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Spacetime curvature arises as an e↵ect due to mass, or equivalently energy. Because of the equivalence mass-energy, the energy produced by fields of the same form but di↵erent nature, is expected to provide the same e↵ect on the corresponding curvature regardless of the fields di↵erent origins.

In pre-relativistic classical mechanics and Maxwell's electromagnetism we have the relations,

F New m = G M r 2 = M r 2 F Coul q = k Q r 2 = Q r 2 , ( 1 ) 
where the first equation represents Newton's law of gravity with G the constant of gravity, m and M the interacting masses and F New the interacting force, while the second equation represents Coulomb's law with k the constant, q and Q the interacting electric charges and F Coul the interacting force. The last terms in (1) correspond to the choice of units where G = k = 1. If a point charge q is brought from x = 1 to point x in a region where there is an electric scalar potential (x), the work done on the charge (representing its potential energy) is W = q (x). For a system composed of point charges of total charge Q localized on the mass M , the electric potential energy and corresponding energy density are,

W Q = 1 8⇡ ˆ|r | 2 d 3 x = 1 8⇡ ˆ|E| 2 d 3 x w Q = 1 8⇡ |E| 2 , (2) 
where for spherical symmetry and at the distance r from the localized mass M , the electric field is E r = Q/r 2 . Considering that analogous results are obtained for the gravitational potential energy, 1 the total energy density of the system M + Q can be conveniently expressed as,

w Q M = 1 8⇡ |E Q M | 2 = 1 8⇡ Q 2 M r 4 = 1 8⇡ M 2 r 4 + 1 8⇡ Q 2 r 4 , (3) 
where

Q 2 M = M 2 + Q 2 Q M = p M 2 + Q 2 . ( 4 
)
The contribution to the total energy densities in (3) that can never disappear is the gravitational, because present even for a perfectly neutral body. Since electromagnetic is much stronger than gravitational interaction, the term with M 2 in (3) and ( 4) is generally neglected in most physical situations where electric fields are present. However, in the context of black holes, astrophysical objects with a large mass M are generally almost neutral and in proximity of the mass M where r is small the energy density due to M may exceed the one due to Q.

The stress-energy tensor T µ⌫

With the total energy density given by ( 3) we can form a stress-energy tensor T µ⌫ that takes into account the field energy density due to M and Q. Stress-energy tensors that take into account di↵erent forms of energy are common in physics in several contexts outside or within general relativity. As an example, we may consider the tensor T µ⌫ = ✓ µ⌫ + S µ⌫ + 0 U µ U ⌫ , used in the literature [START_REF] Møller | The Theory of Relativity[END_REF][START_REF] Spavieri | A non-standard expression for the force and torque on a magnetic dipole[END_REF][START_REF] Aharonov | Comment on "proposed Aharonov-Casher e↵ect: Another example of an Aharonov-Bohm e↵ect arising from a classical lag[END_REF][START_REF] Spavieri | E↵ective interaction force between an electric charge and a magnetic dipole and locality (or nonlocality) in quantum e↵ects of the aharonov-bohm type[END_REF] in the context of electrodynamics of charged bodies with internal stresses. This tensor is complemented by the continuity equation, @ µ T µ⌫ = 0 while the term ✓ µ⌫ represents the usual electromagnetic tensor, S µ⌫ the stress tensor, and 0 the proper density of the proper mass.

In our case, we do not consider the stresses inside the mass M as we are interested in the solution of Einstein's field equations outside M . For our purpose we can simply exploit the fact that, for spherical symmetry, the form of the gravitational and electric fields is the same, as shown in [START_REF] Aharonov | Comment on "proposed Aharonov-Casher e↵ect: Another example of an Aharonov-Bohm e↵ect arising from a classical lag[END_REF]. Hence, we can formally adopt the stress-energy tensor T µ⌫ = ✓ µ⌫ (Q M ) where Q M is given by (4). Thus, our approach reflects the one by Reisser-Nordström [START_REF] Reissner | Über die eigengravitation des elektrischen feldes nach der Einsteinschen theorie[END_REF][START_REF] Nordström | On the energy of the gravitation field in Einstein's theory[END_REF] and we use here the formalism adopted by Zee [START_REF] Zee | Einstein gravity in a nutshell[END_REF] using geometric units c = G = k = 1.

The formal properties of T µ⌫ and the related field tensor F µ are unchanged, being,

T µ⌫ = 1 µ 0 (F µ F ⌫↵ g ↵ 1 4 g µ F F ).
The corresponding Einstein's [START_REF] Einstein | Näherungsweise integration der feldgleichungen der gravitation[END_REF] field equations are ,

R µ⌫ 1 2 g µ⌫ R + 8⇡T µ⌫ = 0.
In the context of black holes and for spherically symmetric spacetime the metric has the form,

ds 2 = A(t, r)dt 2 + B(t, r)dr 2 + r 2 (d✓ 2 + sin 2 (✓)d' 2 ) ( 5 ) 
In the solution of the Reisser-Nordström form, the relevant component of T µ⌫ is T 22 = (1/2µ 0 )r 2 F 01 F 01 . As we have only a radial component of the electric field, we may write:

E r = F 01 = F 10 = Q M /r 2 .
Then, T 22 = (1/2µ 0 )r 2 (Q 2 M /r 4 ) and we find that A(t, r) and B(t, r) obey the equations (see [START_REF] Zee | Einstein gravity in a nutshell[END_REF]),

A(r, t) = f (t) + C(t) r + Q 2 M r 2 AB = f (t).
So far, the solution for ( 5) is expressed in terms of mere algebraic quantities and does not represent physical reality. In order to be used to reflect physical reality and provide a falsifiable theory that can be tested experimentally, we need to relate the algebraic quantities to observable physical quantities. The quantities f and C can be determined by taking the limit to the Schwarzschild metric Q M ! 0 and,

g 00 = 1 2M r f (t) = 1 C(t) = 2M ⌘ r S
Finally, by means of ( 4) we find the horizon function = A(r),

= A(r) = 1 2M r + M 2 r 2 + Q 2 r 2 = 1 2M r (1 M 2r ) + Q 2 r 2
and the resulting metric is,

ds 2 = dt 2 + 1 dr 2 + r 2 d⌦ 2 , (6) 
which, for almost neutral bodies where the charge Q ' 0 can be neglected, can be expressed as,

ds 2 = [1 2M r (1 M 2r )]dt 2 + [1 2M r (1 M 2r )] 1 dr 2 + r 2 d⌦ 2 (7)
Expressing the energy of gravitational fields as mass contributions to M . A possible interpretation of the additional mass term in the new metric ( 7) is obtained by comparing the Schwarzschild mass M S with the mass M (1 M 2r ) = M M 2 2r of our metric ( 6) or [START_REF] Zee | Einstein gravity in a nutshell[END_REF]. Integrating the gravitational energy density given by (3) starting from the observer position r up to r = 1 we find,

W M = 4⇡ ˆr=1 r ( 1 8⇡ M 2 r 04 )r 02 dr = M 2 2r , (8) 
which is the mass, or equivalent energy, stored in the gravitational field M/r 2 outside r. The stored field energy in the space from r to r = 1 must come from the original mass corresponding to absence of field energy. Hence, the e↵ect of the field energy from r to r = 1 is to reduce the Schwarzschild mass M S (and corresponding space curvature) by M 2 2r . Consequently, the resulting metric [START_REF] Nordström | On the energy of the gravitation field in Einstein's theory[END_REF], or [START_REF] Zee | Einstein gravity in a nutshell[END_REF], can be obtained directly from the Schwarzschild (or Reisser-Nordström) metric by inserting into it the contribution to M S given by [START_REF] Einstein | Näherungsweise integration der feldgleichungen der gravitation[END_REF]. Our metric indicates that the energy of gravitational fields plays a role analogous to that of electromagnetic fields. Nevertheless, the additional mass term in our metric has to be considered in a wider context than that of simple analogy between Newton's gravity law and Coulomb's law. Of course, we have to go beyond Newton's gravity theory but we know today that the analogy between features of gravitational fields and those of electromagnetic fields is holding and is supported by developments in gravitational waves. A relevant confirmation is provided by the observed orbital decay of the Hulse-Taylor binary pulsar that matched the decay foreseen by general relativity as gravitation is lost to gravitational radiation, see [START_REF] Taylor | A new test of general relativity: Gravitational radiation and the binary pulsar psr 1913+16[END_REF]. Bondi et al. [START_REF] Bondi | Gravitational waves in general relativity[END_REF][START_REF] Bondi | Gravitational waves in general relativity, vii. waves from axi-symmetric isolated system[END_REF] in 1960 were likely the first to suggest that gravitational objects could lose mass due to the emission of gravitational waves, see also [START_REF] Penrose | On cosmological mass with positive ⇤[END_REF][START_REF] Hollands | Bondi mass cannot become negative in higher dimensions[END_REF]. Since the detection of gravitational waves from the merger of a binary black hole system by LIGO in 2016, the relationship between mass loss and gravitational waves has garnered increased interest, see for example [START_REF] Cao | Bound on the rate of bondi mass loss[END_REF][START_REF] Saw | Mass-loss of an isolated gravitating system due to energy carried away by gravitational waves with a cosmological constant[END_REF][START_REF] Saw | Mass loss due to gravitational waves with > 0[END_REF] for more information. In conclusion, the added mass term in the exact solution to Einstein's field equation given by our metric [START_REF] Zee | Einstein gravity in a nutshell[END_REF] is not surprising because based essentially on the equivalence between mass and field energy, regardless of whether the field source is the charge Q or the mass M. Therefore, our metric could potentially provide new insights in this area and, as shown below, in the interpretation of observational data in the context of strong fields.
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Horizons of the metric

The metric gives the following horizons:

In the case of a neutral charge (Q = 0), the metric only yields one horizon, which is equal to half the Schwarzschild radius, i.e., r = M , instead of r = r s = 2M . For comparison, the horizons in the Reissner-Nordström metric are given by r ± = M ± p M 2 Q 2 , as shown in [START_REF] Hobson | General Relativity, An Introduction for Physicists[END_REF][START_REF] Bambi | General Relativity[END_REF][START_REF] Aretakis | Dynamics of Extremal Black Holes[END_REF] for example. The well-known extremal solution of the Reissner-Nordström metric (see [START_REF] Zee | Einstein gravity in a nutshell[END_REF]) occurs when Q = M . In this case, it predicts the same outcome as our metric when the charge is neutral.

Predictions of the metric in strong fields

The metric ( Eq. 7) predicts that the event horizon for black holes without charge is only half of what is predicted by the Schwarzschild metric. This would result in a stronger predicted gravitational redshift for light emitted just outside the horizon (from the accretion disk). The accretion disk will be able to approach closer to the center of the black hole compared to the Schwarzschild metric. This finding could potentially help explain the absence of observed velocity time dilation in high-z quasars (see [START_REF] Hawkins | Time dilation and quasar variability[END_REF][START_REF] Hawkins | On time dilation in quasar light curves[END_REF]), as more of the red-shift could be simply due to gravitational redshift. Although a detailed study would be necessary before drawing any definite conclusions, it seems that the new metric can be of help for explaining these observed phenomena.
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