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GENERALIZED LOGARITHMIC SHEAF ON SMOOTH PROJECTIVE SURFACES

S. HUH 1, S. MARCHESI 2, J. PONS-LLOPIS 3, AND J. VALLÈS 4

ABSTRACT. We define the notion of generalized logarithmic sheaves on a smooth projective sur-
face, associated to a pair consisting of a reduced curve and some fixed points on it. We then set
up the study of the Torelli property in this setting, focusing mostly in the case of the blow-up of
the projective plane on a reduced set of points and, in particular, in the case of the cubic surface.
We also study the stability property of generalized logarithmic sheaves as well as carrying out the
description of their moduli spaces.
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1. INTRODUCTION

Given a smooth projective variety X and a reduced and effective divisor D with normal cross-
ings on it, one of the sheaves that have raised particular attention during the recent years is the
logarithmic sheaf or the sheaf of logarithmic differentials Ω1

X (logD), defined as the sheaf of dif-
ferential 1-forms on X with logarithmic poles along D. Its dual has also a very classical presen-
tation: it is the logarithmic tangent sheaf associated to D, and denoted by TX (− logD), which
can be defined as the sheaf whose local sections are vector fields tangent to the divisor D. The
study of logarithmic sheaves was initiated by Deligne in [5] having in mind to define a mixed
Hodge structure on the complement X \D. Later on, it was generalized by Saito to arbitrary
reduced divisors in [19].

Related to these vector bundles a very natural question arises immediately, namely, to which
degree the logarithmic sheaf Ω1

X (logD) determines the divisor D. Obviously, two extremal cases
can appear: on one extreme, it would be possible that the logarithmic sheaf determines unam-
biguously the original divisor. In this case, by analogy with the famous result about the injectiv-
ity of the period map from the moduli space of algebraic curves of fixed genus, we will say that
the Torelli property holds for the divisor D. Among other upshots, such a property often allows to
give a nice description of the sheaves in the corresponding moduli space. The opposite extreme
would appear when Ω

1
X (logD) splits as a direct sum of line bundles of the form

⊕dim(X )
i=1 OX (ai ).

In this case D is called a free divisor or analogously, we will say that its associated logarithmic
sheaf is free.

Both situations have been identified in different settings: for instance, in [21], Ueda and
Yoshinaga showed that the Torelli property holds for a smooth divisor in P

n if and only if it is
not of Sebastiani-Thom type (in the sense that its defining polynomial has a presentation as the
sum of two polynomials on disjoint sets of variables). For non-smooth divisors, one may call
a divisor an arrangement of its irreducible components, depending on view points. Dolgachev
and Kapranov showed in [6] that a general arrangement of m hyperplanes in P

n is determined
by the logarithmic sheaf whenever m ≥ 2n + 3, unless the hyperplanes osculate the same ra-
tional normal curve. The result was extended to the range m ≥ n +2 in [22]. For higher degree,
Angelini showed in [1] that the Torelli property holds for a generic arrangement of n conics in P

2

whenever n ≥ 9. For irreducible singular divisors, Faenzi and the second named author proved
in [9] that divisors coming from generic determinants have simple (in characteristic zero, sta-
ble) logarithmic tangent sheaves and satisfy the Torelli property.
Regarding the freeness of logarithmic tangent vector bundles, a leading conjecture by Terao,
reported in [18], states that given two hyperplane arrangements A and A′ in P

n with the same
combinatorial type, if Ω1

Pn (log A) is free then the same should hold for Ω1
Pn (log A′) with the same

splitting type.

The goals of the present paper are mainly twofold: firstly, given a finite set of points Z ⊂ X on
a surface X and a curve D ⊂ X containing Z , we introduce a natural generalization of Ω1

X (logD)
as a particular extension, denoted by Ω

1
X

(log(D, Z )), of the ideal sheaf IZ ,D , of Z inside D, by
the cotangent bundle Ω

1
X , such that it is singular exactly along Z . We will call Ω1

X (log(D, Z )) the
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generalized logarithmic sheaf associated to the pair (D, Z ). Notice that when Z = ;, one gets
the usual logarithmic vector bundle Ω

1
X (log(D,;)) =Ω

1
X (logD). Then we propose a study of the

Torelli property in this setting: namely, in which cases, for a divisor D ⊂ X containing Z , the
isomorphism class of Ω1

X (log(D, Z )), as an OX -module, determines (D, Z ) uniquely.
This construction leads to the second goal of the present paper. Indeed, if we consider the

blow-up π : X̃ → X along an arbitrary finite set Z ′ and the strict transform D̃ ⊂ X̃ , it turns out
that the push-forward π∗Ω

1
X̃

(logD̃) is exactly the aforementioned sheaf Ω1
X

(log(D, Z )), where

Z = D ∩Z ′. Therefore, as soon as the Torelli property holds for D ⊂ X , then the Torelli property
holds also for D̃ in X̃ , but the reciprocal statement can be false. This prompted us to take up
the study of the (in)dependency of the Torelli property when we change a divisor D ⊂ X by its
strict transform D̃ in a given blow-up X̃ along Z ′ and in particular to underline the similarities
and differences between the case when Z ′ ⊂ D (in Section 4) and the case when Z ′∩D =; (in
Section 5).

In order to launch the research following this strategy, we decided in this paper to focus on
the first natural case that one can consider, namely on (generalized) logarithmic sheaves on
blow-ups of P2 and, in particular, on cubic surfaces S ⊂ P

2. In the first aforementioned case,
namely when we consider just set of points in P

2 contained in the divisors under consideration,
we managed to extend the main result from [20] and prove that the Torelli property does not
hold for pairs (D, Z ) consisting of a smooth plane cubic curve D of Sebastiani-Thom type and
a finite set of points Z ⊂ D unless in the trivial situation when Z already determines the curve
itself (see Theorem 4.11). On the other hand, when the set of points has empty intersection
with the curve, we placed ourselves into the classical setting of cubic curves S ⊂ P

3 seen as the
blow-up S = BlZP

2 →P
2 of six general points Z in P

2 and proved that the linear systems of strict
transforms of lines |OS (L)| (see Theorem 4.6), conics |OS (2L)| (see Proposition 5.6) and cubic
curves |OS(3L)| (see Proposition 5.9) satisfy the Torelli property. In this setting, we proved that
the logarithmic bundle Ω

1
S(logD) with D ∈ |OS(L)| (resp. D ∈ |OS (2L)|) is a µ-stable vector bun-

dle with respect to the hyperplane section OS(1) with Chern classes (KS+L,7) (resp. (KS +2L,7))
and therefore the induced map from the complete linear system PH0(OS(D)) to the respective
moduli space of µ-stable bundles with fixed Chern classes is generically one-to-one (cf. Theo-
rem 5.4, resp. Theorem 5.8)).

Let us explain now the structure of the paper.
In Section 2, after recalling the required concepts from the theory of logarithmic sheaves and

fixing the notation, we prove a key technical result (see Lemma 2.2) which describes the re-
striction of logarithmic tangent sheaves to a given curve. This result will reveal itself of extreme
importance in the subsequent parts of the work in order to determine the splitting type of a
given sheaf when restricted to a rational curve. Furthermore, in the case where X is a smooth
projective surface we introduce the notion of generalized logarithmic sheaf Ω

1
X (log(D, Z )) on

X associated to the pair (D, Z ), being Z a fixed set of points in the divisor D. We conclude the
section studying the basic properties of this sheaf.

In Section 3 we are going to set up the main problem we are interested in, namely, up to
which point the generalized logarithmic sheaf Ω1

X (log(D, Z )) determines the pair (D, Z ). By
analogy with other well-studied settings, we are going to call it the Torelli property for gener-
alized logarithmic sheaves. Moreover, we are going to see how the Torelli property is affected
under blow-ups, depending on whether the blow-up is done on points contained (in Subsection
3.1) or not (in Subsection 3.2) in the divisors under consideration.
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The first situation, namely generalized logarithmic sheaves Ω1
X (log(D, Z )) with Z ⊂ D is stud-

ied deeply in Section 4 for the particular case of X being the projective plane. The goal of this
part is to give a complete picture for generalized logarithmic sheaves associated to a plane curve
D with a fixed set of points. Recall that it is already known that the Torelli property holds for a
curve D of degree at least 3 and not of Sebastiani-Thom type; see [21]. In particular we prove
that:

• the Torelli property holds for a line with at least two of its points fixed (so determining
the line itself), and

• the Torelli property holds for a conic with at least three of its points fixed; see Theorem
4.6, and

• the Torelli property holds for a cubic curve of Sebastiani-Thom type if and only if the
fixed points determine the curve; see Theorem 4.11.

Finally, in Section 5 we tackle the opposite situation, i.e., we deal with (generalized) logarith-
mic sheaves of the strict transform of curves C ⊂P

2 under blow-ups on set of points Z ⊂P
2 with

Z ∩C =;. In particular, if S ⊂P
3 is a smooth cubic surface and D belongs to the linear systems

|OS(L) | or |OS(2L) |, being L the pullback of a line in P
2 throughout the blow-up map, we prove

(Theorem 5.4 and Theorem 5.8) that:

• the logarithmic bundle Ω
1
S(logD) is stable, with respect to the polarization H given by

the hyperplane section, with Chern classes (c1,c2) =
(
KS + j L,7

)
. Furthermore, the Torelli

property holds for D. Hence, the induced rational map between the moduli spaces of
divisors and of stable sheaves

Ψ j : PH0(OS( j L)) 99KMH
S (KS + j L,7),

for j = 1,2, is generically one-to-one.

Acknowledgements. All the authors would like to thank Sungkyunkwan University for its hos-
pitality and for providing the best working conditions. They also want to thank the referees for
many useful comments.

2. PRELIMINARIES

Throughout the paper we are going to work over the field of complex numbers. Let us start
recalling the construction of logarithmic sheaves; see [19] for more details. Let X be a smooth
irreducible projective variety of dimension n ≥ 2, and let D = D1 +·· ·+Dm be an effective and
reduced divisor on X with simple normal crossings, where each D j is irreducible, i.e., each D j

is smooth and they intersect transversally: we also denote ∪m
j=1D j by D. Then one can consider

the sheaf of differential 1-forms with logarithmic poles along D, called the logarithmic sheaf on
X associated to D, denoted by Ω

1
X (logD). This sheaf turns out to be locally free, and the sections

of Ω1
X (logD) around a point x ∈ X are meromorphic 1-forms of the formω+

∑k
i=1 ui

(
dzi

zi

)
, where

z1 · · ·zk = 0 is the local defining equation of D. Here, ω is holomorphic 1-form and ui ’s are
holomorphic functions near x. The Poincaré residue morphism is locally defined by

res : Ω
1
X (logD) → ⊕m

j=1OD j∑k
i=1 ui

(
dzi

zi

)
+

∑n
i=k+1 ui d zi 7→ (u1(x), . . . ,uk (x),0, . . . 0),

and it fits into the canonical exact sequence

(1) 0−→Ω
1
X −→Ω

1
X (logD)

res
−−→⊕

m
j=1OD j

−→ 0.
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The dual ofΩ1
X (logD) is called the logarithmic tangent sheaf associated to D, denoted by TX (− logD);

it is the sheaf of holomorphic vector fields tangent to D. Then, dualising the sequence (1), we
get the following:

(2) 0 −→TX (− logD) −→TX
ψ
−→⊕

m
j=1OD j

(D j ) −→ 0.

Remark 2.1. Before stating Lemma 2.2 let us spell out here the sequence (2). Take an open
subset U ⊂ X and recall that, denoting by ϕU the equation defining D locally in U , we have

TX (− logD)(U ) =
{
∂ ∈Der (OX (U ),OX (U )) |∂(ϕU ) ∈ (ϕU )

}
.

Here, (ϕU ) is the ideal in OX (U ) generated by ϕU . With this setting, the map ψ in the sequence
(2) is defined by ψ(∂) =

[
∂(ϕU )

]
, where [−] denotes the equivalent class in OD (U ).

2.1. The Key Restriction Lemma. We will see that one of our main concerns is to compare
logarithmic sheaves. In order to do that, one of our main strategies is to study the restriction of
the logarithmic sheaf to embedded curves. The following lemma will be our central tool.

Lemma 2.2 (Key Restriction Lemma). Let X be a smooth variety and D an effective and reduced

divisor on X with simple normal crossings. Denoting by Dsm the smooth locus of the divisor,

consider a smooth curve i : C ,→ X such that

D ∩C =

p∑

i=1
ai Pi , with Pi ∈Dsm and ai ∈Z>0,

and the subscheme B = (D ∩C )red. Then, there exists a commutative diagram

(3)

0 0 0

0 TC (− logB) i∗
(
TX (− logD)

)
NlogD/B 0

0 TC i∗TX NC |X 0

0 OB ⊕m
j=1i∗OD j

(D j ) OB̃ 0

0 0 0

α
β

ψC

with B̃ =
∑p

i=1(ai −1)Pi . We will call the coherent sheaf NlogD/B the logarithmic normal sheaf of

C ⊂ X with respect to the divisor D. Furthermore, if we consider a proper subset B ( (D ∩C )red

the statement is false, i.e, to get a commutative diagram as (3), we must consider all the (reduced)

points given by the intersection of the divisor D with the curve C .

Proof. Since we are dealing with a local problem, we can restrict ourselves to the case when
p = 1, namely D ∩C = aP and B = {P } ⊂ C . Let us consider an affine open neighborhood U =

Spec(C[x1, . . . , xn]/I ) ⊂ X of P = (0, . . . ,0) for which

C ∩U =V (x2, . . . , xn) and D ∩U =V ( f (x1, . . . , xn))

with f ∈ C[x1, . . . , xn]/I . From the hypothesis that D ∩C ∩U = aP with a ≥ 1, we see that
f (x1,0, . . . ,0) = xa

1 , and in particular f has a presentation of the form:

f (x1, . . . , xn) = xa
1 +

s∑

j=2
x j · f j (x1, . . . , xn)
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Let us make now explicit the map ψC in the diagram (3) which is induced from ψ in (2). It is
defined as

ψC (U ) :=ψ⊗ id : TX (U )⊗OC (U ) −→ OD (D)(U )⊗OC (U )
∂⊗a 7→

[
a∂( f )

]

where f denotes the local equation of D in U and, in this case, [−] denotes the equivalent class
in OD∩C (U ), i.e., modded out by the ideal ( f , x2, . . . , xn). We will now prove that ψC ◦β ◦α = 0.
Because of the natural inclusion TC ⊂ i∗(TX ), we can choose the local coordinates in U ∩C to
be one of the local coordinates of U inside X so that

α(TC (− logB)(U )) =C{x1∂x1 } ⊂TC (U ).

Thus we have

x1∂x1 ( f ) = ax1·x
a−1
1 +x1

(
s∑

j=2
x j∂x1 f j

)

which, after modded out by ( f , x2, . . . , xn) = (xa
1 , x2, . . . , xn), is zero. This means that we have an

inclusion
TC (− logB) ,→ i∗

(
TX (− logD)

)

which gives the following commutative diagram

0 0

0 TC (− logB) i∗
(
TX (− logD)

)

0 TC i∗ (TX )

OB ⊕m
j=1i∗

(
OD j

(D j )
)

0 0.

ψC

h

It remains to prove that h is injective. In order to show this, recall that the open subset U ⊂ X

satisfies
B ∩U = P and C ∩D ∩U = aP,

having both schemes as support a single point. In this case, the restriction map h|U is either
injective or zero. The latter case is impossible; then we would have that ψC ◦β = 0. However,
considering the element ∂x1 ∈ TC (U ) that can be seen as well as one element in a basis for
TX (U ), we have

∂x1 f ≡ xa−1
1 6≡ 0 ( mod(xa

1 , x2, . . . , xn)).

To prove the final part of the statement, we can restrict once again to the case D∩C = aP , but
now being B empty. In this case, Diagram (3) would imply an injection TC ,→ i∗

(
TX (− logD)

)
.

This is clearly a contradiction because, using the same setting and notation as in the first part
of the proof, the derivation ∂x1 belongs to TC (U ) but not to i∗

(
TX (− logD)

)
(U ).

�

Remark 2.3. Assume that dim X = 2, and so the logarithmic tangent sheaf TX (− logD) is al-
ways locally free. Then the proof of Lemma 2.2 shows that the condition of Lemma 2.2 can be
weakened. Indeed, D does not necessarily have to have simple normal crossings and C can be
chosen to be an arbitrary smooth curve so that the intersection points Pi ’s do not have to be in
Dsm.
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To underline the importance of the previous result, we will recover, by means of Lemma 2.2,
well known descriptions of logarithmic tangent sheaves. In particular, we will see how to recover
the vector bundle by studying its restriction to lines and, more in general, to rational curves.
Thanks to a well known result due to Grothendieck (see [13] and [17, I.2-I.3]), a vector bundle E

on P
1 splits as a sum of line bundles. Therefore, given a vector bundle E on X and a line L ⊂ X ,

we have
E|L

∼=⊕
r
i=1OL(aL

i ) with aL
1 ≤ ·· · ≤ aL

r ,

and we call (aL
1 , . . . , aL

r ) ∈ Z
⊕r the splitting type of E on L. Moreover, in case of X = P

n , there
exists a non-empty open subset U of the Grassmannian of lines Gr(2,n +1) and an ordered set
of integers (a1, . . . , ar ) such that E|L

∼= ⊕r
i=1OL(ai ) for all L ∈ U . For every line L ∈ U , the given

splitting is called the generic splitting type of E and the set S(E ) := Gr(2,n +1) \U is called the
set of jumping lines. A vector bundle E on P

n is said to be uniform if S(E ) = ;, so, when all
lines have the same splytting type. As an application, recall for example that the study of S(E )
can be used to understand the geometry of moduli space of stable vector bundles; see [2]. We
will adapt, in Definition 4.1, the concept of jumping line for coherent sheaves and, indeed,
the studying of their locus will allow us to recover the divisor from the sheaf of logarithmic
differentials.

Example 2.4. Let D be a smooth conic in P
2 and apply Lemma 2.2 to a line L. If L is tangent to

D, Lemma 2.2 produces an exact sequence

0−→OL(1) −→
(
TP2(− logD)

)
|L −→OL −→ 0,

and so we get
(
TP2(− logD)

)
|L
∼= OL ⊕OL(1). Similarly, if L intersects D transversally, we get the

same splitting. In particular, the bundle TP2(− logD) has the same splitting over any line, i.e.
it is uniform; see [17]. By [23], TP2(− logD) is isomorphic to either OP2 ⊕OP2(1) or TP2(−1).
From h0(TP2) = 8 and the sequence (2), we see that the former is impossible. Hence we have
TP2(− logD) ∼=TP2(−1); see [1] for the generalization.

Example 2.5. For a divisor D = L1 +·· ·+Lm of m distinct lines in P
2, call the maximal number

of lines in D passing through a point, the multiplicity of D, and denote it by m(D); for the
generic case we have m(D) = 2. Pick a point p ∈P

2 achieving m(D) and consider a general line
L through p. Applying Lemma 2.2 to the pair (D,L), we obtain

0 −→OL ((1−m +m(D)) −→
(
TP2(− logD)

)
|L −→OL (2−m(D)) −→ 0.

If m(D) is big enough so that we have 2m(D) ≥ m, the sequence splits, i.e.,
(
TP2(− logD)

)
|L
∼=OL ((1−m +m(D))⊕OL (2−m(D)) .

On the other hand, we have

c1(TP2(− logD)) = 3−m,

c2(TP2(− logD)) =
∑

x∈P2

(s(x)−1)+3−2m,

where s(x) is the number of lines in D through x. Assume further that 2m(D) ≥ m +1 so that

c1(TP2(− logD)⊗OP2 (m −1−m(D))) ≤ 0 and c2(TP2(− logD)⊗OP2(m −1−m(D))) = 0.

Then, by [8, Corollary 2.13] or [10, Lemma 2.4] we obtain

TP2(− logD)⊗OP2 (m −1−m(D)) ∼=OP2 ⊕OP2(m +1−2m(D)).
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In particular, TP2(− logD) is a direct sum of two line bundles so that D is a free divisor by defi-
nition. For example, consider a divisor D = L1+·· ·+Lm of m distinct lines, all passing through a
fixed point p, i.e., m(D) = m. Since we have c2(TP2(− logD)⊗OP2 (−1)) = 0, we get that D is free
with TP2(− logD) ∼=OP2(1)⊕OP2(2−m). As the second example, for fixed two distinct points p, q

in P
2, consider a divisor

D = pq + (L1 +·· ·+La)+ (L′
1 +·· ·+L′

b)

of distinct m = a+b+1 lines in P
2 such that ∩a

i=1Li = {p} and ∩b
j=1L′

j
= {q}. From the argument

above the divisor D is free. On the other hand, by the same method of applying Lemma 2.2, we
can see that the logarithmic vector bundle associated to the divisor D◦ = (L1 + ·· · +La)+ (L′

1 +

·· ·+L′
b

) is not uniform. Assume now that 2m(D) = m and c2(TP2(− logD)⊗OP2(m(D)−2)) = 0.
Then by the same argument in the above, we get

TP2(− logD) ∼=OP2(2−m(D))⊕OP2 (1−m(D)).

For example, a divisor of 6 lines with 4 triple points and 3 double points is free with splitting
type (−1,−2).

2.2. Generalized logarithmic sheaves. Now assume that X is a smooth projective surface and
D =

∑m
j=1 D j ⊂ X is a divisor with each D j irreducible. Fix k distinct points Z = {p1, . . . , pk } ⊂

Dsm, with Dsm denoting the smooth locus of the divisor. By reordering the index, we may
assume that Z j = {pa j

, . . . , pa j+1−1} with a1 ≤ ·· · ≤ ak and Z j is contained in D j so that Z =

Z1⊔·· ·⊔Zm ; if a j = a j+1, we have Z j =;. Denoting by X̃ = BlZ X the blow-up of X along Z , one
can consider the logarithmic vector bundleΩ

1
X̃

(logD̃), where D̃ = D̃1+·· ·+D̃m with D̃ j the strict

transform of D j via the blow-up π : X̃ → X . Notice that D̃ is still a divisor with simple normal
crossings in X̃ . By applying the push-forward functor π∗ to the Poincaré residue sequence for
(X̃ ,D̃), one obtains

(4) 0 −→π∗Ω
1
X̃
−→π∗Ω

1
X̃

(logD̃) −→⊕
m
j=1OD j

−→ R1π∗Ω
1
X̃
−→ R1π∗Ω

1
X̃

(logD̃) −→ 0.

Lemma 2.6. Let Ei =π−1(pi ) be the exceptional divisor of π at pi .

(a) Ω
1
X̃ |X

∼=⊕k
i=1OEi

(2Ei ).

(b) Riπ∗Ω
1
X̃ |X

∼=⊕k
j=1Hi (OE j

(2E j ))⊗Op j
, for i ≥ 0.

Proof. The sequence (iv) of [12, Lemma 15.4] in our setting is as follows:

(5) 0−→TX̃ −→π∗
TX −→Q −→ 0

for the sheaf Q fitting into the sequence (i) of [12, Lemma 15.4]

0 −→OE (−1) −→O
⊕2
E −→Q −→ 0

with E = E1 +·· ·+Ek . Thus we have Q ∼=OE (1). Dualizing the sequence (5), we get

(6) 0 −→π∗
Ω

1
X −→Ω

1
X̃
−→Ω

1
X̃ |X

−→ 0,

where Ω
1
X̃ |X

∼= E xt 1
X̃

(Q,OX̃ ) ∼= OE (−2) ∼= ⊕k
i=1OEi

(2Ei ), proving the assertion (a). The assertion

(b) follows directly from the definition of higher direct image Riπ∗(−). �

Proposition 2.7. The push-forward π∗Ω
1
X̃

(logD̃) fits into an exact sequence

(7) 0−→Ω
1
X −→π∗Ω

1
X̃

(logD̃) −→⊕
m
j=1OD j

(−Z j ) −→ 0.
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Proof. Applying the push-forward functor π∗ to (6), together with π∗OX̃
∼= OX and Riπ∗OX̃ = 0

for i ≥ 1, we get an exact sequence

(8) 0−→Ω
1
X −→π∗Ω

1
X̃
−→π∗Ω

1
X̃ |X

−→ 0,

and Riπ∗Ω
1
X̃
∼= Riπ∗Ω

1
X̃ |X

for i ≥ 1. Then by Lemma 2.6 we get π∗Ω
1
X̃
∼= Ω

1
X and R1π∗Ω

1
X̃
∼=

R1π∗Ω
1
X̃ |X

∼=⊕k
i=1Opi

=OZ .

Set E = Ei and p = pi for some i . By tensoring the sequence (6) by OE , we obtain

0 −→Tor 1
X̃

(OE (2E ),OE ) ∼=OE (−1) −→
(
π∗

Ω
1
X

)
|E −→

(
Ω

1
X̃

)
|E
−→OE (−2) −→ 0.

Let us observe that, since
(
π∗

Ω
1
X

)
|E

∼= O
⊕2
E , it turns out that

(
Ω

1
X̃

)
|E

∼= OE (−2)⊕OE (1) (which is

consistent with the fact that c1

((
Ω

1
X̃

)
|E

)
= (π∗KX +E ).E =−1). Now, given that D̃ and E intersect

transversally at a single point q ∈ E , we obtain the following commutative diagram

(9)

0 0 0

0 TE (− log{q}) ∼=OP1(1)
(
TX̃ (− logD̃)

)
|E NlogD̃/{q} 0

0 TE
∼=OP1(2)

(
TX̃

)
|E NE |X̃ 0

Oq Oq

0 0.

∼=

∼=

From the middle vertical exact sequence, we obtain
(
Ω

1
X̃

(logD̃)
)
|E

∼=OP1(−1)⊕OP1(1).

In particular, we have H1
(
Ω

1
X̃

(logD̃)|E
)
= 0. Now by the Theorem on Formal Functions in [14,

Section III.11] we have
(
R1π∗Ω

1
X̃

(logD̃)
)∧

p

∼= lim
←−

H1
(
E (n),

(
Ω

1
X̃

(logD̃)
)(n)

)
,

where E (n) = X̃ ×X Spec(Op /mn
p ), with mp the maximal ideal of the local ring, denotes the thick-

ening of E with order n, admitting the exact sequence

(10) 0 −→OE (n) −→OE (n+1) −→OE (n) −→ 0,

and
(
Ω

1
X̃

(logD̃)
)(n)

is the restriction to E (n); refer to [14, proof of Proposition V.3.4]. The long

exact sequence of cohomology associated to the sequence (10) tensored with Ω
1
X̃

(logD̃) is as
follows:

0 ∼= H1
((
Ω

1
X̃

(logD̃)
)
|E

(n)
)
−→ H1

((
Ω

1
X̃

(logD̃)
)(n+1)

)
−→ H1

((
Ω

1
X̃

(logD̃)
)(n)

)
−→ 0.

Thus we get that
(
R1π∗Ω

1
X̃

(logD̃)
)∧

p
is trivial. �
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It turns out that the coherent sheaf π∗Ω
1
X̃

(logD̃) introduced in Proposition 2.7 will be the
main object of study in this paper.

Definition 2.8. We will call the push-forward π∗Ω
1
X̃

(logD̃) the generalized logarithmic sheaf on

X associated to the pair (D, Z ), and we will denote it by Ω
1
X (log(D, Z )). The sequence (6) is

rewritten as

(11) 0−→Ω
1
X −→Ω

1
X (log(D, Z )) −→⊕

m
j=1OD j

(−Z j ) −→ 0,

and it is called the Poincaré residue sequence for Ω1
X (log(D, Z )). When Z =;, one gets the usual

logarithmic vector bundle Ω
1
X (log(D,;)) =Ω

1
X (logD).

Notice that Ω1
X (log(D, Z )) is defined as the push-forward of a torsion-free OX̃ -sheaf with re-

spect to a surjective map, hence, it is a torsion-free OX -sheaf as well. The goal of the next result
is to exactly determine its singular locus.

Proposition 2.9. The generalized logarithmic sheaf Ω1
X (log(D, Z )) is a torsion-free sheaf which is

not locally free exactly along Z . Furthermore, the canonical injection into its double is described

by the following short exact sequence

(12) 0−→Ω
1
X (log(D, Z )) −→Ω

1
X (logD) −→OZ −→ 0.

In particular, we have that
(
Ω

1
X (log(D, Z ))

)∨∨
≃Ω

1
X (logD).

Proof. Using the notation introduced at the beginning of the section, set D̃ ′ = D̃+(E1+·· ·+Ek).
Then by [4, Proposition 3.2 in Chapter II] one obtains an injection

(13) π∗
Ω

1
X (logD) −→Ω

1
X̃

(logD̃ ′)

because π∗
Ω

1
X (logD) is locally free. Denote its cokernel by K and set Z̃ = {q1, . . . , qk } where

qi = D̃ ∩Ei are the intersection points. Then we obtain the following commutative diagram

(14)

0 0 0

0 π∗
Ω

1
X π∗

Ω
1
X (logD) ⊕m

j=1OD̃ j+π−1(Z j ) 0

0 Ω
1
X̃

Ω
1
X̃

(logD̃ ′) ⊕m
j=1

(
OD̃ j

⊕ (⊕pi∈Z j
OEi

)
)

0

0 ⊕k
i=1OEi

(−2) K OZ̃ 0

0 0 0.

η1

Note that the first horizontal sequence is the pull-back of the Poincaré residue sequence for
Ω

1
X (logD) and the second horizontal sequence is the Poincaré residue sequence for Ω1

X̃
(logD̃ ′).

The middle terms of these two sequences are related by the injection given by (13). Moreover,
by its definition, such an injection factorizes through π∗

Ω
1
X ,→Ω

1
X̃

and therefore we obtain the
commutative upper left square. We complete the diagram by the Snake Lemma. Finally, from
the lower horizontal sequence, we obtain that K ∼=⊕k

i=1OEi
(−1).

Now, applying the push-forward functor π∗ to the middle vertical sequence, we obtain

Ω
1
X (logD) ∼=π∗Ω

1
X̃

(logD̃ ′).
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Again, take the push-forward functor π∗ to the following exact sequence

0 −→Ω
1
X̃

(logD̃) −→Ω
1
X̃

(logD̃ ′) −→⊕
k
i=1OEi

−→ 0

to obtain an injection from π∗Ω
1
X̃

(logD̃) into Ω
1
X (logD), whose cokernel K

′ is a subsheaf of

⊕k
i=1π∗OEi

∼=OZ . From the following commutative diagram

(15)

0 0

Ω
1
X Ω

1
X

0 π∗Ω
1
X̃

(logD̃) Ω
1
X (logD) K

′ 0

0 ⊕m
j=1OD j

(−Z j ) ⊕m
j=1OD j

OZ 0

0 0,

∼=

∼=

we get that K
′ is isomorphic to OZ and the assertion follows. �

Remark 2.10. Recall that the sections of Ω1
X (logD) around a point x ∈ X are meromorphic 1-

forms of the formω+u
(

dz1
z1

)
, where z1 is the local defining equation for D in the local coordinate

system 〈z1, z2〉. We see from Proposition 2.9 that the sections of Ω1
X (log(D, Z )) around a point

x ∈ Z are meromorphic 1-forms of the same form as above with the additional condition that
the holomorphic function u vanishes at x.

3. THE TORELLI PROPERTY FOR GENERALIZED LOGARITHMIC SHEAVES

In this section we are going to set up the main problem we are interested in, namely, up to
which point the generalized logarithmic sheaf Ω1

X (log(D, Z )) defined in the previous section
determines the pair (D, Z ) . By analogy with other well-studied settings, we are going to call it
the Torelli problem for generalized logarithmic sheaves.

Question 3.1. Let X be a projective surface, and Z ⊂ X a finite set (possibly empty) of distinct
points. For an effective line bundle L , set F(Z ,L ) ⊂PH0(L⊗IZ ,X ) consisting of smooth curves
D from the linear system |L | passing through Z . Then the question we want to address is:

"Given two divisors D1,D2 ∈ F(Z ,L ) with Ω
1
X (log(D1, Z )) ∼=Ω

1
X (log(D2, Z )),

do we have D1 = D2?"

If the answer is positive, then we say that the Torelli property holds for (the divisors in) F(Z ,L ).

First of all, in order to understand the dependency of the Torelli property with respect to
the choice of the general set of points Z ⊂ X , let Z ′ ⊂ X be a second set of distinct points and
let Z ′′ = Z ∪ Z ′. Let us define X̃ := BlZ X and X̃ ′ := BlZ ′′ X . Since there exists an isomorphism
between X̃ \π−1(Z ) and X \Z , we are going to identify the points Z ′ in X with their preimages in
X̃ . Let us consider the composition of blow-up morphisms:

(16) π′′ : X̃ ′ π′

−→ X̃
π

−→ X

Now we have two possibilities to study:
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3.1. Divisors D ⊂ X that contain the larger set of points Z ′′. In this case we are considering
divisors D from the linear system |L | in F(Z ′′,L ) ⊂ F(Z ,L ). Therefore, in order to have a con-
sistent definition for the Torelli property, we have to prove the following.

Proposition 3.2. For two given divisors D1,D2 ∈ F(Z ′′,L ) with

Ω
1
X (log(D1, Z ′′)) ∼=Ω

1
X (log(D2, Z ′′)),

we have

Ω
1
X (log(D1, Z )) ∼=Ω

1
X (log(D2, Z ))

Proof. In X̃ we can consider the aforementioned short exact sequence

0−→Ω
1
X̃

(log(D̃ , Z ′) −→Ω
1
X̃

(logD̃) −→OZ ′ −→ 0

for D = Di . Taking push-forward with respect to π, we have

0−→Ω
1
X (log(D, Z ′′)) −→Ω

1
X (log(D, Z )) −→OZ ′ −→ 0

from the fact that R1π∗Ω
1
X̃

(log(D̃, Z ′)) ∼= 0 since Ω
1
X̃

(logD̃ , Z ′) is locally free along Z . If we let ϕ :

Ω
1
X (log(D1, Z ′′))

∼=
−→ Ω

1
X (log(D2, Z ′′)) be an isomorphism, then we can complete the following

diagram

0 Ω
1
X (log(D1, Z ′′)) Ω

1
X (log(D1, Z )) OZ ′ 0

0 Ω
1
X (log(D2, Z ′′)) Ω

1
X (log(D2, Z )) OZ ′ 0

ϕ ψ

∼=

as soon as we prove that Ext1
X (OZ ′ ,Ω1

X (log(D2, Z ))) is trivial. This follows easily from the local-
to-global spectral sequence taking into account that the intersection of the support of OZ ′ and
the singular points of Ω1

X (log(D2, Z )) is empty. Therefore, we can construct an isomorphism

ψ : Ω1
X (log(D1, Z ))

∼=
−→Ω

1
X (log(D2, Z )), as required. �

Remark 3.3. Notice that the previous proposition was already known in the particular case
Z =; by Proposition 2.9.

Corollary 3.4. Let Z ⊂ Z ′′ ⊂ X general set of points. If the Torelli property holds for F(Z ,L ), then

it also holds for F(Z ′′,L ).

The previous observations drive us to consider the following problem: given a projective sur-
face X and an effective line bundle L on X , which is the minimal cardinality of a general set
of points Z ⊂ X such that the Torelli property holds for F(Z ,L )? In Section 4 we are going to
address this question in the case of arbitrary line bundles on the projective plane P

2.

3.2. Divisors D ⊂ X such that D∩Z ′ =;. Let D ⊂ X be a divisor such that Z ⊂ Dsm and Z ′∩D =

;. Let D̃ (resp. D̃ ′) be the strict transform of D in X̃ (resp. in X̃ ′), according to notation from
(16).

Remark 3.5. It follows from Proposition 2.7 that π′
∗Ω

1
X̃ ′

(logD̃ ′) ∼=Ω
1
X̃

(logD̃). In other words, we
have the following isomorphism

Ω
1
X (log(D, Z )) ∼= (π◦π′)∗Ω

1
X̃ ′(logD̃ ′),

where D̃ ′ is the strict transform of D̃ in X̃ ′.
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This allows us to study logarithmic bundles in more general blown-up surfaces, a problem
that will be tackled in Section 5. In particular, we would like to check if the Torelli property
holds for the linear system |D̃ ′| on X̃ ′. As an immediate consequence of Remark 3.5, we have
the following result.

Lemma 3.6. If the Torelli property holds for the pair (D, Z ) on X , then the Torelli property holds

for the linear system |D̃ ′| on X̃ ′.

On the other hand, the reciprocal implication does not hold in general, as we will see com-
bining the previous Lemma with Remark 5.3. Indeed, in Section 5 we are going to study deeply
this issues in the particular case of the smooth cubic surface S ⊂P

3.

4. GENERALIZED LOGARITHMIC SHEAVES WITH FIXED POINTS INSIDE THE DIVISOR

In this section we will place ourselves on the setting of Subsection 3.1 for the particular case
of the projective plane. In other words, we are going to consider the generalized logarithmic
sheaf Ω1

P2(log(D, Z )) on P
2 associated to a pair (D, Z ), where D ⊂P

2 is a smooth curve of degree
d and Z is a set of k distinct points on D. In Section 5, in order to follow the path proposed
in Subsection 3.2, we are going to study an analogous setting but with respect to a set of point
without intersection with the curves under consideration.

Fix k distinct points Z = {p1, . . . , pk } on P
2 in general position and set Fd (Z ) := F(Z ,OP2 (d)) ⊂

PH0(IZ ,P2 (d)) consisting of the smooth curves of degree d passing through Z . We are going to
answer to Question 3.1 in this setting.

Recall that a hypersurface D ⊂ P
n is of Sebastiani-Thom type if its defining polynomial can

be written, after choosing properly a coordinate system, as a sum of two polynomials on dis-
joint sets of variables. For instance, any hyperplane is of Sebastiani-Thom type. Analogously,
any quadric hypersurface in the projective space is of Sebastiani-Thom type, since its defining
equation can be written as a sum of squares.
If d ≥ 3 we already know, by [21, Theorem 1], that the Torelli property holds for any smooth
hypersurface not of Sebastiani-Thom type. Focusing on the projective plane, this implies, in
particular, that for any d ≥ 3 and Z ⊂ P

2, the Torelli property holds for any pair (D, Z ), for D

in the open subset U ⊂ Fd (Z ) consisting on smooth curves not of Sebastiani-Thom type. In-
deed, if for two D1,D2 smooth curves not of Sebastiani-Thom type, the associated generalized
logarithmic sheaves are isomorphic,

Ω
1
P2(log(D1, Z1)) ∼=Ω

1
P2(log(D2, Z2)),

then, taking their double duals, we obtain from Proposition 2.9 that

Ω
1
P2(logD1) ∼=Ω

1
P2(logD2).

The mentioned result [21, Theorem 1] implies that the curves D1 and D2 coincide. Furthermore,
we also have that Z1 = Z2 because these sets are the respectively singular locus of isomorphic
sheaves (see Proposition 2.9).

Let us denote the different cases to be studied by the degree of the curve and the number of
fixed points, i.e., by the pair (d ,k). Notice that, for Question 3.1 not to be trivial, we need to
have at least two different curves in Fd (Z ). Therefore, the pair (d ,k) should be chosen to satisfy
h0(IZ ,P2 (d)) ≥ 2 so that the number k of fixed points does not determine completely the curve.
Thus, we will first consider Question 3.1 for

(17) (d ,k) ∈ {(1,0), (1,1), (2,0), (2,1), (2,2), (2,3), (2,4)}.
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The three first cases on the list are easily handled. Indeed, recall that we have

Ω
1
P2(logL) ∼=OP2(−1)⊕2, Ω

1
P2(logQ) ∼=TP2(−2),

for any line L and any smooth conic Q in P
2; see, for example, [6] and [1], or apply Lemma 2.2.

Moreover, if p ∈ L is a point on a line L ⊂P
2, then the sequence (12) gives

Ω
1
P2(log(L, {p})) ∼=I{p},P2 (−1)⊕OP2(−1).

Therefore, the Torelli property does not hold for F1({p}).
In Section 4.1, we will deal with the rest of the cases listed in (17), that means we will consider a
conic and fix at least one point on it.
Finally, in Section 4.2, we will consider cubic curves of Sebastiani-Thom type.

4.1. Conics with fixed points. We now consider the case of generalized logarithmic sheaves
associated to conics. In this case, an important tool to study them will be the description of their
restriction to lines. Before Example 2.4 we recalled the definition of jumping line for a vector
bundle on a projective space. This notion can be generalized for arbitrary coherent sheaves. In
the particular case of rank two coherent sheaves, we give the definition as follows.

Definition 4.1. For a coherent sheaf E on P
2 of rank two with first Chern class c1 ∈ {−1,0}, a line

L ⊂P
2 is said to be a jumping line of E if h1(E (−1−c1)|L) > 0. Again we denote the set of jumping

lines of E by S(E ).

Remark 4.2. Notice that, when E is a vector bundle of rank two with Chern class c1 =−1 (resp.
c1 = 0), L is a jumping line if and only if E|L ≇ OP1(−1)⊕OP1 (resp. E|L ≇ OP1 ⊕OP1), namely E|L

has not the generic expected splitting type.

We will see that the case (d ,k) = (2,3) plays a particular role. Let us start to describe it in the
following remark.

Remark 4.3. Fix a smooth conic Q passing through three points Z = {p1, p2, p3} in general po-
sition. Then, directly from Definition 2.8, the generalized logarithmic sheaf Ω1

P2(log(Q, Z )) fits
into the following exact sequence

(18) 0 −→Ω
1
P2 −→Ω

1
P2(log(Q, Z )) −→OQ (−Z ) −→ 0,

where OQ (−Z ) is the ideal sheaf of Z inside Q. Recall that the inclusion Z ⊂Q induces a reversed
inclusion of the respective ideals, which implies the following short exact sequence

0 −→IQ,P2 −→IZ ,P2 −→OQ (−Z ) −→ 0.

Having that IQ,P2 ≃OP2(−2) and IZ ,P2 admits a free resolution

0 −→OP2(−3)⊕2
−→OP2(−2)⊕3

−→IZ ,P2 −→ 0,

we obtain, through the Mapping Cone (see [24, Section 1.5.1]), a free resolution for OQ (−Z ):

0 −→OP2(−3)⊕2
−→OP2(−2)⊕2

−→OQ (−Z ) −→ 0.

Then, considering the resolution Ω
1
P2 and applying the Horseshoe Lemma (see [24, Lemma

2.2.8]) to the sequence (18), we obtain the exact sequence

(19) 0−→OP2(−3)⊕3 M
−→OP2(−2)⊕5

−→Ω
1
P2(log(Q, Z )) −→ 0,

that is, a Steiner type resolution; see for example [6, Definition 3.1]. Notice in principle that
the Horseshoe Lemma would apply only to the associated modules of twisted global sections.
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However, since the three sheaves in (18) have no global sections and H1(Ω1
P2(t )) = 0 for t > 0,

the Horseshoe Lemma can be also applied to (18). In particular, Ω1
P2(log(Q, Z )) is a stable sheaf

of rank two on P
2 with the Chern classes (c1,c2) = (−1,4).

Proposition 4.4. Fix a set Z = {p1, . . . , pk } ⊂ P
2 of k distinct points on a smooth conic Q ⊂ P

2.

Among the extensions

(20) 0 −→Ω
1
P2 −→F −→OQ (−Z ) −→ 0,

there exists a unique middle term F exactly singular along Z , namely F ∼=Ω
1
P2(log(Q, Z )).

Proof. Let us assume that the sheaf F defined by the sequence (20) is singular along Z . Since
OQ (−Z ) is supported on a proper subvariety of P2, we have that HomP2(OQ (−Z ),OP2) = 0 and
then by dualizing the exact sequence given in (20) we get

0 −→F
∨
−→TP2 −→OQ (Z )⊗OP2 (2) −→ E xt 1

P2 (F ,OP2) ∼=OZ −→ 0.

The latter sequence decomposes into the following two short exact sequences




0 −→F
∨ −→TP2 −→OQ ⊗OP2(2) −→ 0;

0 −→OQ ⊗OP2(2) −→OQ(Z )⊗OP2 (2) −→OZ −→ 0.

The first exact sequence is unique. Indeed, notice that every surjection of type

TP2 −→OQ (2)

factorizes through the restriction of the tangent bundle on the conic Q, i.e., it can be described
by the composition

TP2
π

−→TP2 ⊗OQ
∼=OQ ({q1, q2, q3})⊕2 f

−→OQ (2),

with {q1, q2, q3} three points on the conic. Observe that, by the isomorphism Q ∼=P
1, the second

map can be rewritten as

OP1(3)⊕2 f
−→OP1(4) −→ 0.

This implies that f is unique, up to isomorphism; in particular, it can be represented by two
linearly independent linear forms that give a basis of H0

(
OP1(1)

)
. This implies that, again up to

isomorphism, there is a unique vector bundle that is the kernel of ( f ◦π). Specifically, it is the
vector bundle TP2(−2).

The second exact sequence is uniquely determined by the polynomial of degree k on Q van-
ishing along Z , which represents the injective map of the sequence.

Putting everything together, this implies the uniqueness of the sheaf F , because we can re-
cover F as the kernel of the composition

F
∨∨

−→ E xt 1
P2 (OQ ⊗OP2(2),OP2) ∼=OQ −→OZ ,

which is obtained from the dual of the first sequence and the twist of the second one.
Let us remark that if a sheaf F in the sequence (20) is singular along a proper subscheme

Z
′

⊂ Z then the surjection

TP2 −→TP2 ⊗OQ
∼=OQ({q1, q2, q3})⊕2

−→OQ (Z \ Z
′

)⊗OP2 (2)

is no more unique. �
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The following result will tell us that the jumping lines of Ω1
P2(log(Q, Z )) are the expected ones,

i.e., the ones passing through any two points of Z and the ones passing through a point of Z and
tangent to the curve Q.

Proposition 4.5. For Z = {p1, . . . , pk } ⊂P
2 a set of k ≥ 3 distinct points in a smooth conic Q ⊂P

2,

we have

S
(
Ω

1
P2(log(Q, Z )

)
=

{
Li j | 1 ≤ i < j ≤ k

}
∪

{
Ti Q | 1 ≤ i ≤ k

}
,

where Li j is the line passing through pi and p j , and Ti Q is the tangent line of Q at pi .

Proof. From the sequence (12) we get that the lines Li j ’s are jumping. Indeed, restricting (12) to
Li j , we get an exact sequence

0−→Opi
⊕Op j

−→Ω
1
P2(log(Q, Z ))|Li j

−→OLi j
(−1)⊕OLi j

−→Opi
⊕Op j

−→ 0.

Denoting by G the image of the middle map

Ω
1
P2(log(Q, Z ))|Li j

−→OLi j
(−1)⊕OLi j

,

we verify directly that h1(Ω1
P2(log(Q, Z ))|Li j

) = h1(G ). This proves that h1(Ω1
P2(log(Q, Z ))|Li j

) ≥ 1.
Assume that k = 3 and then, as seen before, we have

0 −→Ω
1
P2 −→Ω

1
P2(log(Q, Z )) −→OQ (−Z ) −→ 0

and a resolution determined by a matrix of linear forms, that is a Steiner sheaf:

0−→OP2(−3)⊕3 M
−→OP2(−2)⊕5

−→Ω
1
P2(log(Q, Z )) −→ 0.

According to Proposition 4.4, such a sheaf, singular along Z , is unique.
On the other hand, up to a projective automorphism, we may assume Q = V (x0x1 + x1x2 +

x2x0) and consider the matrix

M =




x0 x1 x2 0 0
ax0 bx1 ax2 x0 −x2

bx0 ax1 ax2 x1 x1 +x2




t

.

which defines a Steiner sheaf F , that fits as well in the short exact sequences (18) and (19)
replacing Ω

1
P2(log(Q, Z )). Then F is a non-locally free sheaf with singularity at three points

p0 = [1 : 0 : 0], p1 = [0 : 1 : 0], p2 = [0 : 0 : 1], and F
∨∨ ∼=TP2(−2)∼=Ω

1
P2(logQ). By unicity this gives

F ∼=Ω
1
P2(log(Q, Z )). Notice that the three tangent lines V (xi ) for i = 0,1,2 are jumping lines for

F . Furthermore, we can observe that, for

u0 = (0,1,1,0, a−b)t , u1 = (1,0,1, a−b,−a+b)t , u2 = (1,1,0,b −1,0)t ,

each Mui is divisible by x j +xk , whenever we have {i , j ,k} = {0,1,2}. This implies that the three
additional lines V (x0 + x1), V (x1 + x2) and V (x2 + x0) are also jumping lines for F ; these three
additional lines are the tangent lines to D at each pi . Let us explain why in a few words. By
restriction of the free resolution of F to one of these six lines, say L, we obtain:

0−→OL(−3)⊕3 ML
−→OL(−2)⊕5

−→F ⊗OL −→ 0.

In the long exact sequence of cohomology we have:

H1(OL(−3)⊕3)
ML
−→H1(OP2(−2)⊕5) −→H1(F ⊗OL) −→ 0.

The Serre duality provides the isomorphisms

H1(OL(−3)⊕3) ∼= H0(OL(1)⊕3)∨ and H1(OL(−2)⊕5) ∼= H0(O⊕5
L )∨,
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which identify H1(F ⊗OL) with the kernel of the transpose matrix (ML)t . Since each one of the
six lines gives a nonzero vector in this kernel, this proves that h1(F ⊗OL) ≥ 1. Let L be a line
passing through only one of the points pi with i = 1,2,3 and not tangent to Q. Consider the
following restriction diagram

(
Ω

1
P2

)
|L

∼=OL(−2)⊕OL(−1) //

ϕ
**❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

(
Ω

1
P2(log(Q, Z ))

)
|L

��(
Ω

1
P2(log(Q))

)
|L

∼=OL(−1)⊕OL

Due to the Key Restriction Lemma 2.2, we have that ϕ defines an isomorphism between the two

OL(−1) summands. Hence
(
Ω

1
P2(log(Q, Z ))

)
|L

∼=OL(−1)⊕2 ⊕Opi
, i.e., L cannot be a jumping line.

Therefore, we get the assertion for k = 3.
Assume now that Z is a set of k + 1 distinct points, and denote Fk+1 and Fk , the sheaves

singular along Z and along a subscheme Z
′

⊂ Z of k points, respectively. Then we have an
exact sequence

0 −→Fk+1 −→Fk −→OZ \Z
′ −→ 0.

Outside Z \ Z
′

, their jumping lines coincide. So, choosing the
(k+1

k

)
= k + 1 subschemes Z

′

of

length k in Z , we verify that the jumping lines are the
(k+1

2

)
lines joining two points from Z

and the tangent lines to Q along Z (the k vertices of the k-gon) by inductive hypothesis. This
concludes the assertion. �

We are ready to state the main result of this section.

Theorem 4.6. The Torelli property holds for F2(Z ) if and only if |Z | ≥ 3;

Proof. Note that the case |Z | ≥ 5 is obvious, since any five points determine at most one smooth
conic. Recall that for a set Z = {p1, . . . , pk } ⊂ P

2 of k distinct points in general position and a
smooth conic Q ⊂P

2 containing Z , we have the double dual exact sequence

(21) 0 −→Ω
1
P2(log(Q, Z )) −→Ω

1
P2(logQ) ∼=TP2(−2) −→OZ −→ 0,

fitting into the following commutative diagram

(22)

0 0

0 Ω
1
P2 Ω

1
P2(log(Q, Z )) OQ (−Z ) 0

0 Ω
1
P2 Ω

1
P2(logQ)) ∼=TP2(−2) OQ 0

OZ OZ

0 0.

∼=

∼=

From the middle vertical sequence of (22) we get that the sheaf Ω1
P2(log(Q, Z )) is a kernel of a

surjection TP2(−2)→OZ , which induces a surjection
(
TP2(−2)

)
Z →OZ on stalks. Thus we get a
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morphism

F2(Z ) −→P
1
×·· ·×P

1
︸ ︷︷ ︸

k copies

∼=

k∏

i=1
PHom(TP2(−2)pi

,Opi
).

Since F2(Z ) is an open Zariski subset of P5−k ∼= PH0(IZ ,P2(2)), by dimension counting the map
is not injective for k = 1,2, i.e., the Torelli property does not hold.

The assertion holds for k = 3,4 by Proposition 4.5, because k points on a smooth conic, de-
termined by the singular locus of the logarithmic sheaf, together with the k tangent lines at the
k points, determined by its jumping lines, fix the conic. �

As a direct consequence, we have the following result.

Corollary 4.7. Let Q be a smooth conic in F2(Z ) for Z = {p1, p2, p3}. Then the sheafΩ1
P2(log(Q, Z ))

is stable. In particular, we have a generically one-to-one rational map

ΦZ : P2
=PH0(IZ ,P2 (2)) 99KMP2 (−1,4),

where MP2 (−1,4) is the moduli space of stable sheaves of rank two on P
2 with Chern classes

(c1,c2) = (−1,4).

Remark 4.8. The moduli space MP2(c1,c2) of semistable sheaves of rank two on P
2 with the

Chern classes (c1,c2) is an irreducible variety of dimension 4c2−c2
1 −3, and it is expressed as the

following disjoint union

MP2(c1,c2) =
∐

δ≥0

MP2(c1,c2)δ,

where MP2 (c1,c2)δ consists of the semistable sheaves F in MP2 (c1,c2) with c2(F∨∨) = c2 −δ.
Notice that MP2(c1,c2)0 consists of the locally free sheaves, and in [15] the natural map

Ψ : MP2(c1,c2) −→
∐

δ≥0

MP2(c1,c2 −δ)0
×Symδ(P2)

defined by sending F to a pair (F∨∨,coker(F →F
∨∨)) is shown to be a morphism of projective

varieties, where the target space is called the Uhlenbeck compactification. Since the image of the
composite Ψ◦ΦZ is a single point (TP2(−2), Z123), we obtain a generically one-to-one rational
map

ΦZ : P2
=PH0(IZ ,P2 (2)) 99KΨ−1((TP2(−2), Z123)).

Note that the fibre Ψ
−1((TP2(−2), Z123), parametrizing the kernels of the surjection TP2(−2) →

OZ123 , is isomorphic to P
1 ×P

1 ×P
1. It might be an interesting question to specify the linear

system defining the map ΦZ . One of the possible ingredients for answering to the question,
would be to investigate the logarithmic sheaves associated to singular conics.

4.2. Plane cubic curves. As stated at the beginning of the current section, the question, re-
garding the Torelli problem, we will focus on Sebastiani-Thom type curves of degree three. In
particular, in this section we will prove that the Torelli property does not hold for the general-
ized logarithmic sheaf associated to the pair (D, Z ) of a cubic curve D of Sebastiani-Thom type
and a fixed set of points Z , except for the trivial case when Z already determines the curve D.
More precisely, we are going to show that for any cubic curve D of Sebastiani-Thom type and
any set Z of three aligned inflection points of D, the pair (D, Z ) belongs to a one-dimensional
family of curves with the same generalized logarithmic sheaf.
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Let D =V ( f ) be a smooth cubic curve in P
2 and TP2(− logD) its logarithmic tangent bundle.

It is well known (see for instance [20]) that TP2(− logD) is a stable vector bundle of rank two
with Chern classes (c1,c2) = (0,3) that fits into an exact sequence

0−→OP2(−3) −→OP2(−1)⊕3
−→TP2(− logD) −→ 0,

By [2] its set of jumping lines SD := S
(
(TP2(− logD))

)
is a cubic curve in (P2)∨. Because of the

above resolution we get that
(
TP2(− logD)

)
|L
∼= OL(−a)⊕OL(a) for a ∈ {0,1}, i.e., the jumping

lines of TP2(− logD) are all of order 1. Even if the jumping order is at most 1, the curve of jump-
ing lines is sometimes singular. Let us recall below the behaviour of jumping lines (see also [20,
Proposition 5]). We denote by 〈∇ f 〉 the vector space Vect (∂x f ,∂y f ,∂z f ).

Proposition 4.9. Let L be a line in P
2 and denote by ℓ both its corresponding point in (P2)∨ and

its defining linear form.

(1) l ∈ SD if and only if it exists a linear form h such that (ℓ ·h) ∈ 〈∇ f 〉.

(2) SD is singular at ℓ if and only if (ℓ2) ∈ 〈∇ f 〉.

(3) If SD is singular, then it is a triangle.

Proof. In order to simplify the notation let us set F :=TP2(− logD). A line L is a jumping line if
H0(F (−1)⊗OL) 6= 0. Dualizing the resolution for F (1) and restricting it to L, we obtain

0 −→F (−1)⊗OL −→O
⊕3
L

〈∇ f 〉|L
−→ OL(2) −→ 0.

The line L is a jumping line if and only if the restricted map (∇ f )|L is no longer an injection. This
proves the first point.

According to [16, Theorem 3.7] the line L is a singular point of SD if and only if L is again a
jumping line (actually the unique jumping line) for the stable bundle E ∈ MP2 (−1,2) defined by
the exact sequence

0 −→ E −→F −→OL(−1) −→ 0.

Let us precise that the surjection above is just the composition

F →F ⊗OL =OL(1)⊕OL(−1) →OL(−1)

and that E is stable because H0(E ) = 0.
Choosing a global section of TP2(− logD)⊗OP2(1), its zero locus is a complete intersection of
two conics that are linear combinations of the derivatives of f , and L is a line meeting this locus
along two points. When this induces a section of E (1), its zero locus is two points again on
L. This shows that the zero locus of the chosen global section of TP2(− logD)⊗OP2(1) is the
complete intersection of a double line supporting L by another conic. Thus we have

ℓ2
∈ 〈∇ f 〉.

The third assertion is proved in [20, Proposition 5]. �

Remark 4.10. One can describe the jumping lines of TP2(− logD) ∼=Ω
1
P2(logD) for a cubic curve

D of a Sebastiani-Thom type as before. Indeed, recall that any smooth cubic curve is projec-
tively equivalent to a Hesse cubic of the form x3 + y3 + z3 +3ax yz = 0 for some a ∈ C (see [7])
and when D is of Sebastiani-Thom type, the corresponding Hesse equation is the Fermat curve
x3 + y3 + z3 = 0. In the system of conics 〈x2, y2, z2〉 spanned by the partial derivatives of f , there
are exactly three double lines, and this implies that SD is the triangle defined by α0α1α2 = 0.
Here the line α0 = 0 is dual to the point [x : y : z] = [1 : 0 : 0] and similarly α1,α2 are defined.
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Indeed, each line in the triangle passes through 3 points out of ℓ1, . . . ,ℓ9. We get the same asser-
tion for smooth cubic curves defined by a0x3+a1 y3+a2z3 = 0 with each ai ∈C

×. More explicitly,
we have a resolution given by

0 −→OP2(−3)
M
−→OP2(−1)⊕3

−→TP2(− logD) −→ 0,

with M=
(
x2 y2 z2)t

. By direct computation, we have that

(
TP2(− logD)

)
|L
∼=

{
OL(−1)⊕OL(1) if L∩ {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]} 6= ;;

O
⊕2
L for every other line L.

In particular, the Torelli property does not hold for cubic curves of Sebastiani-Thom type.

As a direct consequence of the previous description of the jumping lines of the logarith-
mic sheaf associated to a Sebastiani-Thom type cubic, we can observe the following situa-
tion: whenever the set of jumping lines SD1 and SD2 of the respective logarithmic sheaves of
two Sebastiani-Thom type cubics D1 and D2 are different, then we have that Ω

1
P2(logD1) 6∼=

Ω
1
P2(logD2). Therefore, it is enough to consider the Torelli problem for divisors which share the

same triangle of jumping lines. Up to a projective transformation, we can suppose the triangle
to be defined by x yz = 0 and the inflection points of the cubic on the line defined by z = 0 to be
pi = [1 : ηi : 0], for i = 0,1,2 and η a third root of the unity. In other words, one may consider the
family of Sebastiani-Thom type cubics defined as

ST(3)0 =
{
V (x3

− y3
+az3) |a ∈C

×
}

.

Consider also the set of three points W = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}, which do not belong to
any curve in ST(3)0. In the next theorem we are going to see that the generalized logarithmic
sheaf Ω1

P2(log(D, Z )) does not determine the cubic curve D ∈ ST(3)0, unless Z ⊂ D already deter-
mines D unambiguously. On the other hand, in Subsection 5.3 we will see that the Torelli prop-
erty holds for the strict transforms of the curves from ST(3)0 in the blown-up surface BlW P

2.

Theorem 4.11. The Torelli property does not hold for pairs (D, Z ) of cubic curves D of Sebastiani-

Thom type and points Z on them, unless Z determines uniquely D.

Moreover, for any cubic curve D of Sebastiani-Thom type and any set Z of three aligned inflection

points of D, the pair (D, Z ) belongs to a one-dimensional family of curves that share the same

generalized logarithmic sheaf.

Let D be a smooth cubic curve of Sebastiani-Thom type. As observed before, after a proper
change of coordinates, we can suppose that D belongs to the one-dimensional family ST(3)0,
consisting of the cubic curves Da of Sebastiani-Thom type, defined as

Da =V (x3
− y3

+az3)

with a ∈ C
×. All of Da share the same three inflection points pi = [1 : ηi : 0], for i = 0,1,2 and η

a third root of unity, on the line z = 0. Furthermore, the one-dimensional family we have just
considered describes all of cubics of Sebastiani-Thom type that share these inflections points
with the fixed curve D.
By direct computation and as observed in Remark 4.10 (or also explained in [20, Remark 8]), all
of these curves have the same associated logarithmic vector bundle.
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Now we fix points Z ⊂ D and investigate the Torelli property for all possible pair (Da , Z ).
Notice that if Z contains a non-inflection point, there exists a unique curve Da ∈ ST(3)0 passing
through Z and then the Torelli property obviously holds. Notice also that, analogously, the
curve is uniquely determined when Z is formed by inflection points not contained in the line
z = 0. Thus we may assume Z ⊂ {p0, p1, p2}, i.e., a subset of the three inflection points on the
line z = 0.

Remark 4.12. We are aware that, if we prove that the Torelli property does not hold for the
pair (D, {p0, p1, p2}), i.e., considering all three inflection points, then, due to Proposition 3.2, the
Torelli property does not hold automatically for (D, Z ) for any Z ⊂ {p0, p1, p2}. Nevertheless,
we will see that the proposed method of the proof is constructive, in the sense that we start by
fixing one inflection point and afterwards we add a second and a third one, relating the given
generalized logarithmic sheaves from two consecutive steps.

(A) Case |Z | = 1
Let us first consider all possible pairs (Da , Z ), being Z = {p0} (recall p0 = [1 : 1 : 0]), for any

cubic curve Da in the family described above.
Then, in this case, Theorem 4.11 follows from the following result, that shows how the defining
matrix of the associated generalized logarithmic sheaf is independent of the value of a.

Proposition 4.13. The minimal free resolution of Ω
1
P2(log(Da , {p0})), for any a ∈ C

×, is of the

form

0 −→OP2(−3)⊕2 Ñ
−→OP2(−2)⊕2

⊕OP2(−1)⊕2
−→Ω

1
P2(log(Da , {p0})) −→ 0,

with

Ñ=

(
y −x z 0 0

0 x + y y2 z2

)t

.

Proof. We start by applying the Horseshoe Lemma (see [24, Lemma 2.2.8]), which can be ap-
plied as in Remark 4.3, to the short exact sequence

(23) 0 −→Ω
1
P2 −→Ω

1
P2(log(Da , {p0})) −→I{p0},Da −→ 0

in order to find a resolution for Ω1
P2(log(Da , {p0})). From the short exact sequence

0−→IDa ,P2 −→I{p0},P2 −→I{p0},Da −→ 0,

that relates the two ideal sheaves IDa ,P2 and I{p0},P2 , respectively of the cubic curve and of one
point in P

2, with I{p0},Da , the ideal sheaf of the point in the curve, it is possible to construct the
following resolution of I{p0},Da ,

0 −→OP2(−3)⊕OP2(−2)
M0
−→OP2(−1)⊕2

−→I{p0},Da −→ 0,

where

M0 =

(
x2 +x y + y2 az2

−z x − y

)t

.

From this, applying the Horseshoe Lemma at the sequence (23), we get the resolution

(24) 0 −→OP2(−3)⊕2
⊕OP2(−2)

N
−→OP2(−2)⊕3

⊕OP2(−1)⊕2
−→Ω

1
P2(log(Da , {p0})) −→ 0
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with

N =




x y z 0 0
l1 l2 l3 x2 +x y + y2 az2

m1 m2 m3 −z x − y




t

with mi forms of degree zero and li forms of degree one, for i = 1,2,3.
Notice that, being Ω

1
P2(log(Da , {p0})) not locally free along p0 (see Proposition 2.9), the eval-

uation of N at the point p0 = [1 : 1 : 0] cannot have maximal rank. This directly implies that
m := m1 = m2 and m3 = 0.
Our next goal is to prove that the coefficients m1 and m2 are different from zero, which im-
plies that the resolution (24) can be “simplified”. Suppose it cannot be, i.e., let us suppose that
m1 = m2 = m3 = 0. Under such assumption, we have the following commutative diagram

(25)

0 0 0

0 OP2(−2) OP2(−1)⊕2
I{p0},P2 0

0 OP2(−3)⊕2 ⊕OP2(−2) OP2(−2)⊕3 ⊕OP2(−1)⊕2
Ω

1
P2(log(Da , {p0})) 0

0 OP2(−3)⊕2
OP2(−2)⊕3

G 0

0 0 0

A

B

for A =
(
−z x − y

)
and B =

(
x y z

l1 l2 l3

)
. Furthermore, considering the rank 1 coherent sheaf G

obtained in the previous diagram, take its associated canonical exact sequence defined by

(26)

0 TG G G
∨∨

Q 0

I∆,P2(−α)

0 0

being TG the maximal torsion subsheaf of G and G
∨∨ the double dual of G which is known to be

reflexive and, therefore, a locally free sheaf in this case (see [17, Section II.1]). This implies that
the splitting of the exact sequence gives us a sheaf of ideals I∆,P2 (−α), with ∆ a 0-dimensional
scheme in the projective plane and α≥ 0.
Restricting the right vertical sequence in Diagram (25) and Sequence (26) to the generic line
L (not passing through {p0}) in the projective plane, we obtain the following composition of
surjections

(
Ω

1
P2(log(Da , {p0}))

)
|L
≃

(
Ω

1
P2(logDa)

)
|L
≃O

⊕2
L ։G|L ։

(
I∆,P2(−α)

)
|L
≃OL(−α).

This implies that, necessarily, α= 0 and therefore TG is supported on a 0-dimensional scheme.
From the fact that H0 (G ) = 0, computed directly from the bottom row of Diagram (25), we get
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TG = 0 and hence G ≃I∆,P2 . From such isomorphism, dualizing the right vertical sequence in
Diagram (25), we would get

0 →OP2 →
(
Ω

1
P2(log(Da , {p0}))

)∨
≃TP2(− logDa),

which leads to contradiction, because the logarithmic tangent bundle associated to a Sebastiani-
Thom cubic has no global section.

As a consequence, m = m1 = m2 6= 0 and we can simplify the resolution in (24) to get

0 −→OP2(−3)⊕2 Ñ
−→OP2(−2)⊕2

⊕OP2(−1)⊕2
−→Ω

1
P2(log(Da , {p0})) −→ 0

with

Ñ=

(
y −x z 0 0

l2 − l1 l3 x2 +x y + y2 +
l1z
m

−
l3x
m

az2 +
l1 y

m
−

l2x
m

)t

.

This matrix, and in particular its non zero entries in the first row, implies an injective map

0 →I{p0},P2 (−1) →Ω
1
P2(log(Da , {p0})),

for which we can consider the associated injective map of graded modules

0 → I :=⊕H0
∗(I{p0},P2 (−1))

ϕ̂
−→ F := H0

∗(Ω1
P2(log(Da , {p0}))

and denote by K its cokernel module. From the description of the matrix Ñ, it is possible to
apply the mapping cone procedure to obtain a graded free resolution of the module K, that is of
the form

0−→ S(−3)
(q1 q2)

−−−−−−→ S(−1)⊕2
−→ K −→ 0

where q1 = x2 + x y + y2 +
l1z
m

−
l3x
m

and q2 = az2 +
l1 y

m
−

l2x
m

. Therefore, K is the graded ideal IQ

of the complete intersection Q defined by the two conics q1 and q2, twisted by one. Sheafifying
the considered short exact sequence of modules, we have that the sheaf Ω1

P2(log(Da , {p0}) can
also be described as an extension

(27) 0 −→I{p0},P2 (−1)
ϕ

−→Ω
1
P2(log(Da , {p0}) −→IQ,P2(1) −→ 0,

where Q is the 0-dimensional scheme of length 4 obtained before. Moreover, because of the
resolution of Ω1

P2(log(Da , {p0}), the two forms q1 and q2 cannot have a linear common factor.
Dualizing Sequence (27), we obtain a long exact sequence

(28)
0 −→OP2(1) −→Ω

1
P2(logDa) −→OP2(1) −→ E xt 1

P2 (IQ,P2(1),OP2)

−→ E xt 1
P2(Ω1

P2(log(Da , {p0}),OP2 )
ψ
−→ E xt 1

P2(I{p0},P2 (−1),OP2) −→ E xt 2
P2 (IQ,P2(1),OP2) ∼= 0.

Furthermore, being p0 and Q two 0-dimensional schemes in the projective plane, we have that

E xt 1
P2(IQ,P2 (1),OP2) ∼= E xt 2

P2(OQ ,OP2) ∼=OQ .

and

E xt 1
P2 (I{p0},P2(−1),OP2) ∼= E xt 2

P2 (Op0 ,OP2) ∼=Op0 .

Consider now the short exact sequence (given by Proposition (2.9)

(29) 0 −→Ω
1
P2(log(Da , {p0}) −→Ω

1
P2(log(Da) ≃TP2(− logDa) −→Op0 −→ 0.
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and, dualizing it, we obtain that E xt 1
P2(F ,OP2) ∼=Op0 as well.

Putting everything together, we get that the map ψ in (28) is an isomorphism and the splitting
of the sequence (28) gives us

(30) 0 −→OP2(−1) −→Ω
1
P2(logDa) −→IQ,P2(1) −→ 0.

Recall that the resolution of Ω1
P2(logDa) was of the form

0 −→OP2(−3)
M1
−→OP2(−1)⊕3

−→Ω
1
P2(logDa) −→ 0.

with M1 =
(
x2 y2 z2)t

. From this fact and the exact sequence (30), it is possible to apply
the mapping cone to find a resolution of IQ,P2(1), which implies that Q is a zero-dimensional
scheme of length 4 whose ideal IQ is defined by two of the entries in M1. Since this ideal should
also be defined by the conics in the matrix Ñ we can conclude, comparing coefficients, that the
only possibility is IQ = (y2, z2) and that the matrix Ñ can be taken of the form

Ñ=

(
y −x z 0 0

0 x + y y2 z2

)t

. �

(B) Case |Z | = 2
Without loss of generality we may assume that Z = {p0, p1} and consider the short exact se-

quence (see the proof of Proposition 3.2)

0 −→Ω
1
P2(log(Da , {p0, p1})) −→Ω

1
P2(log(Da , {p0}))

g
−→Op1 −→ 0.

Consider the injective map ϕ in Sequence (27) to construct the following composition

ρ : I{p0},P2 (−1)
ϕ
→Ω

1
P2(log(Da , {p0}))

g
−→Op1 .

We will now discuss the two subcases given by ρ being or not zero.

(Case B-1)

Assume first that ρ is not zero. Then it is surjective and its kernel is isomorphic to I{p0,p1},P2 (−1).
This produces, because of the vanishing Ext1

P2(Op1 ,IQ,P2(1)) = 0, a commutative diagram

0 0

0 I{p0,p1},P2(−1) Ω
1
P2(log(Da , {p0, p1})) IQ,P2(1) 0

0 I{p0,p1},P2(−1) Ω
1
P2(log(Da , {p0})) IQ,P2(1)⊕Op1 0

Op1 Op1

0 0,

∼=

∼=

being Q the same 0-dimensional scheme as in Sequence (27).
Apply now the functor HomP2(−,I{p0,p1},P2(−1)) to the right vertical sequence to have a surjec-
tion

(31) Ψ : Ext1
P2(IQ,P2(1)⊕Op1 ,I{p0,p1},P2 (−1)) −→Ext1

P2(IQ,P2 (1),I{p0,p1},P2 (−1))
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whose kernel Ext1
P2(Op1 ,I{p0,p1},P2 (−1)) is one-dimensional.

To ensure that the Torelli property does not hold also for this case, it is sufficient to prove the
following result.

Lemma 4.14. There exists, for any a ∈C
× fixed, a unique presentation of Ω1

P2(log(Da , {p0})) as an

extension element, up to a scalar, in Ext1
P2(IQ,P2(1)⊕Op1 ,I{p0,p1},P2 (−1)).

Indeed, fix two different cubics Da1 and Da2 , sharing the same inflection points p0 and p1.
Their associated logarithmic sheavesΩ1

P2(log(Da1 , {p0, p1})) andΩ
1
P2(log(Da2 , {p0, p1})) are given

respectively (seen as elements of the extension groups) as the image by Ψ of the generalized
logarithmic sheaves Ω1

P2(log(Da1 , {p0})) and Ω
1
P2(log(Da2 , {p0})). We have, by Case (A), that

Ω
1
P2(log(Da1 , {p0})) ≃Ω

1
P2(log(Da2 , {p0}))

and, being Ψ surjective, we get that

Ω
1
P2(log(Da1 , {p0, p1})) ≃Ω

1
P2(log(Da2 , {p0, p1}))

as well.

Proof of Lemma 4.14. Recall that there exists a unique extension in Ext1
P2(IQ,P2(1),I{p0},P2 (−1)),

up to a scalar, that corresponds to the logarithmic sheaf Ω1
P2(log(Da , {p0})). This follows be-

cause, by Proposition 4.13, the sheaf is uniquely determined by the matrix

Ñ=

(
x − y z 0 0

0 x + y y2 z2

)t

.

Let us start considering the diagram

0 I{p0,p1},P2 (−1) Ω
1
P2(log(Da , {p0})) IQ,P2 (1)⊕Op1 0

Ω
1
P2(log(Da , {p0})) IQ,P2 (1) 0.

ϕ̃1 ϕ̃2

Id

ϕ2

Since HomP2(I{p0,p1},P2 (−1),IQ,P2(1)) = 0, Ext1(Op1 ,I{p0,p1},P2(−1)) ∼=C and thatΩ1
P2(log(Da , {p0}))

is torsion-free, we can complete the previous diagram to have the following one

0 I{p0,p1},P2 (−1) Ω
1
P2(log(Da , {p0})) IQ,P2 (1)⊕Op1 0

0 I{p0},P2 (−1) Ω
1
P2(log(Da , {p0})) IQ,P2 (1) 0

Op1 .

ϕ̃1

i

ϕ̃2

Id

ϕ1 ϕ2

Begin ϕ1 and ϕ2 uniquely determined by the matrix Ñ, we obtain from the diagram that ϕ̃1 =

ϕ1 ◦ i is also uniquely determined and, writing ϕ̃2 = (ϕ̃2,1,ϕ̃2,2), ˜ϕ2,1 =ϕ2 is also uniquely deter-
mined.
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To conclude, let e ∈ Ext1
P2(IQ,P2 (1),I{p0,p1},P2 (−1)) correspond to the extension that defines

Ω
1
P2(log(Da , {p0, p1})). Clearly, taking the map Ψ defined in (31), Ψ−1(e) is not unique, but any

element in this preimage corresponds to an extension F of the form

o −→I{p0,p1},P2 (−1) −→F
ζ̃

−→IQ,P2(1)⊕Op1 −→ 0

with ζ̃= (ζ̃1, ζ̃2). Notice that for ζ̃1 =ϕ2 is fixed and ζ̃2 is determined by the extension

0−→I{p0,p1},P2 (−1) −→G −→Op1 −→ 0

in Ext1
P2(Op1 ,I{p0,p1},P2 (−1)) ∼=C.

We can therefore conclude that the only logarithmic sheaf in Ψ
−1(e) is Ω1

P2(log(Da , {p0})). �

(Case B-2) Let us assume that ρ is zero. Then the induced composition ρ̃ : OP2(−1) →Ω
1
P2(logDa) →

Op1 is also zero and we can obtain the following commutative diagram

0 0

0 OP2(−1) Ω
1
P2(log(Da , {p1})) IQ∪{p1},P2 (1) 0

0 OP2(−1) Ω
1
P2(logDa) IQ,P2 (1) 0

Op1 Op1

0 0.
∼=

∼=

We will conclude this case by showing, in the subsequent result, that an exact sequence as upper
horizontal one in the diagram is impossible. Observe that the following lemma also holds if we
replace p0 by p1.

Lemma 4.15. With the notation in the above, one cannot have an exact sequence

0 −→OP2(−1) −→Ω
1
P2(log(Da , {p0})) −→IQ∪{p0},P2 (1)−→ 0.

Proof. Applying the functor HomP2(OP2(−1),−) to the resolution, proven in Proposition 4.13,

0 −→OP2(−3)⊕2 N
−→OP2(−2)⊕2

⊕OP2(−1)⊕2
−→Ω

1
P2(log(Da , {p0})) −→ 0,

we can assure that the injection

OP2(−1) ,→Ω
1
P2(log(Da , {p0}))

lifts to an injection
OP2(−1) ,→OP2(−2)⊕2

⊕OP2(−1)⊕2.

Therefore, we get the following short exact sequence

0 −→OP2(−3)⊕2 M2
−→OP2(−2)⊕2

⊕OP2(−1) −→IQ∪{p0},P2(1) −→ 0.

Here, the matrix M2 comes from the matrix

Ñ=

(
y −x z 0 0

0 x + y y2 z2

)t

,
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deleting one of the two last columns after eventual combinations of its columns. This means
that M2 has the following form:

M2 =

(
y −x z ∗

0 x + y ∗

)t

,

because, as mentioned before, we have to cancel a combination

ℓ1

(
y −x

0

)
+ℓ2

(
z

x + y

)
+α1

(
0
y2

)
+α2

(
0
z2

)

with ℓi a linear form and α j a constant, corresponding to the deleted OP2(−1)-factor.
Consider now the two ideals defining p0 and Q, respectively,

I = (y −x, z), J = (y2, z2),

and so the saturation of their product is as follows

Sat(I · J) = Sat(I∩ J) = (z2, y2z, x y2
− y3).

Then, using Macaulay 2, one can obtain the syzygy matrix N0 =

(
y −x z 0

z 0 −y2

)t

fitting into the

following diagram

0 OP2(−3) OP2(−2)⊕2 ⊕OP2(−1) OP2(1)

IQ∪{p0},P2 (1)

N0 Sat(I·J)

Combining the two obtained resolutions for IQ∪{p0},P2 (1), we get the following diagram

0 OP2(−3) OP2(−2)⊕2 ⊕OP2(−1) IQ∪{p0},P2 (1) 0

0 OP2(−3) OP2(−2)⊕2 ⊕OP2(−1) IQ∪{p0},P2 (1) 0

ψ2

N

ψ1

∼=

N0

If ψ2 is not an isomorphism, then we have Coker(ψ2) ∼= Coker(ψ1) ∼= OP2(−3), which is absurd.
Thus each ψi , for i = 1,2, is an isomorphism and hence represented by the following two in-
vertible matrices

C=



µ1 µ2 0
µ3 µ4 0
ℓ1 ℓ2 α


 , D =

(
λ1 λ2

λ3 λ4

)
.

By direct computation, the commutativity condition CN= N0D gives λ2 =λ4 = 0, contradicting
the invertibility of D. �

(C) Case |Z | = 3 From the exact sequence

(32) 0−→Ω
1
P2(log(Da , {p0, p1, p2})) −→Ω

1
P2(log(Da , {p0})) −→Op1 ⊕Op2 −→ 0,

we can consider again a composition ρ : I{p0},P2(−1) →Ω
1
P2(log(Da , {p0})) →IQ,P2 (1) as in Case

(B). Similarly as in (Case B-2) if ρ is not surjective we get a contradiction, therefore we may
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assume that ρ is surjective. This implies the following commutative diagram

0 0

0 I{p0,p1,p2},P2 (−1) Ω
1
P2(log(Da , {p0, p1, p2})) IQ,P2(1) 0

0 I{p0,p1,p2},P2 (−1) Ω
1
P2(log(Da , {p0})) IQ,P2(1)⊕Op1 ⊕Op2 0

Op1 ⊕Op2 Op1 ⊕Op2

0 0.

∼=

∼=

Applying the same technique as in (Case B-1), one can show that there exists a unique ex-
tension in Ext1

P2(IQ,P2 (1)⊕Op1 ⊕Op2 ,I{p0,p1,p2},P2 (−1)), up to an extension inside Ext1
P2(Op1 ⊕

Op2 ,I{p0,p1,p2},P2 (−1)), that represents the generalized logarithmic sheaf Ω1
P2(log(Da , {p0})). Fi-

nally, by the same argument as in (Case B-1) we can see that the Torelli property does not hold
for (Da , {p0, p1, p2}).

5. GENERALIZED LOGARITHMIC SHAVES WITH FIXED POINTS OUTSIDE THE DIVISOR

In the previous section we were studying the Torelli property for the generalized logarithmic
sheaf Ω1

P2(log(C , Z )) associated to curves C ⊂P
2 and set of points Z contained in C . In particu-

lar we payed particular attention to the case of lines, conics (Subsection 4.1) and cubic curves
(Subsection 4.2). In this section we are going to address the issues raised in Subsection 3.2 for a
similar set of cases to underline the similarities and differences between the setting in Subsec-
tion 3.1 (blowing up a set of points contained in the curves under consideration) and Subsection
3.2 (blowing up a set of points with empty intersection with the curves under consideration).
Namely, we are going to study the Torelli property for linear systems associated to the strict
transforms of lines (Subsection 5.1), conics (Subsection 5.2) and cubic curves (Subsection 5.3)
on surfaces S obtained by blowing-up points outside of the curves under consideration. Indeed,
thanks to Remark 3.5 we decided to place ourselves on the classical case S ⊂P

3 a smooth cubic
surface.

In order to state better the problems that we are going to face, let us start recalling some
classical facts. Associated to a disjoint set of six lines Ei in S let π : S → P

2 be the blow-up
morphism of P2 along the set of six general points pi =π(Li ).

Recall that the exceptional divisors Ei := π−1(pi ) associated to the points pi together with
L a divisor class in π∗

OP2(1), freely generate Pic(S) ∼= Z〈L,E1, . . . ,E6〉
∼= Z

⊕7 with intersection
numbers

L2
= 1, L.Ei = 0, Ei .E j = 0 and E 2

i =−1

for each i 6= j . The anticanonical line bundle OS(−KS) ∼= OS(3L −
∑6

i=1 Ei ) turns out to be very
ample so that it induces an embedding ι : S ,→ P

3 as a smooth cubic surface. It is classically
known that there are exactly 27 lines in S ⊂P

3:

(i) Ei for 1 ≤ i ≤ 6;
(ii) Li j the unique element in |OS (L−Ei −E j )| for 1 ≤ i < j ≤ 6;

(iii) L̂i the unique element in |OS(2L+Ei −
∑6

k=1 Ek)| for 1 ≤ i ≤ 6.

Furthermore, recall the following.
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Remark 5.1. Denoting by π : P̃2 → P
2 the blow up of P2 at k distinct points p1, . . . , pk , let L be

a divisor class in π∗
OP2(1) and Ei be the exceptional divisor over pi for each i . Then, for a line

bundle L =O
P̃2

(
aL+

∑k
i=1 bi Ei

)
on P̃

2 with a,bi ∈Z, we have

(i) π∗L ∼=OP2(a)⊗
(⊗

bi<0(Ipi ,P2)(−bi )
)
.

(ii) R1π∗L ∼=
⊕

bi >2

(
OP2

/
I

bi−2
pi

)
.

Indeed, we get (i) from the projection formula and the fact that π∗O
P̃2(tEi ) ∼= OP2 for t ≥ 0 or

(Ipi ,P2)⊗(−t) for t < 0. The part (ii) is obtained by applying the Theorem on Formal Function in
[14, III.11] to the line bundle L ; refer to [3, Proposition 1.3.7].

In this setting, we are going to study the Torelli property for different effective linear sys-
tems |OS (D)| and its relationship with the Torelli property for F(Z ′,π(D)) on P

2 where Z ′ is the
intersection of π(D) with Z := {p1, . . . , p6}. In particular, we will now pay our attention to the
following effective linear systems, which are analogous to the ones considered in the previous
section.

Firstly, in Subsection 5.1 we will study the logarithmic sheaf associated to a divisor from the
linear system |OS (L)| defined as strict transforms of lines in P

2. We will notice that, through a
Cremona transformation, the problem is equivalent to considering the divisors D ∈ |OS (2L −

E1 −E2 −E3)|, namely, a cubic curve D in the surface S which is projected on a conic C in P
2

passing through the three fixed points Z ′ = {p1, p2, p3}. Recall that the Torelli property holds for
(C , Z ′) (see Theorem 4.6) and hence, by Lemma 3.6, it turns out that the Torelli property also
holds for D in S.

Next, in Subsection 5.2 we will consider the logarithmic sheaf associated to a divisor D ∈

|OS(2L)|. The reader should confront it with the results from Subsection 4.1: the projectionπ(D)
of D to P

2 is a conic which does not pass through any blown-up point, i.e., a generic one. We
have already noticed that π∗Ω

1
S(logD) ∼= Ω

1
P2(logπ(D)) and the Torelli property does not hold

for |OP2 (π(D))|. However, we will see that the Torelli property holds for |OS (2L)| in the cubic
surface S.

Finally, in Subsection 5.3 we are going to show that the Torelli property holds for the linear
system |OS(3L)|.

In order to perform some computations throughout this section, we need to recall the be-
haviour of the restriction of the cotangent bundle Ω

1
S to different type of curves.

Lemma 5.2. We have:

•
(
Ω

1
S

)
|C
∼=OP1(−2)⊕OP1(1) for any line C ⊂ S;

•
(
Ω

1
S

)
|C
∼=OP1(−2)⊕OP1(−1) for any smooth C ∈ |OS (L)|;

•
(
Ω

1
S

)
|C
∼=OP1(−2)⊕OP1 for any smooth C ∈ |OS(L−Ei )|, with i = 1, . . . ,6;

•
(
Ω

1
S

)
|C
∼=OP1(−2)⊕OP1(−4+|I |) for any smooth C ∈ |OS(2L−

∑
i∈I Ei )|, with I ⊂ {1 . . . ,6},1 ≤

|I | ≤ 4.

Proof. Consider the relative cotangent short exact sequence

0 −→OS(−C )|C −→
(
Ω

1
S

)
|C −→Ω

1
C −→ 0,

from which follow all the stated restrictions, because C is rational and so Ω
1
C
∼=OP1(−2). �

5.1. Cubic curves in |OS(2L−E1−E2−E3)|. Recalling that, by Lemma 3.6 and Theorem 4.6, these
divisors satisfy the Torelli property, we will observe that the considered class is equivalent to the
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class |OS (L)| after a Cremona transformation. Therefore we will study the stability property for
the logarithmic bundles associated to the latter divisors and describe the injective moduli map
induced by the Torelli property.

Remark 5.3. Consider the following new set of 6 divisors

Ẽ1 := L23, Ẽ2 := L13, Ẽ3 := L12

Ẽ4 := E4, Ẽ5 := E5, Ẽ6 := E6,

which satisfies L̃2 = 1, Ẽ 2
i
= −1, L̃.Ẽi = 0 for L̃ := D ∈ |OS(2L −E1 −E2 −E3)|. Therefore they rep-

resent the set of exceptional divisors coming from a different blow-up of 6 points in P
2, say

π̃ : S →P
2, defined by the linear system |OS(L̃)|. This gives a Cremona transformation:

S

P
2

P
2.

π π̃

Noticing that

H̃ := 3L̃−

6∑

i=1
Ẽi = 3L−

6∑

i=1
Ei = H ,

we are not considering only the same surface, but the same embedding as well. In particular,
the study on the logarithmic vector bundle Ω

1
S(logD) can be replaced by the study on Ω

1
S(logD ′)

with smooth D ′ ∈ |OS(L)|. On the other hand, we get that π∗Ω
1
S(logD ′) ∼= Ω

1
P2

(
logπ(D ′)

)
∼=

OP2(−1)⊕2.

To conclude this part, we show that the logarithmic vector bundlesΩ1
S(logD), with D ∈ |OS(L)|,

are stable with respect to the hyperplane section.

Theorem 5.4. Given a twisted cubic curve D ∈ |OS (L)|, the logarithmic bundle Ω
1
S(logD) is a µ-

stable vector bundle with respect to OS(H) and with Chern classes (c1,c2) = (KS +L,7). Therefore,

the induced rational map

Ψ1 : PH0(OS(L)) ∼=P
2
99KMH

S (KS +L,7)

is generically one-to-one.

The proof of Theorem 5.4, as well as the proof of Theorem 5.8, will follow the subsequent
strategy. We suppose the existence of a µ-destabilizing sheaf of rank one with respect to the po-
larization H , which can be assumed to be a line bundle; this follows from [17, Theorem II.1.2.2].
This provides us a list of possible destabilizing line bundles, listed in terms of their first Chern
class. Using several techniques, from geometric properties of the curve to the restriction on a
rational curve provided by the Key Restriction Lemma 2.2, we show that all the items of the list
lead to contradiction, proving therefore the stability of the logarithmic vector bundle.

Proof. Assume that Ω1
S(logD) is not µ-stable with respect to OS(H). Considering a destabilizing

line bundle

OS

(
aL+

6∑

i=1
bi Ei

)
,→Ω

1
S(logD),

we have

(33) 3a+

6∑

i=1
bi =µ

(
OS(aL+

6∑

i=1
bi Ei )

)
≥µ

(
Ω

1
S(logD)

)
= 0
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Thanks to Lemma 2.2, we know that for a generic element C ∈ |OS(2L−E1−E2−E3−E4)|, we have
that

(
Ω

1
S(logD)

)
|C

≃ O
⊕2
P1 . This implies that the restriction of OS(aL +

∑6
i=1 bi Ei ) to C must also

have non-positive degree, i.e., 2a +b1 +b2 +b3 +b4 ≤ 0. By analogous computation we obtain
that 2a +b1 +b2 +b5 +b6 ≤ 0 and 2a +b3 +b4 +b5 +b6 ≤ 0. Summing up the three inequalities
together with (33), we get that

(34) 3a+

6∑

i=1
bi = 0

Again by Lemma 2.2, we know that for the generic element C ∈ |OS (L−Ei−E j )|, with 1≤ i < j ≤ 6,
we have that

(
Ω

1
S(logD)

)
|C

≃OP1(−1)⊕OP1(1). Restricting the destabilizing bundle to C , we get

a+bi +b j ≤ 1 for any 1 ≤ i < j ≤ 6.

Moreover, from

−a−b5 −b6 = 2a+b1 +b2 +b3 +b4 ≤ 0

we get that a+b5 +b6 ≥ 0 as well, and more in general

(35) a+bi +b j ≥ 0 for any 1 ≤ i < j ≤ 6.

But this implies, combined with the equality in (34), that the inequalities in (35) are all actually
equalities. Thus there exists a positive integer k such that

a =−2k, and bi = k for any 1 ≤ i ≤ 6,

i.e., any destabilizing sheaf is of the form OS(−2kL +
∑6

i=1 kEi ) for a positive integer k. Now
consider the line L̂i , the unique line in the system |OS (2L +Ei −

∑6
j=1 E j )|. By Lemma 2.2 we

have that
(
Ω

1
S(logD)

)
|L̂i

≃OP1 ⊕OP1(1). Restricting the destabilizing bundle, we also get that

(
OS(−2kL+

6∑

i=1
kEi )

)

|L̂i

≃OP1(k)

and this implies k ≤ 1, and so k ∈ {0,1}. Assume that k = 0 and apply the push-forward functor
π∗ to the injection OS ,→Ω

1
S(logD). Then we get an injection

OP2 ≃π∗OS ,→Ω
1
S(logD) ≃OP2(−1)2,

where the last isomorphism is due to Remark 5.3, and this gives a contradiction. Finally as-
sume that k = 1 and so we have OS(−2L +

∑6
i=1 Ei ) as the only possible destabilizing bundle.

Compositing it with the Poincaré residue map for Ω1
S(logD), we obtain a nontrivial map

OS(−2L+

6∑

i=1
Ei ) →OD ,

unless the destabilizing bundle maps into Ω
1
S , contradicting its stability with respect to OS(H);

see [11]. From the isomorphism

HomOS

(
OS(−2L+

6∑

i=1
Ei ),OD

)
∼= HomOD

(
OD(−2L+

6∑

i=1
Ei ),OD

)
,
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this nontrivial map factors through the sheaf OS(−2L+
∑6

i=1 Ei )|D , and so we obtain the following
commutative diagram

0

0 OS(−3L+
∑6

i=1 Ei )

OS(−2L+
∑6

i=1 Ei ) OS(−2L+
∑6

i=1 Ei )

0 Ω
1
S Ω

1
S(logD) OD 0,

∼=

from which we obtain a nonzero map OS(−3L +
∑6

i=1 Ei ) ∼= OS(−H) ,→ Ω
1
S . On the other hand,

by straightforward computation we have H0
((
Ω

1
P3(1)

)
|S

)
= H1 (OS(−2H)) = 0 and, from the fol-

lowing canonical short exact sequence,

0 →OS(−2H) →
(
Ω

1
P3(1)

)
|S
→Ω

1
S(H) → 0,

we get that H0
(
Ω

1
S(H)

)
= 0, giving a contradiction. Therefore Ω

1
S(logD) is stable. �

Let us now describe the space of irreducible cubics in |OS(L)|. Indeed, the map Ψ1 is de-
fined on such locus and the description of its complementary provides a comprehension of the
indeterminacy locus of Ψ1 itself.

Lemma 5.5. There exist six curves C1, . . . ,C6 ⊂ |OS (L)| ∼= P
2 such that the points in the comple-

ment

|OS (L)|\
(
∪

6
i=1Ci

)

correspond to the twisted cubics in the system. The curves Ci ’s satisfy the following:

• each curve Ci is isomorphic to P
1;

• For i 6= j , the intersection Ci ∩C j is a single point corresponding to the union of three lines

Li j ∪Ei ∪E j .

Proof. We have the rational map ϕ : P2
99K S ⊂ P

3 given by four cubic forms on P
2 vanishing

at Z . If ℓ ∈ |OP2 (1)| ∼= |OS(L)| is a line, not passing through any of the pi , then ϕ|ℓ is an isomor-
phism and ϕ(ℓ) is a twisted cubic curve. If ℓ passes through one of the points, say pi , then the
corresponding curve in S is L′∪Ei with L′ ∈ |OS(L −Ei )| ∼= P

1. Here, ϕ(ℓ\ {pi }) is an irreducible
conic, except for the union of the two lines L′ = Li j ∪E j when ℓ also passes through p j . �

5.2. Sextic curves in |OS(2L)|. Consider D ∈ |OS(2L)|, whose projection is a conic C in P
2 not

passing through any blown-up point and hence the Torelli property does not hold for C . How-
ever, we will prove that the Torelli property holds for D in the cubic surface and hence we prove
that the Torelli property can be achieved after blow-up.

Proposition 5.6. Let D1 and D2 be any two distinct elements in the linear class |OS(2L)|. Then

Ω
1
S(logD1) 6∼=Ω

1
S(logD2),

i.e., the Torelli property holds for the divisors in |OS(2L)|.
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Proof. Consider the rational curve D ∈ |OS(2L)|, of degree 6. Let Q = π(D) ⊂ P
2 be the conic

coming from the projection. Denote the 6 blown-up points by Z = {p1, . . . , p6}, therefore Z ∩Q =

;. Now pick a smooth conic i : C ,→ S from the complete linear system |OS (L−E1)| so that π(C )
is a line through p1. Set C ∩D = {q1, q2}; notice that q1 = q2 when the line π(C ) is tangent to the
conic Q at π(q1). If q1 6= q2, the upper horizontal sequence of the diagram (3) gives

0 −→TC

(
− log{q1, q2}

)
−→ i∗TS(− logD) −→OC −→ 0

so that we have
(
TS(− logD)

)
|C

∼= O
⊕2
C . On the other hand, if q1 = q2, the diagram produces an

exact sequence

0−→TC

(
− log{q1}

)
−→ i∗TS(− logD) −→OC (−q1) −→ 0

so that we have
(
TS(− logD)

)
|C
∼=OC

(
−q1

)
⊕OC

(
q1

)
. Thus to the sextic D ∈ |OS (2L)|we associate

two (tangent) lines to the conic Q = π(D) passing through p1, as its jumping lines. By replacing
p1 by the other points in Z , we get 12 jumping lines, tangent to Q and this uniquely determines
Q and D as well. Hence, D can be recovered from Ω

1
S(logD). �

Now, using an analogous argument as in Proposition 5.4, we can show the stability of loga-
rithmic vector bundles associated to the curves D ∈ |OS(2L)| and induce an analogous moduli
map. To do so, let us explicit the following geometry property of conics in the projective plane.

Remark 5.7. Consider the dual plane (P2)∨ and its Veronese embedding ι : (P2)∨ ,→ V ⊂ (P5)∨,
where (P5)∨ parametrizes the conics in P

2. Fix a smooth conic C ⊂ P
2. Then the double lines

in P
2 tangent to C forms a quartic curve ι(C∨), where C∨ is the dual conic of C . We say that a

conic C ′ is tetra-tangent to C if the intersection C ′∩C supports only one point. Then the set
T4(C ) ⊂ (P5)∨ of tetra-tangent conics to C is a cone over ι(C∨) with the vertex point [C ] ∈ (P5)∨.
For two points Z = {p1, p2} with Z ∩C =;, let Hi be the subspace of conics passing through pi .
Then the intersection T4(C )∩H1∩H2 consists of 4 points. In particular, there exist no 4 smooth
conics C1, . . . ,C4 ∈ H1 ∩H2 that are tetra-tangent to a smooth conic C , when C is tangent to the
line p1p2. Indeed, the singular conic supporting the line p1p2 would be another conic tetra-
tangent to C , giving a contradiction.

On the other hand, for any smooth tetra-tangent conic C ′ to C , there is no triangle q1q2q3

that is inscribed in C ′ and circumscribing C , i.e., C is not Poncelet related to any smooth tetra-
tangent conics to C . Without loss of generality, set C = V (2x0x1 + x2

2) and assume that C ′ is
contained in the ruling over the double line V (x2

0), i.e., C ′ = (2x0x1 + x2
2 +αx2

0) for some α 6= 0.
Setting A and A′ be the corresponding symmetric matrices to C and C ′, we have

det(t0 A+ t1 A′) = det




t1α t0 + t1 0
t0 + t1 0 0

0 0 t0 + t1


=−(t0 + t1)3

Then we get the assertion by [7, Theorem 2.3.14]; in the notation of [7, Theorem 2.3.14] we have
(Θ,Θ′,△′) = (−3,−3,−1) so that we have Θ

′2 −4Θ△′ =−3 6= 0.

Theorem 5.8. Given a smooth sextic curve D ∈ |OS (2L)| the logarithmic bundle Ω
1
S(logD) is µ-

stable with respect to OS(H) and with Chern classes (c1,c2) = (KS +2L,7). Therefore the induced

rational map

Ψ2 : PH0(OS(2L)) ∼=P
5
99KMH

S (KS +2L,7)

is generically one-to-one.
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Proof. Assume that Ω1
S(logD) is not µ-stable with respect to OS(H). Considering a destabilizing

line bundle

L :=OS

(
aL+

6∑

i=1
bi Ei

)
,→Ω

1
S(logD),

we have

(36) 3a+

6∑

i=1
bi =µ

(
OS(aL+

6∑

i=1
bi Ei )

)
≥µ

(
Ω

1
S(logD)

)
=

3

2
.

Using Lemma 2.2 as in Proposition 5.4, we get the following inequalities, where the left column
stands for the linear systems that the curve C belongs to: note that C is a rational curve to which
the destabilizing line bundle is restricted.

Linear systems Inequalities
L a ≤ 0
Ei bi ≥−1

L−Ei a+bi ≤ 0
L−Ei −E j a+bi +b j ≤ 2

TABLE 1

Note also that the last inequality can become an equality, only when C is tangent to D. Now
consider the line C = L̂i from |OS(2L+Ei −

∑6
j=1 E j )|.

(a) Assume first that the intersection of the line L̂i with D supports at least three points
for each i , i.e., either L̂i is not tangent to D or L̂i ∩D = {2q1, q2, q3} with three distinct points
q1, q2, q3. Applying Lemma 2.2, we get 2a−bi +

∑6
j=1 b j ≤ 2, from which we get

3

2
≤ 3a+

6∑

j=1
b j ≤ 2+ (a+bi ) ≤ 2.

This implies that 2a−bi +
∑6

j=1 b j = 2 and a+bi = 0 for each i . Then the only possibility would
be (a,b1, . . . ,b6) = (0, . . . ,0), which contradicts the inequality (36).

(b) Now assume that the intersection L̂i ∩D supports two points for some i , say i = 6, but
not one point for any i . Then, applying Lemma 2.2 to L̂6, we get 2a+

∑5
j=1 b j ≤ 3 and so

2 ≤ 3a+

6∑

j=1
b j = (a+b6)+ (2a+

5∑

j=1
b j ) ≤ 3

would imply that b6 ∈ {−a,−a −1}, due to a +b6 ≤ 0. Thus, in general, combining the results in
(a), we get

bi ∈ {−a,−a−1}

for any i = 1, . . . ,6. Calling δ the number of i ’s with bi =−a−1, we get

2 ≤−3a−δ= 3a+

6∑

j=1
b j ≤ 3,

implying −3 ≤ a ≤ −1. If a = −3, we get that bi = 2 for each i , i.e., δ = 6, contradicting the
inequality 2a +

∑5
j=1 b j ≤ 3. If a = −2, we get δ ∈ {3,4}. Since we have −bi +

∑6
j=1 b j ≤ 7 for

any i , the only possibility is that δ = 4. In particular, in addition to L̂6, there would exist three
more lines L̂i1 , . . . , L̂i3 with 1 ≤ i1 < ·· · < i3 ≤ 5 such that each intersects D in at most two points.
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Without loss of generality, set (b1, . . . ,b6) = (2,2,1,1,1,1) so that each of L̂3, . . . , L̂6 intersects D at
most two points, and L12 is tangent to D. Then we obtain an exact sequence

0 −→L −→Ω
1
S(logD) −→IΓ,S(L−E1 −E2) −→ 0,

for a zero-dimensional subscheme Γ⊂ S of length 5, whose restriction to the exceptional divisor
Ei with i = 3,4,5,6 gives

0 −→OEi
(−1+c) −→OEi

(1)⊕OEi
(−2) −→OEi

(−c) −→ 0

for c = length(Ei∩D), because
(
Ω

1
S(logD)

)
|Ei

∼=
(
Ω

1
S

)
|Ei

. Then we have c = 2, i.e., each Ei contains
exactly two points of Γ, and this is impossible.

Now we assume the remaining case that a =−1 and soδ ∈ {0,1}, i.e., the possible destabilizing
line bundle is either

OS

(
−L+

6∑

j=1
E j

)
or OS

(
−L−Ei +

6∑

j=1
E j

)
.

for some i . In the former case, as in the last part of the proof of Proposition 5.4 we get a com-
mutative diagram

0

0 OS(−3L+
∑6

i=1 Ei )

OS(−L+
∑6

i=1 Ei ) OS(−L+
∑6

i=1 Ei )

0 Ω
1
S

Ω
1
S

(logD) OD 0,

∼=

from which we obtain a nonzero map OS(−3L +
∑6

i=1 Ei ) ∼= OS(−H) ,→ Ω
1
S , contradicting the

vanishing H0(Ω1
S

(H)) = 0. In the latter case, we similarly obtain a nonzero map

OS

(
−3L−Ei +

6∑

j=1
E j

)
,→Ω

1
S .

On the other hand, we have H0(Ω1
S(H +Ei )) = 0 by an analogous computation as at the end of

the proof of Theorem 5.4, giving a contradiction.
(c) Finally we assume that L̂i ∩D supports a point for some i , say i = 6, i.e., L̂6 is quad-

tangent to D. Then we get an inequality 2a +
∑5

j=1 b j ≤ 4, and as in (b) we get −5 ≤ a ≤−1 with
bi ∈ {−a,−a−1,−a−2} for each i . Note that in general we have

(37) 2a−bi +

6∑

j=1
b j ≤ 4

for any i . Setting δt to be the number of i ’s with bi =−a− t for t ∈ {0,1,2}, we have

2≤ 3a+

6∑

j=1
b j =−3a−δ1 −2δ2 ≤ 4.

If a = −5, then we have 11 ≤ δ1 + 2δ2 ≤ 13, implying that (δ1,δ2) ∈ {(0,6), (1,5)}. In each case
we have a contradiction to the inequality (37). Similarly, we can obtain the list of possible pairs
(δ1,δ2) together with values of bi ’s (see Table 2).
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a (δ1,δ2) {b1, . . . ,b6}
a =−4 (0,5) {4,2,2,2,2,2}

(2,4) {3,3,2,2,2,2}
a =−3 (1,3) {3,3,2,1,1,1}

(3,2) {3,2,2,2,1,1}
(5,1) {2,2,2,2,2,1}
(6,0) {2,2,2,2,2,2}

a =−2 (2,1) {2,2,2,1,1,0}
(3,0) {2,2,2,1,1,1}
(4,0) {2,2,1,1,1,1}

a =−1 (0,0) {1,1,1,1,1,1}
(1,0) {1,1,1,1,1,0}

TABLE 2

Recall that we have the following two conditions satisfied.

• If a+bi +b j = 2, then the line π(Li j ) is tangent to π(D).
• If 2a−bi +

∑6
j=1 b j = 4, then the conic π(L̂i ) is tetra-tangent to π(D).

Note that the last three cases in Table 2 are impossible by the last argument in (b). Assume that
(a,δ1,δ2) = (−4,0,5) and set b1 = 4. Then the five lines L12,L13, . . . ,L16 would be tangent to D.
It is impossible, because the six points p1, . . . , p6 are in general position. The case (a,δ1,δ2) =
(−3,1,3) is not possible, because of the inequality a +bi +b j ≤ 2 in Table 1. Also by Remark 5.7
the cases

(a,δ1,δ2) ∈ {(−4,2,4), (−2,2,1), (−2,3,0), }

are not possible. In case (a,δ1,δ2) = (−3,3,2), assuming (b1, . . . ,b6) = (3,2,2,2,1,1), the lines
L12,L13,L14 would be tangent to D. Then three points p1 and two of p2, p3, p4 are collinear, a
contradiction. Thus there are two cases left; (a,δ1,δ2) ∈ {(−3,5,1), (−3,6,0)}, and we may as-
sume

(a,b1, . . . ,b6) ∈ {(−3,2,2,2,2,2,1), (−3,2,2,2,2,2,2)}.

In case of (a,b1, . . . ,b6) = (−3,2,2,2,2,2,2), we may consider an exact sequence

(38) 0 −→OS

(
−3L+

6∑

j=1
2E j

)
−→Ω

1
S(logD) −→Ip,S

(
2L−

6∑

j=1
E j

)
−→ 0,

where p is a point in S. Restricting the sequence (38) to E j , we get that p 6∈ E j for any j , because(
Ω

1
S

(logD)
)
|E j

∼=
(
Ω

1
S

)
E j

∼= OE j
(−2)⊕OE j

(1). Similarly, if we restrict the sequence (38) to L̂ j , we
get (

Ω
1
S(logD)

)
|L̂ j

∼=OL̂ j
(4+c)⊕OL̂ j

(−1−c),

where c = 1 if p ∈ L̂ j , or c = 0 otherwise. On the other hand, applying Lemma 2.2, we also obtain
(
Ω

1
S(logD)

)
|L̂ j

∼=OL̂ j
(k −2)⊕OL̂ j

(5−k),

where k is the number of distinct points in Supp(D ∩ L̂ j ). Thus we get that (c,k) = (0,1), and
in particular p is not contained in L̂ j for any j . Now pick a unique smooth curve C = C1234 ∈

|OS(2L−E1 −E2 −E3 −E4)|, also passing through p. Then we get
(
Ω

1
S(logD)

)
|C

∼=OC (3)⊕OC (−1)
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from the sequence (38), while we also get an exact sequence

0 −→OC (4−k) −→
(
Ω

1
S(logD)

)
|C −→OC (k −2) −→ 0

from Lemma 2.2, where k is the number of distinct points in Supp(D∩C ). So the only possibility
is k = 1, i.e., C is tetra-tangent to D. Similarly we can obtain

( 6
4=15

)
smooth curves Ci1i2i3i4 that

are tetra-tangent to D, all passing through p, for any 1≤ i1 < i2 < i3 < i4 ≤ 6. In particular, in the
3-dimensional family of conics through p and p1, we have the following 10 tetra-tangent conics
to D:

C1234,C1235,C1236,C1245,C1246,C1256,C1345,C1346,C1356,C1456.

This gives a contradiction, because there are at most 4 tetra-tangent conics to D in the family
by Remark 5.7.

Finally assume that (a,b1, . . . ,b6) = (−3,2,2,2,2,2,1) and consider an exact sequence

(39) 0−→OS

(
−3L+

5∑

j=1
2E j +E6

)
−→Ω

1
S(logD) −→IΓ,S

(
2L−

5∑

j=1
E j

)
−→ 0,

where Γ is a zero-dimensional subscheme of S with length 3, say Γ= {p, q,r }. Similarly as above,
by considering the restriction of the sequence (39) to each E j , we may assume that q,r ∈ E6 and
p 6∈ E j for any j . Applying the push-forward functor π∗ to the sequence (39), we get

(40) 0 −→OP2(−3) −→Ω
1
P2(logπ(D)) ∼=TP2(−2) −→IΓ′,P2 (2) −→ 0,

where Γ
′ = {p1, . . . , p5,π(p),π(q) = π(r )}. Using Lemma 2.2, we get that the six points Z ′ =

{p1, . . . , p5,π(p)} are not contained in any conic so that we can consider the blow-up of P2 at Z ′

to obtain another smooth cubic surface π′ : S ′ → P
2 with the exceptional divisors E ′

1, . . . ,E ′
5,E ′

p .

Now taking the pull-back of the sequence (40) together with the logarithmic bundle Ω
1
S ′(logD ′),

where D ′ is the strict transform of π(D) in S ′, we obtain the following commutative diagram

(41)

0 0

0 OS ′(−3L′) (π′)∗Ω1
P2(logπ(D)) Iq ′,S ′(2L′−E ′) 0

0 OS ′(−3L′+2E ′) Ω
1
S ′(logD ′) Iq ′,S ′(2L′−E ′) 0

OE ′(2E ′) OE ′(2E ′)

0 0,

∼=

∼=

where L′ is a divisor class in (π′)∗OP2(1), E ′ = E ′
1 +·· ·+E ′

5 +E ′
p , and q ′ = (π′)−1(π(q)). From the

previous argument for (a,b1, . . . ,b6) = (−3,2,2,2,2,2,2), the middle horizontal sequence cannot
occur, a contradiction. �

5.3. Curves from the linear system |OS(3L)|. In this last subsection we want to extend the anal-
ogy with the last of the cases studied in Section 4, namely for cubic curves C ⊂P

2. Recall that we
proved in Theorem 4.11 that the Torelli property does not hold for pairs (C , Z ) of cubic curves
C of Sebastiani-Thom type and a set of points Z ⊂ C , unless Z determines uniquely the curve
C . Now we are going to prove that the situation is completely opposite when C ∩Z =;. We are
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going to keep using the following notation from Remark 4.10: recall that ST(3)0 denotes the set
of Sebastiani-Thom type cubics defined as

ST(3)0 =
{
V (x3

− y3
+az3) |a ∈C

×
}

.

Consider also the set of three points W = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}, which do not belong to
any curve in ST(3)0. Let Z ⊂ P

2 be the union of W with another three generic points in P
2 and

let π : S = BlZ (P2) →P
2 be the cubic surface obtained blowing-up P

2 at Z .

Proposition 5.9. For any two distinct cubic curves D1,D2 ∈ ST(3)0, we have

Ω
1
S(logD̃1) 6∼=Ω

1
S(logD̃2),

where D̃i , i = 1,2, denotes the strict transform of Di along the blow-up π : S = BlZ (P2) →P
2.

Proof. Fix a curve D ∈ ST(3)0, and pick an irreducible curve C ∈ |OS(L −Ei )| for each i = 1,2,3.
Applying Lemma 2.2 to TS(− logD̃), we obtain

(
Ω

1
S(logD̃)

)
|C
∼=OC (1)⊕OC ,

unless the intersection C ∩ D̃ supports only one point, when the restriction becomes OC (2)⊕
OC (−1). In other words, we can recover the nine inflection lines of D from the logarithmic
bundle Ω

1
S

(logD̃). Thus the assertion follows from the fact that the set of nine inflection lines
determines uniquely the cubic curve. �

6. FINAL REMARKS AND FURTHER QUESTIONS

In this section we would like to underline a couple of research lines that, in our opinion, nat-
urally arise from this work and would be interesting to study.

(i) One direction of study is to give a complete description of the map

Ψ : |OX (D)| 99KMX (c1,c2)

between the linear system of given divisor D in a surface X and the moduli space of stable
sheaves (with the appropriate Chern classes), defined by assigning the logarithmic vector bun-
dle. In this work, we have studied the stability and the Torelli property in order to ensure the
existence and the generic injectivity of the map. Nevertheless, it would be also interesting to
determine and describe its indeterminacy locus and propose an extension of the map itself on
the whole linear system.

(ii) One of the main ideas promoted in this article is that the splitting type of a logarithmic
sheaf on a rational curve is special whenever the curve is somewhat tangent to the fixed divisor.
On the other hand, we have seen examples in which this special behaviour is not detected; see
Example 2.4. Nevertheless, we provide evidence that, after blowing up the ambient surface, this
special behaviour is always detected. This leads us to proposing the following.

Question 6.1. Given any reduced Cartier divisor D on a smooth surface X , is it possible to al-
ways find a finite set of points Z ⊂ X \ D such that, being π : X̃ → X the blow-up along Z and D̃

the strict transform of D, D̃ satisfies the Torelli property?
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(iii) Finally, another possible interesting direction is to deal with the higher dimensional
cases. The first issue would be to give an extended definition of generalized logarithmic sheaf,
taking into consideration all the possible variations that depend on the choice of the center of
the blow-up. Moreover, it would be also necessary to obtain a generalization of the Key Restric-
tion Lemma 2.2, which does not only extend it in dimension but also loose the hypothesis on
the divisor.
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