
HAL Id: hal-04136991
https://hal.science/hal-04136991v1

Preprint submitted on 22 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Mass-charge metric in curved spacetime
Espen Gaarder Haug, Spavieri Gianfranco

To cite this version:
Espen Gaarder Haug, Spavieri Gianfranco. Mass-charge metric in curved spacetime. 2023. �hal-
04136991�

https://hal.science/hal-04136991v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Mass-charge metric in curved spacetime

Espen Gaarder Haug+(corresponding author) and Gianfranco Spavieri⇤
+Norwegian University of Life Sciences,
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Abstract

In the context of black holes with spherical symmetry, we derive a solution to Einstein’s

field equations using a stress-energy tensor that takes into account both the electric field

energy of the charge and the gravitational field energy of the mass. The metric, which has a

form similar to that of Reisser-Nordström, may be used for predictions in strong fields where it

shows better agreement with observation in high z quasars. Our metric could also be relevant

in light of the increased interest regarding potential mass loss caused by gravitational waves.
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Reisser-Nordström metric.

Spacetime curvature arises as an e↵ect due to mass, or equivalently energy. Because of the
equivalence mass-energy, the energy produced by fields of the same form but di↵erent nature, is
expected to provide the same e↵ect on the corresponding curvature regardless of the fields di↵erent
origins.

In pre-relativistic classical mechanics and Maxwell’s electromagnetism we have the relations,
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where the first equation represents Newton’s law of gravity with G the constant of gravity, m
and M the interacting masses and FNew the interacting force, while the second equation repre-
sents Coulomb’s law with k the constant, q and Q the interacting electric charges and FCoul the
interacting force. The last terms in (1) correspond to the choice of units where G = k = 1.

If a point charge q is brought from x = 1 to point x in a region where there is an electric scalar
potential �(x), the work done on the charge (representing its potential energy) is W = q�(x).
For a system composed of point charges of total charge Q localized on the mass M , the electric
potential energy and corresponding energy density are,
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where for spherical symmetry and at the distance r from the localized mass M , the electric field is
Er = Q/r2. Considering that analogous results are obtained for the gravitational potential energy,
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the total energy density of the system M +Q can be conveniently expressed as,
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where
Q2

M = M2 +Q2 QM =
p

M2 +Q2. (4)

The contribution to the total energy densities in (3) that can never disappear is the gravitational,
because present even for a perfectly neutral body. Since electromagnetic is much stronger than
gravitational interaction, the term with M2 in (3) and (4) is generally neglected in most physical
situations where electric fields are present. However, in the context of black holes, astrophysical
objects with a large mass M are generally almost neutral and in proximity of the mass M where
r is small the energy density due to M may exceed the one due to Q.

The stress-energy tensor T µ⌫

With the total energy density given by (3) we can form a stress-energy tensor T µ⌫ that takes
into account the field energy density due to M and Q. Stress-energy tensors that take into account
di↵erent forms of energy are common in physics in several contexts outside or within general
relativity. As an example, we may consider the tensor T µ⌫ = ✓µ⌫ + Sµ⌫ + �0UµU ⌫ , used in the
literature [1–4] in the context of electrodynamics of charged bodies with internal stresses. This
tensor is complemented by the continuity equation, @µT µ⌫ = 0 while the term ✓µ⌫ represents the
usual electromagnetic tensor, Sµ⌫ the stress tensor, and �0 the proper density of the proper mass.

In our case, we do not consider the stresses inside the mass M as we are interested in the
solution of Einstein’s field equations outside M . For our purpose we can simply exploit the fact
that, for spherical symmetry, the form of the gravitational and electric fields is the same, as shown
in (3). Hence, we can formally adopt the stress-energy tensor T µ⌫ = ✓µ⌫(QM) where QM is given by
(4). Thus, our approach reflects the one by Reisser-Nordström [5, 6] and we use here the formalism
adopted by Zee [7] using geometric units c = G = k = 1.

The formal properties of Tµ⌫ and the related field tensor Fµ� are unchanged, being,

Tµ⌫ =
1

µ0
(Fµ�F⌫↵g

↵� � 1

4
gµ�F��F ��).

The corresponding Einstein’s [8] field equations are ,

Rµ⌫ � 1

2
gµ⌫R + 8⇡T µ⌫ = 0.

In the context of black holes and for spherically symmetric spacetime the metric has the form,

ds2 = �A(t, r)dt2 +B(t, r)dr2 + r2(d✓2 + sin2(✓)d'2) (5)

In the solution of the Reisser-Nordström form, the relevant component of T µ⌫ is T22 = (1/2µ0)r2F01F 01.
As we have only a radial component of the electric field, we may write: Er = F01 = F10 = QM/r2.
Then, T22 = (1/2µ0)r2(Q2

M/r4) and we find that A(t, r) and B(t, r) obey the equations (see [7]),

A(r, t) = f(t) +
C(t)

r
+

Q2
M

r2

AB = f(t).

So far, the solution for (5) is expressed in terms of mere algebraic quantities and does not represent
physical reality. In order to be used to reflect physical reality and provide a falsifiable theory that
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can be tested experimentally, we need to relate the algebraic quantities to observable physical
quantities. The quantities f and C can be determined by taking the limit to the Schwarzschild
metric QM ! 0 and,

g00 = 1� 2M

r
f(t) = 1 C(t) = �2M ⌘ rS

Finally, by means of (4) we find the horizon function � = A(r),
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and the resulting metric is,
ds2 = ��dt2 +��1dr2 + r2d⌦2, (6)

which, for almost neutral bodies where the charge Q ' 0 can be neglected, can be expressed as,

ds2 = �[1� 2M
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r
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)]�1dr2 + r2d⌦2 (7)

Expressing the energy of gravitational fields as mass contributions to M .
A possible interpretation of the additional mass term in the new metric (7) is obtained by

comparing the Schwarzschild mass MS with the mass M(1 � M
2r ) = M � M2

2r of our metric (6) or
(7). Integrating the gravitational energy density given by (3) starting from the observer position
r up to r = 1 we find,
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which is the mass, or equivalent energy, stored in the gravitational field M/r2 outside r. The
stored field energy in the space from r to r = 1 must come from the original mass corresponding
to absence of field energy. Hence, the e↵ect of the field energy from r to r = 1 is to reduce the
Schwarzschild mass MS (and corresponding space curvature) by M2

2r .
Consequently, the resulting metric (6), or (7), can be obtained directly from the Schwarzschild

(or Reisser-Nordström) metric by inserting into it the contribution to MS given by (8). Our metric

indicates that the energy of gravitational fields plays a role analogous to that of electromagnetic
fields. Nevertheless, the additional mass term in our metric has to be considered in a wider context
than that of simple analogy between Newton’s gravity law and Coulomb’s law. Of course, we have
to go beyond Newton’s gravity theory but we know today that the analogy between features of
gravitational fields and those of electromagnetic fields is holding and is supported by developments
in gravitational waves. A relevant confirmation is provided by the observed orbital decay of the
Hulse-Taylor binary pulsar that matched the decay foreseen by general relativity as gravitation
is lost to gravitational radiation, see [14]. Bondi et al. [15, 16] in 1960 were likely the first to
suggest that gravitational objects could lose mass due to the emission of gravitational waves, see
also [17, 18]. Since the detection of gravitational waves from the merger of a binary black hole
system by LIGO in 2016, the relationship between mass loss and gravitational waves has garnered
increased interest, see for example [19–21] for more information. In conclusion, the added mass
term in the exact solution to Einstein’s field equation given by our metric (7) is not surprising
because based essentially on the equivalence between mass and field energy, regardless of whether
the field source is the charge Q or the mass M. Therefore, our metric could potentially provide
new insights in this area and, as shown below, in the interpretation of observational data in the
context of strong fields.
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Horizons of the metric

The metric gives the following horizons:

r± = M ±
p
M2 �M2 �Q2 = M ±Q (9)

In the case of a neutral charge (Q = 0), the metric only yields one horizon, which is equal to
half the Schwarzschild radius, i.e., r = M , instead of r = rs = 2M . For comparison, the horizons in
the Reissner-Nordström metric are given by r± = M±

p
M2 �Q2, as shown in [9–11] for example.

The well-known extremal solution of the Reissner-Nordström metric (see [7]) occurs when Q = M .
In this case, it predicts the same outcome as our metric when the charge is neutral.

Predictions of the metric in strong fields

The metric ( Eq. 7) predicts that the event horizon for black holes without charge is only
half of what is predicted by the Schwarzschild metric. This would result in a stronger predicted
gravitational redshift for light emitted just outside the horizon (from the accretion disk). The
accretion disk will be able to approach closer to the center of the black hole compared to the
Schwarzschild metric. This finding could potentially help explain the absence of observed velocity
time dilation in high-z quasars (see [12, 13]), as more of the red-shift could be simply due to
gravitational redshift. Although a detailed study would be necessary before drawing any definite
conclusions, it seems that the new metric can be of help for explaining these observed phenomena.
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