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Abstract—Smart meters (SMs) can pose privacy threats for
consumers, an issue that has received significant attention in recent
years. This paper studies the impact of Side Information (SI) on
the performance of possible attacks to real-time privacy-preserving
algorithms for SMs. In particular, we consider a deep adversarial
learning framework, in which the desired releaser, which is a
Recurrent Neural Network (RNN), is trained by fighting against
an adversary network until convergence. To define the objective
for training, two different approaches are considered: the Causal
Adversarial Learning (CAL) and the Directed Information (DI)-
based learning. The main difference between these approaches
relies on how the privacy term is measured during the training
process. The releaser in the CAL method, disposing of supervision
from the actual values of the private variables and feedback from
the adversary performance, tries to minimize the adversary log-
likelihood. On the other hand, the releaser in the DI approach
completely relies on the feedback received from the adversary and
is optimized to maximize its uncertainty. The performance of these
two algorithms is evaluated empirically using real-world SMs data,
considering an attacker with access to SI (e.g., the day of the week)
that tries to infer the occupancy status from the released SMs data.
The results show that, although they perform similarly when the
attacker does not exploit the SI, in general, the CAL method is
less sensitive to the inclusion of SI. However, in both cases, privacy
levels are significantly affected, particularly when multiple sources
of SI are included.

I. INTRODUCTION

Smart meters (SMs) provide advanced monitoring features
for power grids by collecting the user’s power consumption
and reporting them to the utility providers almost in real time.
Although this enables several important applications for smart
grids (e.g., energy theft prevention, power quality monitoring,
demand response, among others [1]), it also violates the user’s
privacy, which is a major concern for its wide deployment and
adoption [2]. Actually, it has been shown that a potential attacker
with access to the SMs data can infer sensitive information
about the users such as the occupancy status [3] or the types of
appliances being used by consumers [4].

In recent years, several studies on privacy-preserving ap-
proaches for SMs data sharing were conducted, which can
be classified into two main families. On the one hand, the
methods in the first family [5]–[16] use physical resources such
as rechargeable batteries, electric vehicles, heating, ventilation,
and air conditioning units, etc., to shape the consumed power so
that the SMs measurements reveal minimum information about
the user’s actual power consumption pattern. The methods in the
second family [17]–[24] manipulate the SMs data, to be reported
to the utility provider, by distorting it in order to prevent the

inference of sensitive information by potential attackers, while
preserving the usefulness of the data. The study of this paper is
focused around this latter family of privacy-preserving methods.
We consider the real-time privacy problem, in which an attacker
tries to infer sensitive information in an online fashion [23], [24],
i.e., without accessing non-causally to SMs data.

Although many of these methods showed good performance
on dealing with attackers that have access to the distorted or
shaped SMs data, none of them studied the effect of side
information (SI), which occurs when an attacker uses additional
information to improve its performance. To the best of our
knowledge, the only work where SI was considered is [25],
in which it is used by the utility provider to predict if the
consumers are shaping the power consumption or reporting the
actual consumed power. The goal of our study is different. We
study the impact of SI at the privacy level, as measured by
the accuracy of an attacker trying to guess a sensitive attribute,
that is obtained with two different privacy-preserving strategies.
First, we consider a causal adversarial learning (CAL) algo-
rithm, which is a generalized version of the privacy-preserving
adversarial network (PPAN) approach introduced in [22], by
including the temporal structure of SM data. The CAL algorithm
is compared with a recently proposed state-of-the-art method,
referred to as the directed information (DI) based learning [23],
[24], considering attackers with and without SI and using a real
world SMs dataset.

The rest of the paper is organized as follows. In Section II,
the problem formulation of the SMs privacy-utility considering
SI is developed for both CAL and DI approaches. Using the
proposed formulations, the loss functions for the releaser and
adversary are given in Section III along with the general training
algorithm. Empirical results for both methods are presented and
discussed in Section IV. Finally, some concluding remarks close
the paper in Section V.

Notation and conventions

In this paper, a sequence of random variables, or a time
series, of length T is shown by X

T = (X1, . . . , XT ) while
x
T = (x1, x2, . . . , xT ) is used as a realization of X

T . The
i
th sample in a minibatch used for training of the model is

shown by x
(i)T = (x(i)

1 , x
(i)
2 , . . . , x

(i)
T ). pX is used to denote the

probability distribution function of random variable X and its
expectation is shown as E[X]. The Shannon entropy of random
variable X is represented by H(X) and KL(pXkqX) is used to
denote the Kullback-Leibler divergence between two probability
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distributions pX and qX . In addition, the mutual information
(MI) between random variables X and Y is represented as
I(X;Y ) and X �⌦� Y �⌦� Z denotes a Markov chain among
random variables X , Y and Z.

II. PROBLEM FORMULATION

Consider a user’s power consumption or demand load mea-
sured by the SM over T time slots, represented as the time
series Y

T = {Yt}Tt=1. In addition, let XT = {Xt}Tt=1 represent
sensitive user information, which could represent power profile
details, the presence of individuals at home, the appliances’
state (either on or off), etc. As shown in Fig. 1, the power
consumption measurements need to be sanitized before being
communicated with the utility provider or shared with a third-
party for different data analysis tasks. Concretely, the goal of
a privacy-preserving system is to generate a masked load Z

T

(referred to as the released time-series), based on knowledge of
Y

T and X
T , which is similar to Y

T but provides minimum
information about the sensitive attribute X

T . Note that a poten-
tial attacker will try to infer the sensitive information based on
the released data. We also assume that the attacker has access
to SI (e.g., the day of the week), represented as S, which can
be used as auxiliary data to improve its inference performance.

In the following subsections, we present two possible formu-
lations of the privacy-preserving problem in this context.

Fig. 1. Privacy-preserving SM framework. Case 1: SMs data are communicated
with the utility provider. Case 2: Utility provider is sharing the SMs data with
a third-party.

A. Causal adversarial learning (CAL) approach

The first approach considered in this study for formulating
the privacy-preserving problem is referred to as the CAL
method. This approach is a generalized version of the PPAN
model introduced in [22] but, in addition, includes the tempo-
ral correlation and causality involved in the time series data
processing. In this setting, the privacy measure is defined as
the conditional MI between the released time-series Z

T and
sensitive attribute X

T , conditioned on the SI S. The conditional

MI I(XT ;ZT |S) quantifies the amount of information shared
between the released Z

T and sensitive attribute X
T when the

side information S is revealed (the reader is referred to [26] for
details on information-theoretic concepts and properties). The
releaser aims to minimize this privacy measure by adding a
controlled amount of distortion, say " > 0, to the useful data
Y

T so as to keep a desired utility level. Therefore, the problem
of finding the optimal releaser can be cast as follows:

min
pZT |XT ,Y T

1

T
I

⇣
X

T ;ZT |S
⌘

s.t. D(ZT
, Y

T )  ". (1)

where D(ZT
, Y

T ) is the normalized expected distortion be-
tween Z

T and Y
T , defined as

D(ZT
, Y

T ) :=
E[d(ZT

, Y
T )]

T
, (2)

with d : RT ⇥ RT ! R any distortion function.
We now consider an arbitrary conditional distribution

qXT |ZT ,S and note that the conditional MI in (1) satisfies the
following relation:

I

⇣
X

T ;ZT |S
⌘
= H(XT |S)�H(XT |ZT

, S)

(i)
= H(XT |S)�

TX

t=1

H

⇣
Xt|Xt�1

, Z
T
, S

⌘

(ii)
= H(XT |S) +

TX

t=1

h
E[log qXt|Xt�1,ZT ,S ]

+ KL
⇣
pXt|Xt�1,ZT ,SkqXt|Xt�1,ZT ,S

⌘ i

(iii)
� H(XT |S) +

TX

t=1

E[log qXt|Xt�1,ZT ,S ],

(3)

where (i) is due to the chain rule of entropy, (ii) is a consequence
of the definition of the Kullback-Leibler (KL) divergence, and
(iii) is due to the fact that KL(·||·) is non-negative. In addition,
the expectations are taken with respect to the distribution
pXt|Xt�1,ZT ,S at each time slot t. The equality in (3) happens
when KL(pXT |ZT ,S ||qXT |ZT ,S) = 0, i.e., when qXT |ZT ,S =
pXT |ZT ,S (almost surely). Therefore,

I(XT ;ZT |S) = H(XT |S) + (4)

max
qXT |ZT ,S

TX

t=1

E[log qXt|Xt�1,ZT ,S ].

Substituting equation (4) in (1), dropping the constant term
H(XT |S), and imposing causality constraints, the privacy-
preserving optimization (1) can be written as follows:

min
pZT |XT ,Y T

max
qXT |ZT ,S

1

T

TX

t=1

E[log qXt|Xt�1,Zt,S ] (5)

s.t. D(ZT
, Y

T )  ".

The minmax problem (5) can be interpreted in an adversar-
ial learning context in which the adversary network uses the
released data Z

T and S to estimate the posterior qXT |ZT ,S by



maximizing the log-likelihood E[log qXt|Xt�1,Zt,S ] at time slot
t, while the releaser attempts to prevent that by minimizing the
same quantity. Details for implementing this approach will be
presented in Section III.

B. Directed information (DI) based approach
The second methodology considered in this study is the DI-

based learning approach, which was introduced in [23]. In
the DI method, by considering the SI, the privacy measure is
defined by I(XT ! X̂

T |S), the conditional DI between the
sensitive attribute X

T and the approximated sensitive attribute
X̂

T , conditioned on the SI S. In [24], it was shown that such a
privacy measure can effectively be used to limit the performance
of any potential attacker. In this case, the problem of finding
the optimal releaser is formulated as the following optimization
problem:

min
pZT |XT ,Y T

1

T
I

✓
X

T ! X̂
T
���S

◆
s.t. D(ZT

, Y
T )  ".

(6)

Proceeding similarly as in [24], the conditional DI privacy
measure can be upper bounded as follows:

I

✓
X

T ! X̂
T
���S

◆
 T log|X |�

TX

t=1

H(X̂t|Zt
, S). (7)

The main advantage of the upper bound (7), as discussed in
[23], is its computational tractability for the learning process. By
substituting (7) in (6), and dropping the constant term T log|X |,
we obtain the following relaxation of the optimization problem:

min
pZT |XT ,Y T

� 1

T

TX

t=1

H(X̂t|Zt
, S) s.t. D(ZT

, Y
T )  ".

(8)

Finally, to complete the specification of this problem, we need
to define the (optimal) adversary, which is given by the solution
to the following optimization problem:

min
pX̂T |ZT ,S

KL(pXT |ZT ,SkpX̂T |ZT ,S), i.e.,

min
pX̂T |ZT ,S

�
TX

t=1

E[log pX̂t|X̂t�1,Zt,S ], (9)

where the expectation is taken with respect to pXt,Zt,S for each
t. It should be noted that this is in fact equivalent to the max
part in the CAL optimization problem (5) by considering the
correspondence pX̂T |ZT ,S ⇠ qXT |ZT ,S .

III. PRIVACY-PRESERVING MODEL

In this section, the releaser design problem formulations are
tackled by using an adversarial learning framework, as shown
in Fig. 2. In order to exploit the time structure of the data,
both the releaser and adversary are modeled using recurrent
neural networks (RNNs). RNNs are a class of artificial neural
networks specialized for processing sequential data. However,
conventional RNNs suffer from the so-called vanishing gradient
issue, which leads to difficulties in the training process [27]. To

address this problem, the gated RNNs based on long short-term
memory (LSTM) cells were introduced in [28], [29], which are
widely used in practice currently. For more details on RNNs
and LSTMs, the reader is referred to [30].

Fig. 2. Privacy-preserving framework based on adversarial learning. The
observed data WT is defined as the combination of private and useful data and
the seed noise. The seed noise UT is generated from independent and identically
distributed (i.i.d.) samples according to a uniform distribution: Ut ⇠ U [0, 1].

The loss functions required for the training of the releaser and
adversary networks can be readily defined based on the problem
formulations (5), (8) and (9). On the one hand, for both the
CAL and DI models, the adversary network loss function can
be written as follows:

LA(�) :=
1

T

TX

t=1

E
h
� log qXt|Xt�1,Zt,S

i
, (10)

where � are the parameters of the adversary network and we
consider again the correspondence pX̂T |ZT ,S ⇠ qXT |ZT ,S . On
the other hand, the loss functions for training the releasers are

LCAL
R (✓,�,�) := D(ZT

, Y
T ) +

�

T

TX

t=1

E
h
log qXt|Xt�1,Zt,S

i
,

(11)

LDI
R(✓,�,�) := D(ZT

, Y
T )� �

T

TX

t=1

H(X̂t|Zt
, S), (12)

where ✓ are the parameters of the releaser network and �

controls the privacy-utility trade-off.
The training process for both cases is presented in detail in

Algorithm 1.

Algorithm 1: Privacy-preserving data release with side
information. Batch size B, number of steps to apply
to the Adversary k, seed noise dimension m, and `2

regularization parameter � are hyperparameters.
1: for number of training iterations do
2: for k steps do
3: Sample minibatch of B examples

{w(b)T = (x(b)T , y(b)T , u(b)T )}Bb=1 and generate releases
{z(b)T }Bb=1.

4: Compute the gradient of LA(�) with respect to �, empirically
approximated with the minibatch data.

5: Update � by applying the RMSprop optimizer [31].
6: end for
7: Sample minibatch of B examples

{w(b)T = (x(b)T , y(b)T , u(b)T )}Bb=1 and generate releases
{z(b)T }Bb=1.

8: Compute the gradient of LR(✓,�,�) with respect to ✓, empirically
approximated with the minibatch data.

9: Use Ridge(L2) regularization [32] with value � and update ✓ by
applying RMSprop optimizer.

10: end for



Fig. 3. (a) CAL model, (b) DI model, Privacy-utility trade-off for house occupancy inference. Case 1: no side information; Case 2: day of the week as side
information; Case 3: day of the week joined with month of the year as side information.

IV. RESULTS AND DISCUSSION

A. Dataset and model parameters

In this work, we use the electricity consumption and occu-
pancy (ECO) dataset published by [33], which includes 1 Hz
electricity usage measured by SMs along with the occupancy
labels of five houses in Switzerland. For the sake of simplicity,
the dataset is re-sampled every one hour and samples over one
day (T = 24) are considered. The dataset is split into training
and test sets with a ratio of 85:15, while 10% of training data
is considered as the validation dataset. Using the validation
dataset, the values of the hyperparameters (including batch size
B, number of adversary training step k, seed noise dimension
m, and regularization value �) were tuned to achieve the best
privacy-utility trade-off. Both the CAL and DI models are
trained to hide the occupancy labels by distorting the electricity
consumption. The performance of these models are evaluated
based on the performance of an attacker, trained in a supervised
manner, which attempts to infer the occupancy labels. Three
different cases are considered:

• Case 1: No SI is considered for training the privacy-
preserving model nor for training the attacker.

• Case 2: The day of the week associated to the SMs samples
is used as SI for both training the privacy-preserving model
and the attacker.

• Case 3: The day of the week and the month of the year are
used as SI for both training the privacy-preserving model
and the attacker.

The structures of the releaser, adversary, and attacker are
similar for both the CAL and DI methods. The releaser is
composed of 4 LSTM layers (each including 64 cells) with
� = 1.5, k = 4, m = 8, and B = 128, while the attacker
is made of 3 LSTM layers (each including 32 cells). For the
second and third cases, the adversary network consists of 3
LSTM layers (each including 32 cells), while for the first case
it is composed by 2 LSTM layers (each including 32 cells).

To evaluate the amount of distortion added by the releaser
network, we use the Normalized Error (NE) measure, defined
as follows:

NE2 :=
E
⇥
kY T � Z

T k2
⇤

E
⇥
kY T k2

⇤ . (13)

In addition, the performance of the attacker in inferring the
sensitive data is measured using the balanced accuracy [34],
presented below:

Balanced Accuracy :=
1

2

✓
c11

c11 + c12
+

c22

c22 + c21

◆
, (14)

where cij represent the fraction of examples of class i classified
as class j. Using these metrics, the privacy-utility trade-off for
the CAL and DI models are presented in Figs. 3.

Considering the first case, in which no SI is taken into
account, it can be seen that both models have very similar
performances. However, the CAL model behaves erratically
for large values of distortion, in the sense that the accuracy
of the attacker does not monotonically decrease as the dis-
tortion increases. From a practical perspective, however, the
high distortion region for which this happens is not particularly
interesting, since the utility of the distorted data is very low in
such cases. To understand this issue, we studied the evolution
of the releaser loss function during training for both models,
considering different values of �. As can be seen in Fig.4,
for small values of �, the releaser loss functions behave very
similarly with a clean convergence pattern. However, as �

increases and more distortion is allowed, the convergence of
the loss for the CAL model becomes noisier than for the DI
model. In other words, for large values of � (i.e., the full privacy
regime) the DI model, by maximizing the conditional entropy,
can push the adversary towards a random guessing classifier,
while the CAL model, by maximizing the cross-entropy, does
not seem to work well. However, in the area where there is a
balance between privacy and distortion, the cross-entropy seems
to be effective in controlling the privacy-utility trade-off.



For the other cases, where SI is included in the models,
it is clearly seen that the privacy performance is degraded,
which is expected since the attacker has more information
about the sensitive attribute to perform the inference task. It
should be noted that the baseline for full privacy changes for
the different cases. Indeed, an attacker trained and tested with
just SI for estimating the sensitive attribute suggests a balanced
accuracy of 50.7% and 57.8% as the baseline for Cases 2 and
3, respectively. In particular, for the Case 3 in which both the
day of the week and month of the year are considered, the
attacker performance is improved in a very significant way. In
fact, the models can not completely fool the attacker even when
arbitrarily large distortion is allowed. This phenomenon can
be understood because the SI provides some prior information
for the attacker, which can be exploited independently from
the amount of noise added to the power measurements by the
releaser (see attacker performance with just SI in Fig. 3. On
the other hand, the CAL model seems to be less sensitive (in
the low distortion range) to SI than the DI model. This can be
justified by revising the loss functions for each model (see (11)
and (12)). The releaser in the DI method completely relies on the
adversary uncertainty and therefore is unsupervised, while the
CAL releaser gets supervision from the actual sensitive labels,
which can make it more effective.

Fig. 4. Examples of the releaser network loss function versus training epochs
for both DI and CAL models.

A final experiment that we conducted was including the SI
at the input of the releaser network for Case 2, which means
that the privacy-preserving mechanism can change its behavior
according to the day of the week. As can be seen in Fig.5,
however, this is not helpful in reducing the gap between Case 2
and Case 1 in Fig. 3. This might be due to the fact that the SI S
can be readily inferred from X

T and Y
T . For example, for the

data set in our study the day of the week can be predicted from
the X

T and Y
T with balanced accuracy of more than 85%.

This suggests that SI is in some sense a redundant input for the
releaser network.

Fig. 5. DI model: Privacy-utility trade-off for house occupancy inference. Case
2⇤ refers to Case 2 but including side information also at the input of the
releaser.

V. CONCLUDING REMARKS

In this work, we took into account the effect of SI (correlated
with sensitive information) on the formulation of SMs privacy-
preserving mechanisms. Concretely, two distortion-based real-
time privacy-preserving models were presented and imple-
mented using a deep adversarial learning framework. The
privacy-utility trade-offs associated with both models were then
investigated and compared. For the case in which SI is not
considered, both models perform very similarly, except for large
distortion values, where the CAL model showed instability
issues. For the other cases, in which the attacker had access
to SI, the privacy levels are significantly affected, but the CAL
model was shown to be more robust than the DI model to
the inclusion of SI. The privacy degradation was particularly
noticeable when multiple sources of SI were considered jointly.
This result clearly shows how it is possible to overestimate the
privacy level attained by a privacy-preserving mechanism ignor-
ing sources of SI, a particularly serious hurdle for offering actual
privacy guarantees. This observation raises several questions for
future research: How should privacy be evaluated when not all
possible sources of SI can be taken into account? How can we
effectively model the attacker prior information in general?
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