household energy storage units[END_REF]- [START_REF] Erdemir | Privacy-cost trade-o↵ in a smart meter system with a renewable energy source and a rechargeable battery[END_REF]. An MDP is determined by a state space S, which defines the possible states; an action space A(s) for each s 2 S, which describes the feasible actions at state s (we use A to denote [ s2S A(s)); the environment dynamics p(s t+1 |s t , a t ), which dictates how the current state s t changes when action a t is taken; and the reward function r(s t , a t ) which gives the immediate reward received at state s t by taking action a t ; and the discount factor 2 [0, 1] which determines the decay rate for weighting future rewards. In this study, we consider a finite horizon time model, i.e. we assume T < 1. Starting from an initial state s 1 , and by following a policy ⇡(a|s) = p(a|s), the PCMU takes an action a 1 , receives a reward r 1 , and transitions to state s 2 . This leads to generating a sequence of states, actions and rewards:

[s 1 , a 1 , r 1 , . . . , s T , a T , r T ], which is referred to as an episode. The action-value function Q :

S ⇥ A ! R is defined as Q(s, a) = E ⇡  P T t=1 t 1 r (s t , a t ) s 1 = s, a 1 = a and determines
how good is to take action a 2 A(s) in state s 2 S and then following the policy ⇡. An optimal policy ⇡ ⇤ is one that maximizes Q(s, a) for all possible s and a. In our problem, the state is defined as s t = [LOC RB,t , y t ] T while the action is defined as the RB charging/discharging rate, i.e. a t = q RB,t , where a positive q RB,t indicates the RB is charging and a negative q RB,t means discharging of RB for supplying the consumer's demand. In addition, the environment transition probability p(s t+1 |s t , a t ) can be written as follows:

p s t+1 |s t , a t (i) = p ⇣ LOC RB,t+1 |LOC RB,t , q RB,t ⌘ ⇥ p y t+1 |y t (2)
where (i) is due to the assumption that the consumer's demand load is independent of the action and level of charge of battery.

The factor p

⇣ LOC RB,t+1 |LOC RB,t , q RB,t
⌘ is determined by the dynamics and physical constraints of the battery, which can be summarized as follows [START_REF] Sun | Smart meter privacy: Exploiting the potential of household energy storage units[END_REF]:

q min RB  q RB,t  q max RB , (3) 
LOC RB,t+1 = LOC RB,t + q RB,t ⇥ t ⇥ e RB C RB , (4) 
LOC min RB  LOC RB,t  LOC max RB , (5) 
where q min RB and q max RB are the minimum and maximum charging rate of the RB, LOC min RB and LOC max RB are the minimum and maximum level of charge of the RB, t is the load sampling rate, e RB is the charging e ciency factor of the RB, and C RB is the capacity of the RB. However, note that p y t+1 |y t is unknown and in general di cult to approximate [START_REF] Sun | Smart meter privacy: Exploiting the potential of household energy storage units[END_REF]. Thus, we do not assume full knowledge of the environment dynamics.

It remains to determine the reward function, which can inversely be interpreted as a loss function: `(s t , a t ) = r (s t , a t ). Following [START_REF] Sun | Smart meter privacy: Exploiting the potential of household energy storage units[END_REF], the loss function will be defined as a convex combination of a privacy measure term and an electricity cost term. In particular, privacy is defined as the distance between the reported load by the SM and a (predetermined) flat load. Intuitively, when (regardless of the consumer's demand) a constant load is reported by the SM, we expect that no private information about the consumer is leaked. Concretely, considering l c as the desired constant load, and following policy ⇡, privacy is defined as the average relative distance of the grid load from the target load as follows:

F ⇡ := 1 T T X t=1 f (s t , a t ) = 1 T T X t=1 z t l c l c . (6) 
It should be noted that other notions of privacy have also been considered for this problem [START_REF] Giaconi | Privacy-aware smart metering: Progress and challenges[END_REF]. On the other hand, the cost that is incurred by the user can be related to the electricity cost and also to the cost associated to the battery wear and tear. In this study, we assume that no energy can be sold to the grid. Therefore, the average electricity cost over time horizon T is computed as follows:

C ⇡ = 1 T T X t=1 t ⇥ h t ⇥ [z t ] + , (7) 
where h t is the price of 1 kWh of energy purchased from grid at time t and [x] + = max(x, 0). Since [z t ] + = h y t + q RB,t i +  y t + q RB,t , and the PCMU has no control on y t , we conclude that minimizing the average additional cost

G ⇡ := 1 T T X t=1 g(s t , a t ) = 1 T T X t=1 t ⇥ h t ⇥ q RB,t , (8) 
minimizes an upper bound of C ⇡ . In addition, notice that G ⇡ takes into account the battery wear and tear cost since it grows when the battery use increases. Finally, considering equations ( 6) and ( 8), the one-step loss function is defined as follows:

`(s t , a t ) = r (s t , a t ) = g(s t , a t ) + (1 ) f (s t , a t ), (9) 
where 2 [0, 1] controls the privacy-cost trade-o↵.

III. Methodology

A. Classical Q-Learning (CQL) Algorithm
The Q-Learning (QL) algorithm [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] is a simple method to learn the optimal state-action value function Q ⇤ . Then, the best action at state s is readily obtained by maximizing Q ⇤ (s, •). In the process of learning, the Q-Learning algorithm takes an action a t at state s t using some policy, transitions to state s t+1 and updates the Q function as follows [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]:

Q (s t , a t ) = ↵ ✓ r (s t , a t ) + max a2A(s t+1 ) Q (s t+1 , a) Q (s t , a t ) ◆ , (10) 
where ↵ 2 [0, 1] is the learning rate, which should be selected wisely for the sake of convergence [START_REF] Szepesvári | The asymptotic convergence-rate of q-learning[END_REF]. In general, the Q-Learning algorithm uses the ✏ greedy policy, in which a random action is taken with probability ✏, and the action which maximizes the Q-value is taken with probability 1 ✏. In this way, while the algorithm exploits the learned Q function, it also explores the action space to discover the benefits of taking other actions (this is known as the explorationexploration dilemma). Therefore, starting from an initial state and initializing the Q function/table to some arbitrary values, we take an action using the ✏ greedy policy to move to the next state and update the Q function based on [START_REF] Erdemir | Privacy-cost trade-o↵ in a smart meter system with a renewable energy source and a rechargeable battery[END_REF]. This is continued for all the next states until the end of episode. The process is then repeated for several episodes to ensure all the state-actions are visited enough times.

B. Deep Double Q-Learning (DDQL) Algorithm

One main issue regarding the classical Q-Learning (CQL) algorithm is that it needs to visit all the state-action pairs several times to provide a good approximation of Q ⇤ . Therefore, for large MDPs with many states and actions, convergence is very slow. To resolve this problem, the Q-function can be approximated by using a deep neural network (DNN). These new methods, where deep learning is used for approximating the Q-function, are called deep Q-Learning (DQL) methods [START_REF] Volodymyr | Humanlevel control through deep reinforcement learning[END_REF], [START_REF] Franc ¸ois-Lavet | An introduction to deep reinforcement learning[END_REF]. Recently, the DQL method was used for household energy management in [START_REF] Mocanu | On-line building energy optimization using deep reinforcement learning[END_REF]. The main idea of the DQL method studied here is to approximate Q ⇤ (s, a) ⇡ Q(s, a; ✓) where ✓ are the parameters of a DNN called the Q-Network. The Q-Network takes the state s 2 S at the input and generates Q(s, a) at the output for di↵erent actions a 2 A. To define the objective function for this Q-network, we observe from [START_REF] Erdemir | Privacy-cost trade-o↵ in a smart meter system with a renewable energy source and a rechargeable battery[END_REF] that convergence is obtained when the term in parenthesis is equal to zero. The term r (s t , a t ) + max a2A(s t+1 ) Q (s t+1 , a; ✓) can be interpreted as the target, while Q (s t , a t ; ✓) is the output of the Q-Network. Thus, the mean squared error loss between target and output can be used as the loss function for training the Q-Network. However, using the same network to compute the target and output often leads to instability [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF]. To address this issue, the so-called double Q-learning algorithm was proposed in [START_REF] Hasselt | Double q-learning[END_REF] and extended to the deep learning setting in [START_REF] Van Hasselt | Deep reinforcement learning with double q-learning[END_REF]. In the DDQL algorithm, a second network called the Target Network (with parameters ✓ 0 ) is used to calculate the target term. The Target Network parameters ✓ 0 are periodically updated by simply copying the parameters from the Q-Network. Thus, using the Target Network, the objective function of the Q-Network can be written as follows:

L QN (✓) =E ✓ r(s t , a t ) + max a2A(s t+1 ) Q(s t+1 , a; ✓ 0 ) Q(s t , a t ; ✓) ◆ 2 . ( 11 
)
The training of the DDQL is presented in Algorithm 1. Select feasible action a t using ✏ greedy algorithm.

7:

Calculate reward r(s t , a t ) from equation ( 9).

8:

Update the next state s t+1 based on (4) and ( 5).

9:

Import (s t , a t , r(s t , a t ), s t+1 ) into the replay bu↵er.

10:

Every k 0 step, update the Q-network by minimizing (11) using samples from the replay bu↵er.

11:

Every k step, update the target network by copying the Q-network parameters.

12:

end for 13: end for

IV. Results and Discussion

A. Description of data set and parameters

In this study the electricity consumption and occupancy (ECO) data set published by [START_REF] Beckel | The eco data set and the performance of non-intrusive load monitoring algorithms[END_REF] is used. This data set includes 1 Hz electricity usage measured by smart meters and occupancy labels gathered through a tablet computer and a passive infrared sensor. In this study, the data set is sampled with a sampling rate t = 15 min and an episode is defined over a day. Totally 2700 samples (each a vector with length of 96) are used and split into training, validation, and test sets with ratio 70:10:20, respectively. The validation dataset is used to set the values of the hyperparameters for each algorithm, which are discussed in the next section. The desired constant load is l c = 0.7 kW and the parameters of the battery are as follows: C RB = 10 kWh, e RB = 1, q max RB = q min RB = 4 kW, LOC max RB = 1 and LOC min RB = 0. We consider the winter Timeof-Use tari↵ o↵ered by Ontario/Canada, in which the o↵-peak price is $0.101 kWh during 19:00 to 7:00, the mid-peak price is $0.144 kWh during 11:00 to 17:00, and the on-peak price is $0.208 kWh during 7:00 to 11:00 and during 17:00 to 19:00.

B. Deep double Q-learning versus Classical Q-learning

In this section, the performance of the DDQL method is empirically compared with CQL. For both methods, the network configuration and the value of the hyperparameters are determined empirically by the best privacy-cost trade-o↵ over the validation dataset.

Considering the tabular setting of the CQL algorithm, the state and action states need to be quantized. To this end, a total number of 160 and 100 quantization levels were used for action and demand load, respectively. Therefore, according to the equation ( 4) and our definition of state s t the Q function would be a table with size 800 ⇥ 100 ⇥ 160. A total number of 25K episodes (⇡ 2.5M steps) are used with a discount factor = 0.8 and an adaptive learning rate ↵ decreasing linearly from 0.5 to 0.05 over 1M steps.

On the other hand, in the DDQL method, a multilayer perceptron (MLP) with two hidden each including 64 neurons and rectified linear unit (ReLU) as activation function, is used for both the Q and Target Networks. A total number of 800 episodes are used and the discount factor is set as 0.99. The size of the experience replay memory is 10K tuples. The memory gets sampled to update the Q-network every 8 steps (k 0 =8), with minibatches of size 128, and a Target Network copy step k of 500 steps. The RMSProp optimizer with learning rate 0.00025 is selected to train the network.

In the following, the performances of the CQL and DDQL algorithms used to train the PCMU unit are evaluated. Fig. 2 shows how the total episodic reward evolves during the training of each algorithm (for = 0). From this figure, it is clear that, compared with the CQL, the DDQL algorithm leads to higher rewards in a much smaller number of episodes. To compare the performance of these two algorithms on the test dataset, the trade-o↵ between electricity cost in equation [START_REF] Giaconi | Smart meter privacy with renewable energy and an energy storage device[END_REF] and privacy measure in equation ( 6) are examined for both algorithms in Fig. 3. It can be seen that, although for values of close to 1 both CQL and DDQL produce very similar results, for higher privacy levels DDQL significantly outperforms CQL. The reason can be understood by looking at Fig. 2, where the DDQL shows a much better convergence compared with the CQL. In other words, due to the big state and action spaces, the CQL algorithm is not able to converge to the same level (even with a much larger number of episodes) and so provides degraded results compared with DDQL. These results confirm that, in our problem, the DDQL algorithm can provide better results than the classical CQL method. 

C. Deep double Q-learning versus Attacker

In this section, we evaluate how DDQL results used in the smart meter privacy-preserving model can reduce attacker inference about user's private attributes. To this end, two scenarios are studied. In the first scenario, an attacker modeled as a neural network with three hidden layers (each with 32 neurons and ReLU activation functions) uses the grid load sequence z T (with length T = 96) to infer the user's demand load y T . In the second scenario, an attacker modeled as a neural network with two hidden layers (each with 44 neurons and ReLU activation functions) uses the sequences of grid load z T to infer the occupancy status of households. Both attackers are given a labeled dataset for training (which is a worst-case assumption), and for both of them the RMSProp optimizer with learning rate 0.001 is used. The performances of both attackers are presented in Fig. 4. Notice from the results that the PCMU, using the DDQL algorithm with a RB, can e↵ectively reduce the inference of private information by an attacker by controlling . For example, in the second scenario in which privacy does not matter ( = 1), the attacker can infer occupancy labels with a balanced accuracy of more than 85%, while for = 0 it is reduced to less than 65%. It should be noted that, by either using a larger battery or other resources, one could in principle approach full privacy (e.g., balanced accuracy of 50%).

Finally, to investigate the overall leakage of information about the consumers' demand load from the grid load, the mutual information (MI) between demand load and grid load is calculated based on the Kraskov-Stögbauer-Grassberger (KSG) estimation method (with 4 neighbors) [START_REF] Kraskov | Estimating mutual information[END_REF]. It should be noted that KSG is a non-parametric estimation method of the MI and is based on the k-th nearest neighbor. For more details on the KSG the readers is referred to [START_REF] Kraskov | Estimating mutual information[END_REF]. Results of the privacy-cost trade-o↵ are presented in Fig. 5. This confirms that the DDQL algorithm can reduce the information leakage by incurring a higher energy cost. V. Discussion and Concluding Remarks We examined the privacy-cost trade-o↵ for the SMs system equipped with a rechargeable battery (RB). The optimization problem was formulated as a Markov decisions problem (MDP) where in the reward function the additional cost due to using RB was included while privacy was measured as the average relative distance of the grid load from a constant load. A model-free deep reinforcement learning algorithm, called deep double Q-learning (DDQL) was used to tackle the problem and was compared with state of the art, classical Q-learning (CQL). The results using actual SM data showed that the DDQL algorithm outperforms the CQL method. In addition, the control of privacy attained by the DDQL was evaluated in two concrete case studies and in a general informationtheoretic sense. Future work will focus on extending our method to accommodate several resources and studying other privacy measures (e.g. MI) to enhance performance.
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 2 Fig. 2. Total episodic reward for (a) DDQL versus (b) CQL during training.
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 3 Fig. 3. Average daily electricity cost versus average absolute relative deviation from target load (constant load) on test dataset for 2 [0, 1].
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 4 Fig. 4. Attackers performances: (a) inferring actual demand load, (b) inferring occupancy status of household.
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 5 Fig. 5. Electricity cost versus MI between demand load and grid load.
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