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Abstract—Smart meters (SMs) play a pivotal rule in the smart

grid by being able to report the electricity usage of consumers

to the utility provider (UP) almost in real-time. However, this

could leak sensitive information about the consumers to the UP

or a third-party. Recent works have leveraged the availability of

energy storage devices, e.g., a rechargeable battery (RB), in order

to provide privacy to the consumers with minimal additional en-

ergy cost. In this paper, a privacy-cost management unit (PCMU)

is proposed based on a model-free deep reinforcement learning

algorithm, called deep double Q-learning (DDQL). Empirical

results evaluated on actual SMs data are presented to compare

DDQL with the state-of-the-art, i.e., classical Q-learning (CQL).

Additionally, the performance of the method is investigated for

two concrete cases where attackers aim to infer the actual

demand load and the occupancy status of dwellings. Finally, an

abstract information-theoretic characterization is provided.

Index Terms—Smart meters privacy, Privacy-cost trade-o↵,

Deep reinforcement learning, Q-learning algorithm, Deep double

Q-learning, Privacy-cost management unit.

I. Introduction

S
MART meters (SMs) play an important rule in the modern
electricity network, known as the smart grid (SG), by

providing fine-grained power consumption measurements of
households to the utility provider (UP) almost in a real-time
basis. Although these high-resolution SMs measurements can
improve the e�ciency, reliability, and flexibility of power
infrastructures, they might be used by adversaries or malicious
third-parties to violate the privacy of households [1]. For
instance, by using non-intrusive load monitoring (NILM) ap-
proaches, an adversary with access to the power consumption
load profiles can readily infer sensitive information related to
consumers’ daily habits and types of appliances owned.

To protect consumers’ sensitive information, two main
families of SM data privacy enabling techniques have been
proposed in the literature: i) SM data manipulation methods
[2]–[4]; and ii) demand shaping methods [5]–[10]. In the
first family, the SM data are processed and manipulated, e.g.,
by adding random noise, before sharing that with the UP.
However, this might cause a significant loss in terms of the
utility of the SM data [1]. On the other hand, approaches of the
second family rely on using physical resources available at the
dwelling such as a rechargeable battery (RB), electric vehicles
(EVs), heating, ventilation, and air conditioning (HVAC) units,
renewable energy source (RES), or a combination of them,
to shape the way that energy is consumed by the user from
the grid. In this case, the goal is to find an optimum energy

management strategy, under the physical limitations of the
resources, which provides maximum privacy with minimal
household energy expenses.

In [9], the problem of finding an optimum strategy was
formulated as a Markov decision process (MDP) and solved
using dynamic programming. Concretely, a single-letter ex-
pression of the minimum information leakage was provided
for the case that demand load is independent and identically
distributed (i.i.d.). However, this result is mostly of theoretical
value since the demand load is not i.i.d. in practice. In addition,
the energy cost was not included in this problem formulation.
In another study, the joint optimization of privacy, measured
by fluctuations of the grid load around a constant load, and
energy cost was considered and modeled as an MDP [8].
To solve this MDP, a classical model-free algorithm from
reinforcement learning called Q-learning [11] was used. This
tabular algorithm iteratively learns the optimal state-action
value function Q⇤ from which an optimal policy for using
the physical resources is readily obtained. Nevertheless, the
classical Q-learning (CQL) convergence properties can be poor
when the state and/or action spaces are large or infinite.

In this paper, we adopt the MDP formulation introduced
in [8] and use a deep learning approximation of the CQL
algorithm called deep double Q-learning (DDQL) to overcome
the previously discussed limitation of the classical algorithm.
To the best of our knowledge, this is the first work that uses
deep reinforcement learning to design a privacy-preserving
mechanism for smart meters. For the sake of simplicity, we
only consider an RB and assume that no energy can be sold
to the grid (however, the problem formulation can be easily
extended to di↵erent scenarios). In addition, the formulation
of the cost is revised to take into account not only the total
electricity cost but also the cost associated with the wear and
tear of the battery. The performance of the DDQL algorithm
is assessed using actual SMs data both from practical and
theoretical perspectives. For the former evaluation, we con-
sider two scenarios modeling di↵erent privacy threats. In the
first scenario, an attacker observes the grid load and attempts
to infer the consumer’s demand load; while in the second
scenario an attacker is trained to infer the occupancy status of
the household. The latter evaluation is done by studying the
trade-o↵ between the cost and the mutual information between
the demand and grid loads.
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II. Problem Formulation

A. Demand Shaping Using Rechargeable Battery
Fig. 1 shows the privacy-preserving framework for a house-

hold based on a single rechargeable battery (RB). Here, the
attacker can be the UP itself, an eavesdropper or a third-party.
In this framework, a privacy-cost management unit (PCMU)
is designed to determine the optimal charging/discharging rate
of the battery with the purpose of masking the consumer’s
demand load while minimizing the total electricity cost.

Fig. 1. Privacy-preserving model framework for smart meters based on a
rechargeable battery.

Let yt be the consumer’s demand load/power at time t, where
t 2 T = {1, . . . ,T }. Given the demand load yt and the level of
charge of battery LOCRB,t 2 [0, 1] at time t, the PCMU should
determine the optimum charging/discharging rate qRB,t to hide
the consumer’s demand load. Therefore, the SM measures and
reports the masked demand load (i.e., the grid load) given by

zt = yt + qRB,t. (1)

The PCMU should be able to limit the performance of a
potential attacker trying to infer sensitive information (which
could be either yt or a correlated variable) from zt. In this
framework, there is a trade-o↵ between privacy and cost
associated to energy and wear and tear of the battery.

B. Markov Decision Process (MDP) Model
The problem of finding an optimal policy for the PCMU

(i.e., the reinforcement learning agent in our problem) can be
formalized using the framework of Markov decision processes
(MDPs) [11], as in [8]–[10]. An MDP is determined by a state
space S, which defines the possible states; an action space
A(s) for each s 2 S, which describes the feasible actions
at state s (we use A to denote [s2S A(s)); the environment
dynamics p(st+1|st, at), which dictates how the current state
st changes when action at is taken; and the reward function
r(st, at) which gives the immediate reward received at state
st by taking action at; and the discount factor � 2 [0, 1]
which determines the decay rate for weighting future rewards.
In this study, we consider a finite horizon time model, i.e.
we assume T < 1. Starting from an initial state s1, and
by following a policy ⇡(a|s) = p(a|s), the PCMU takes an
action a1, receives a reward r1, and transitions to state s2. This
leads to generating a sequence of states, actions and rewards:

[s1, a1, r1, . . . , sT , aT , rT ], which is referred to as an episode.
The action-value function Q : S ⇥ A ! R is defined as
Q(s, a) = E⇡

PT
t=1 �

t�1r (st, at)
����s1 = s, a1 = a

�
and determines

how good is to take action a 2 A(s) in state s 2 S and
then following the policy ⇡. An optimal policy ⇡⇤ is one that
maximizes Q(s, a) for all possible s and a. In our problem,
the state is defined as st = [LOCRB,t, yt]T while the action is
defined as the RB charging/discharging rate, i.e. at = qRB,t,
where a positive qRB,t indicates the RB is charging and a
negative qRB,t means discharging of RB for supplying the
consumer’s demand. In addition, the environment transition
probability p(st+1|st, at) can be written as follows:

p
�
st+1|st, at

� (i)
= p
⇣
LOCRB,t+1|LOCRB,t, qRB,t

⌘
⇥ p
�
yt+1|yt

�
(2)

where (i) is due to the assumption that the consumer’s demand
load is independent of the action and level of charge of battery.
The factor p

⇣
LOCRB,t+1|LOCRB,t, qRB,t

⌘
is determined by the

dynamics and physical constraints of the battery, which can
be summarized as follows [8]:

qmin
RB  qRB,t  qmax

RB , (3)

LOCRB,t+1 = LOCRB,t +
qRB,t ⇥ �t ⇥ eRB

CRB
, (4)

LOCmin
RB  LOCRB,t  LOCmax

RB , (5)

where qmin
RB and qmax

RB are the minimum and maximum charging
rate of the RB, LOCmin

RB and LOCmax
RB are the minimum and

maximum level of charge of the RB, �t is the load sampling
rate, eRB is the charging e�ciency factor of the RB, and CRB
is the capacity of the RB. However, note that p

�
yt+1|yt

�
is

unknown and in general di�cult to approximate [8]. Thus, we
do not assume full knowledge of the environment dynamics.

It remains to determine the reward function, which can in-
versely be interpreted as a loss function: ` (st, at) = �r (st, at).
Following [8], the loss function will be defined as a convex
combination of a privacy measure term and an electricity
cost term. In particular, privacy is defined as the distance
between the reported load by the SM and a (predetermined) flat
load. Intuitively, when (regardless of the consumer’s demand)
a constant load is reported by the SM, we expect that no
private information about the consumer is leaked. Concretely,
considering lc as the desired constant load, and following
policy ⇡, privacy is defined as the average relative distance
of the grid load from the target load as follows:

F⇡ :=
1
T

TX

t=1

f (st, at) =
1
T

TX

t=1

������
zt � lc

lc

������ . (6)

It should be noted that other notions of privacy have also been
considered for this problem [1]. On the other hand, the cost
that is incurred by the user can be related to the electricity
cost and also to the cost associated to the battery wear and
tear. In this study, we assume that no energy can be sold to the



grid. Therefore, the average electricity cost over time horizon
T is computed as follows:

C⇡ =
1
T

TX

t=1

�t ⇥ ht ⇥ [zt]+ , (7)

where ht is the price of 1 kWh of energy purchased from grid
at time t and [x]+ = max(x, 0). Since [zt]+ =

h
yt + qRB,t

i+ 
yt +
���qRB,t

���, and the PCMU has no control on yt, we conclude
that minimizing the average additional cost

G⇡ :=
1
T

TX

t=1

g(st, at) =
1
T

TX

t=1

�t ⇥ ht ⇥
���qRB,t

��� , (8)

minimizes an upper bound of C⇡. In addition, notice that G⇡
takes into account the battery wear and tear cost since it grows
when the battery use increases. Finally, considering equations
(6) and (8), the one-step loss function is defined as follows:

` (st, at) = �r (st, at) = �g(st, at) + (1 � �) f (st, at), (9)

where � 2 [0, 1] controls the privacy-cost trade-o↵.

III. Methodology
A. Classical Q-Learning (CQL) Algorithm

The Q-Learning (QL) algorithm [11] is a simple method to
learn the optimal state-action value function Q⇤. Then, the best
action at state s is readily obtained by maximizing Q⇤(s, ·). In
the process of learning, the Q-Learning algorithm takes an
action at at state st using some policy, transitions to state st+1
and updates the Q function as follows [11]:

�Q (st, at) = ↵
✓
r (st, at) + � max

a2A(st+1)
Q (st+1, a) � Q (st, at)

◆
,

(10)

where ↵ 2 [0, 1] is the learning rate, which should be selected
wisely for the sake of convergence [12]. In general, the Q-
Learning algorithm uses the ✏�greedy policy, in which a
random action is taken with probability ✏, and the action which
maximizes the Q-value is taken with probability 1 � ✏. In
this way, while the algorithm exploits the learned Q function,
it also explores the action space to discover the benefits
of taking other actions (this is known as the exploration-
exploration dilemma). Therefore, starting from an initial state
and initializing the Q function/table to some arbitrary values,
we take an action using the ✏�greedy policy to move to the
next state and update the Q function based on (10). This is
continued for all the next states until the end of episode. The
process is then repeated for several episodes to ensure all the
state-actions are visited enough times.

B. Deep Double Q-Learning (DDQL) Algorithm
One main issue regarding the classical Q-Learning (CQL)

algorithm is that it needs to visit all the state-action pairs sev-
eral times to provide a good approximation of Q⇤. Therefore,
for large MDPs with many states and actions, convergence
is very slow. To resolve this problem, the Q-function can be
approximated by using a deep neural network (DNN). These

new methods, where deep learning is used for approximating
the Q-function, are called deep Q-Learning (DQL) methods
[13], [14]. Recently, the DQL method was used for household
energy management in [15]. The main idea of the DQL method
studied here is to approximate Q⇤(s, a) ⇡ Q(s, a; ✓) where
✓ are the parameters of a DNN called the Q-Network. The
Q-Network takes the state s 2 S at the input and generates
Q(s, a) at the output for di↵erent actions a 2 A. To define the
objective function for this Q-network, we observe from (10)
that convergence is obtained when the term in parenthesis is
equal to zero. The term r (st, at) + � maxa2A(st+1)Q (st+1, a; ✓)
can be interpreted as the target, while Q (st, at; ✓) is the
output of the Q-Network. Thus, the mean squared error loss
between target and output can be used as the loss function
for training the Q-Network. However, using the same network
to compute the target and output often leads to instability
[16]. To address this issue, the so-called double Q-learning
algorithm was proposed in [17] and extended to the deep
learning setting in [18]. In the DDQL algorithm, a second
network called the Target Network (with parameters ✓0) is used
to calculate the target term. The Target Network parameters
✓0 are periodically updated by simply copying the parameters
from the Q-Network. Thus, using the Target Network, the
objective function of the Q-Network can be written as follows:

LQN(✓) =E
✓

r(st, at) + � max
a2A(st+1)

Q(st+1, a; ✓0) � Q(st, at; ✓)
◆2�
.

(11)

The training of the DDQL is presented in Algorithm 1.

Algorithm 1: Training of the deep double Q-learning algorithm.
Copy step k and training step k0 are hyperparameters.

1: Initialize Q-network and target network.
2: for number of training episodes do

3: Set the initial state s1 = [LOCRB,1, y1].
4: for t = 1, . . . ,T do

5: Observe the state st = [LOCRB,t , yt]
6: Select feasible action at using ✏�greedy algorithm.
7: Calculate reward r(st , at) from equation (9).
8: Update the next state st+1 based on (4) and (5).
9: Import (st , at , r(st , at), st+1) into the replay bu↵er.

10: Every k0 step, update the Q-network by minimizing (11) using
samples from the replay bu↵er.

11: Every k step, update the target network by copying the
Q-network parameters.

12: end for

13: end for

IV. Results and Discussion

A. Description of data set and parameters

In this study the electricity consumption and occupancy
(ECO) data set published by [19] is used. This data set
includes 1 Hz electricity usage measured by smart meters and
occupancy labels gathered through a tablet computer and a
passive infrared sensor. In this study, the data set is sampled
with a sampling rate �t = 15 min and an episode is defined
over a day. Totally 2700 samples (each a vector with length
of 96) are used and split into training, validation, and test sets



with ratio 70:10:20, respectively. The validation dataset is used
to set the values of the hyperparameters for each algorithm,
which are discussed in the next section. The desired constant
load is lc = 0.7 kW and the parameters of the battery are as
follows: CRB = 10 kWh, eRB = 1, qmax

RB = �qmin
RB = 4 kW,

LOCmax
RB = 1 and LOCmin

RB = 0. We consider the winter Time-
of-Use tari↵ o↵ered by Ontario/Canada, in which the o↵-peak
price is $0.101 kWh during 19:00 to 7:00, the mid-peak price
is $0.144 kWh during 11:00 to 17:00, and the on-peak price is
$0.208 kWh during 7:00 to 11:00 and during 17:00 to 19:00.

B. Deep double Q-learning versus Classical Q-learning

In this section, the performance of the DDQL method
is empirically compared with CQL. For both methods, the
network configuration and the value of the hyperparameters
are determined empirically by the best privacy-cost trade-o↵
over the validation dataset.

Considering the tabular setting of the CQL algorithm, the
state and action states need to be quantized. To this end, a
total number of 160 and 100 quantization levels were used for
action and demand load, respectively. Therefore, according to
the equation (4) and our definition of state st the Q function
would be a table with size 800⇥100⇥160. A total number of
25K episodes (⇡ 2.5M steps) are used with a discount factor
� = 0.8 and an adaptive learning rate ↵ decreasing linearly
from 0.5 to 0.05 over 1M steps.

On the other hand, in the DDQL method, a multilayer
perceptron (MLP) with two hidden layers, each including 64
neurons and rectified linear unit (ReLU) as activation function,
is used for both the Q and Target Networks. A total number
of 800 episodes are used and the discount factor � is set as
0.99. The size of the experience replay memory is 10K tuples.
The memory gets sampled to update the Q-network every
8 steps (k0=8), with minibatches of size 128, and a Target
Network copy step k of 500 steps. The RMSProp optimizer
with learning rate 0.00025 is selected to train the network.

In the following, the performances of the CQL and DDQL
algorithms used to train the PCMU unit are evaluated. Fig.
2 shows how the total episodic reward evolves during the
training of each algorithm (for � = 0). From this figure, it
is clear that, compared with the CQL, the DDQL algorithm
leads to higher rewards in a much smaller number of episodes.

Fig. 2. Total episodic reward for (a) DDQL versus (b) CQL during training.

To compare the performance of these two algorithms on the
test dataset, the trade-o↵ between electricity cost in equation

(7) and privacy measure in equation (6) are examined for
both algorithms in Fig. 3. It can be seen that, although for
values of � close to 1 both CQL and DDQL produce very
similar results, for higher privacy levels DDQL significantly
outperforms CQL. The reason can be understood by looking
at Fig. 2, where the DDQL shows a much better convergence
compared with the CQL. In other words, due to the big state
and action spaces, the CQL algorithm is not able to converge
to the same level (even with a much larger number of episodes)
and so provides degraded results compared with DDQL. These
results confirm that, in our problem, the DDQL algorithm can
provide better results than the classical CQL method.

Fig. 3. Average daily electricity cost versus average absolute relative deviation
from target load (constant load) on test dataset for � 2 [0, 1].

C. Deep double Q-learning versus Attacker
In this section, we evaluate how DDQL results used in

the smart meter privacy-preserving model can reduce attacker
inference about user’s private attributes. To this end, two
scenarios are studied. In the first scenario, an attacker modeled
as a neural network with three hidden layers (each with 32
neurons and ReLU activation functions) uses the grid load
sequence zT (with length T = 96) to infer the user’s demand
load yT . In the second scenario, an attacker modeled as a
neural network with two hidden layers (each with 44 neurons
and ReLU activation functions) uses the sequences of grid
load zT to infer the occupancy status of households. Both
attackers are given a labeled dataset for training (which is
a worst-case assumption), and for both of them the RMSProp
optimizer with learning rate 0.001 is used. The performances
of both attackers are presented in Fig. 4. Notice from the
results that the PCMU, using the DDQL algorithm with a
RB, can e↵ectively reduce the inference of private information
by an attacker by controlling �. For example, in the second
scenario in which privacy does not matter (� = 1), the attacker
can infer occupancy labels with a balanced accuracy of more
than 85%, while for � = 0 it is reduced to less than 65%. It
should be noted that, by either using a larger battery or other
resources, one could in principle approach full privacy (e.g.,
balanced accuracy of 50%).

Finally, to investigate the overall leakage of information
about the consumers’ demand load from the grid load, the
mutual information (MI) between demand load and grid load



Fig. 4. Attackers performances: (a) inferring actual demand load, (b) inferring
occupancy status of household.

is calculated based on the Kraskov–Stögbauer–Grassberger
(KSG) estimation method (with 4 neighbors) [20]. It should
be noted that KSG is a non-parametric estimation method of
the MI and is based on the k-th nearest neighbor. For more
details on the KSG the readers is referred to [20]. Results of
the privacy-cost trade-o↵ are presented in Fig. 5. This confirms
that the DDQL algorithm can reduce the information leakage
by incurring a higher energy cost.

Fig. 5. Electricity cost versus MI between demand load and grid load.

V. Discussion and Concluding Remarks
We examined the privacy-cost trade-o↵ for the SMs system

equipped with a rechargeable battery (RB). The optimization
problem was formulated as a Markov decisions problem
(MDP) where in the reward function the additional cost due to
using RB was included while privacy was measured as the av-
erage relative distance of the grid load from a constant load. A
model-free deep reinforcement learning algorithm, called deep
double Q-learning (DDQL) was used to tackle the problem
and was compared with state of the art, classical Q-learning
(CQL). The results using actual SM data showed that the
DDQL algorithm outperforms the CQL method. In addition,
the control of privacy attained by the DDQL was evaluated
in two concrete case studies and in a general information-
theoretic sense. Future work will focus on extending our
method to accommodate several resources and studying other
privacy measures (e.g. MI) to enhance performance.
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