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Abstract: Linear codes with complementary duals, or LCD codes, have recently been applied to
side-channel and fault injection attack-resistant cryptographic countermeasures. We explain that
over characteristic two fields, they exist whenever the permanent of any generator matrix is non-
zero. Alternatively, in the binary case, the matroid represented by the columns of the matrix has
an odd number of bases. We explain how Grassmannian varieties as well as linear and quadratic
complexes are connected with LCD codes. Accessing the classification of polarities, we relate the
binary LCD codes of dimension k to the two kinds of symmetric non-singular binary matrices, to
certain truncated Reed–Muller codes, and to the geometric codes of planes in finite projective space
via the self-orthogonal codes of dimension k.

Keywords: error-correcting code; invariant; rectangular matrix; permanent; complementary code;
geometric code; Reed–Muller; Grassmannian; polarity; self-orthogonal; matroid
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1. Introduction and Some Definitions

We assume standard details to be found in textbooks [1,2] about codes over finite
fields, their duals, generator matrices and so on. A subspace of dimension k of a vector
space (with a fixed coordinate system) over field F is called a code with parameters [n, k].
The starting point here is a kind of linear code called a Linear Complementary Dual (LCD)
code [3–7]. These have been used recently in applications involving protection schemes
against side-channel and fault injection attacks [8–10].

Let C be a subspace of dimension k of a vector space of dimension n (C is a linear code).
A complement D of C (or complementary subspace to C) is a subspace of the complementary
dimension n− k such that both subspaces together generate the whole space.

The Grassmann dimension rule for any subspaces X and Y is that

dim(X) + dim(Y) = dim(X ∩Y) + dim(〈X, Y〉),

where 〈X, Y〉 denotes the smallest linear space containing both X and Y.
Thus, for C of dimension k and for any subspace D of dimension n − k, we have

k + n − k = n = dim(C ∩ D) + dim(〈C, D〉) showing that 〈C, D〉 = Fn if and only if
C ∩ D = {0}.

A linear code C over a field F with parameters [n, k] has the LCD property if its dual
code C⊥ is a complement of C in the vector space Fn. Since dim(C⊥) = n− k, we have an
equivalent condition that the only word of C orthogonal to all the words of C is the zero
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word. Note that for the real field F = R, every code is LCD, but for finite fields GF(q) this
is false.

Before discussing the various algebraic and geometric ideas related to LCD codes,
we shall clarify the definitions; for example, the term “invariant” has various meanings
depending on the situation.

A square matrix with a single non-zero entry in every row and every column with
all the other entries as 0 is a generalised permutation matrix GPM; it is, more precisely, a
permutation matrix PM if the non-zero entries are 1.

Suppose A = (aij) is a k × n matrix over F. Let d ∈ Z+. As usual, |B| denotes the
determinant of a square matrix B over F. Consider the following conditions on a polynomial
p in the entries aij of A:

1. p(BA) = |B|d p(A) for any k× k matrix B;
2. p(AC) = ±p(A).|C| for any GPM C of size n× n;
3. p(AC) = ±p(A).|C| for any PM C of size n× n.

A polynomial function p(A) homogeneous of degree kd in the kn variables aij may be
known as the following:

• invariant if properties 1 and 2 hold;
• quasi-invariant if properties 1 and 3 hold.

It is clear that if k = n, there is only one kind of invariant that is |A|. For non-
square matrices, there are quasi-invariants that are constructed, as in [11], from formulae
involving subdeterminants of the matrix A. One of the authors in [12], for the cases
n = k(q− 1), d = q− 1, q being any prime power, constructed invariants Xq for prime
characteristic fields. We shall see that there is a quasi-invariant that determines the binary
LCD codes.

Another kind of (non-matrix) invariant is that of Tutte–Grothendieck in the theory of
matroids. Here, the Tutte (bivariate) polynomial is connected with the binary LCD codes.

The well-known Reed–Muller codes are certain linear codes defined from polynomial
functions [1,2]. In Section 2, we relate the RM(k− 3, k) binary codes to the self-orthogonal
codes that satisfy C ⊆ C⊥. There are also finite geometry codes. Given a fixed dimension d
of the subspace of a finite projective space PG(k− 1, q) over the field GF(q), there is a linear
code called the subspace code. This has a length of the number of points (qk − 1)/(q− 1) of
PG(k− 1, q) and words that are generated by the characteristic functions of the subspaces of
dimension d. The dual code to this is called the geometric code for dimension d of subspace.
It is the space of functions from the point-set to GF(q) such that the sum of the values on
any subspace of dimension d is zero.

The material is arranged as follows. Section 2 relates the theory of binary LCD codes to
the permanent function. Section 3 considers Grassmannian varieties, linear and quadratic
complexes and how they are related to LCD codes, especially looking at the binary case.
Section 4 discusses constructions of LCD codes and the number of them. It uses the
counts of polarities in binary space and the numbers of self-orthogonal or certain Reed–
Muller codes. At the end, we discuss the Tutte invariant of matroids and how it is used
to count bases in the matroid, which, in the binary case, evaluates the permanent of the
corresponding binary matrix. Section 5 summarises this note.

2. Quasi-Invariants of Matrices

We recall a result characterising LCD codes in a simple algebraic way:

Theorem 1 ([4,8]). C is LCD if and only if any generator matrix of C satisfies |AAt| 6= 0.

Note that this was restated and proved [8] in a different way using a generator matrix
of standard form A = (IM). The point is that the condition of Theorem 1 makes the
polynomial |AAt| a quasi-invariant (with the degree d = 2 in the quasi-invariant definition



Mathematics 2023, 11, 2774 3 of 11

of Section 1). Thus, we expect that there should be an alternative formula for it using
subdeterminants. We are led to the following:

Theorem 2. If A is a k× n matrix over a field (with k ≤ n), then

|AAt| = ΣB |B|2,

where the sum is over all k× k submatrices B of A.

Proof. This is a special case of the Cauchy–Binet formula (published in Paris, 1813), some-
times called the Lagrange identity, for the determinant of the product ABt of two (rectan-
gular) matrices of size k× n . Let us provide a brief proof.

We use induction on (k, n) starting with the case k = 1 and any n ≥ 1. In that case,
A = (a1, . . . , an) and |AAt| = Σa2

i , and the formula holds. It is also clear for n ≤ k because
the rank of A must be k requiring n ≥ k if |AAt| 6= 0, and, if n = k, then |AAt| = |A|2.

Assume now that the formula is true for values at most k and n. Then, consider any
k× (n + 1) matrix A. If the final column of A is all zeros, then the formula will hold by
looking at the smaller matrix with that column deleted. If the final column is non-zero,
by multiplying A on the left with a non-singular matrix B, we can modify A so that the
final column is the unit vector e1. We can check that the quasi-invariant is multiplied by
|B|2. It can also be calculated (by induction) from the matrix obtained by deleting the last
column and also by deleting both the last column and the first row (the “minor”). Hence,
the induction can be shown by reducing it to smaller cases.

Corollary 1. If A is a k× n matrix over a field of characteristic two (e.g., the binary field Z2), then

|AAt| = (ΣB |B|)2,

where the sum is over all k× k submatrices B of A.

Recall that the permanent function can be generalised to any non-square matrix A.
Assuming that the number of rows is at most the number of columns, i.e., k ≤ n, it is sum
over all products of elements of A, one in each row and one in k of the columns. In general,
the permanent is difficult to calculate, and, in the worst-case scenario, the time blows out
exponentially with the size of the matrix. There are formulae which improve the efficiency
of calculation such as those in [13], but these are not polynomial time.

Theorem 3. The permanent function per(A) of any matrix over a field of characteristic two
(non-square or not) is a quasi-invariant that has the formula

per(A) =
√
|AAt|.

Proof. This follows directly from Corollary 1. Even if the Frobenius mapping (x 7→ x2)
were not an automorphism (as the square root function is not well defined everywhere in
the case of an imperfect field of characteristic two), from the formula, the square root of
|AAt| will always be unique and in the same field generated by the matrix elements.

The square root is very easy to calculate for finite fields GF(2h) because it is the inverse
of the Frobenius automorphism x2, and so

√
x = x2h−1

, which is a polynomial function. For
the binary field (matrices of zeros and ones modulo 2), the square root can be omitted from
the formula.

3. Grassmannian Varieties and Geometrical Considerations

Here, we recall some classical geometrical ideas and use them to understand the
LCD codes better. In particular, we can enumerate LCD codes in a certain way. The main
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reference we use here is ([14], §7), but one should be aware of some differences with fields
of prime characteristic, especially when quadrics (degree 2 hypersurfaces) are considered.
However, the main results for Grassmannian and other concepts such as null polarities and
linear complexes are usually identical.

As established originally by Grassmann (we refer to the elder H.G. Grassman, not his
son H.E. Grassman who was also a high-level mathematician) in the 19th century, one can
coordinatise subspaces of a particular dimension k− 1 in projective space PG(n− 1, F),
the projective space of dimension n − 1 over the (commutative) field F, using Grass-
mann coordinates. We are reminded that Grassmann was one of the first to investigate
higher-dimensional geometry in a systematic way. The Grassmann coordinates gener-
alise the Plücker coordinates for lines in 3-dimensional space that were discovered earlier
in that century.

We consider a set of k independent points (a basis) in PG(n− 1, F) for the particular
subspace of dimension k− 1. Then, we form a k× n matrix A with the coordinates of these
points as the k rows, and then the Grassmann coordinates for the subspace is the list (in a
particular fixed order) of k× k subdeterminants of A. Thus, the number of coordinates is (n

k).
Note that the choice of basis for the subspace does not affect the Grassmann coordinates
since multiplying on the left of A by a non-singular matrix B will only multiply the
Grassmann coordinates by |B|, and Grassmann coordinates are homogeneous. The same is
true for non-zero multiples.

There are many properties of these coordinates for subspaces, including formulae
for dual subspaces, for how subspaces intersect, and the quadratic relations between
the coordinates. Suffice it to say that the set of Grassmann coordinates, a “Grassmannian
variety”, is an algebraic variety that is the precise intersection of a number of quadrics in the
space PG((n

k)− 1, F). The smallest non-trivial example is the Klein quadric ab− cd+ e f = 0
in PG((5, F) with point coordinates (a, b, c, d, e, f ), which is the Grassmann coordinate for
the lines in 3D space. In particular, if pij denotes the 2× 2 subdeterminant with columns
i 6= j, then a = p01, b = p23, c = p02, d = p13, e = p03, f = p12. Note that the dimension of
the space of lines in PG(3, F) is four, and this is the same as the dimension of the Klein
quadric (or any hypersurface) in PG(5, F).

Theorem 4. An [n, k]-code over a field F is LCD if and only if as a subspace its Grassmann coordi-
nates (gi) satisfy Σig2

i 6= 0; that is, the norm of the Grassmann coordinates’ vector is non-zero.

Proof. This follows directly from Theorem 2 and the definition of Grassmann coordinates.

Given that, in general, the Grassmann coordinates satisfy many quadratic conditions
we have the following:

Corollary 2. There are many possible equivalent quadratic conditions on the Grassmann coordi-
nates to determine an LCD code [n, k] (when 4 ≤ k + 2 ≤ n).

For example, in the case [n, k] = [4, 2] above, a2 + b2 + c2 + d2 + e2 + f 2 + λ(ab −
cd + e f ) 6= 0 gives the space of all quadratic conditions. In the characteristic two case, in
particular when F is the binary field GF(2), the condition for LCD is that the sum of the
Grassmann coordinates is non-zero, a linear condition. In that case, we can characterise the
LCD codes as the points in the complement of the Grassmannian with a certain hyperplane.

In the case [n, k] = [n, 2], the intersection of the Grassmannian of lines of PG(n− 1, F)
with any hyperplane corresponds, in general, to a “linear complex” of PG(n− 1, F). This is
because any linear complex is just a set of lines satisfying a single non-trivial (homogeneous)
linear condition on the Grassmann coordinates of the lines. Then, it is known [14] that a
linear complex determines and is determined by a null polarity: two points are conjugate
under the polarity if and only if the line joining them is in the complex. Conjugate means
that one point is on the image (a hyperplane) of the other point under the polarity. Note
that null means that every point is self-conjugate. The image of any point under the null
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polarity will be the hyperplane that is the union of all the lines of the linear complex passing
through that point.

Often, we substitute the word symplectic instead of “null” since symplectic groups can
be defined as the non-singular linear transformations that commute with a null polarity.

Theorem 5. In the characteristic two field case, non-LCD codes [n, 2] correspond to lines of a linear
complex of PG(n− 1, F) and a null polarity. If n is even, then the linear complex and null polarity
are non-degenerate, but, if n is odd, they are degenerate.

Proof. The condition of Corollary 1 that the sum of the 2× 2 subdeterminants in the 2× n
generator matrix for C is zero is a linear condition in the Grassmann coordinates for the
lines of PG(n− 1, F). This translates ([14], §XI, p. 380) to the null polarity with matrix
Jn − In, where Jn is the all ones matrix and In is the identity matrix of size n. By using
row reductions (subtracting the first row from all the others) then adding the first column
to all the other columns, we obtain an upper triangular matrix with a main diagonal of
n− 1,−1,−1, . . . . Thus, |Jn − In| = (n− 1)(−1)n−1 ≡ 0 (mod 2) if n is odd, and 1 if n is
even. Another way to execute this is to calculate

(Jn − In)
2 = (n− 2)Jn + In,

so that modulo two Jn − In is self-inverse (Jn − In)−1 = Jn − In, invertible, for even n. In
addition, nilpotent, (Jn − In)2 = Jn − In, not invertible, for odd n. Note that in the odd
n case, the rank of Jn − In is n− 1 because it contains a non-singular Jn−1 − In−1 princi-
pal submatrix so that the corresponding linear complex and null polarity are minimally
degenerate.

Since a line of PG(n− 1, F) will be either in the linear complex or not, we can count
the number of LCD codes [n, 2]. Let us demonstrate this for the binary case, F = GF(2).
Suppose n is even and we have a non-degenerate null polarity α of PG(n− 1, 2). Given a
point P, its image Pα will be a hyperplane of PG(n− 1, 2). Then, any point Q ∈ Pα \ {P} is
conjugate to P, so every line through P in Pα is in the linear complex corresponding to α.
There are (2n−2 − 1) such lines. By counting point/line incidences in two ways, we obtain
the number of lines of the linear complex as (2n − 1)(2n−2 − 1)/3. Hence:

Theorem 6. In the case n is even, the number of LCD codes (lines not in the linear complex) is

(2n − 1)(2n − 2)/6− (2n − 1)(2n−2 − 1)/3 = (2n − 1).2n−2/3.

These counts are consistent with the formulae in [6].

Corollary 3. For n = 2, there is a single binary LCD code [2, 2], which is generated by (1, 0) and
(0, 1). For n = 4, there are (24 − 1)22/3 = 20 LCD codes with parameters [4, 2].

For instance, the [4, 2] codes with generators (1, 0, 1, 1) and (0, 1, 1, 1) are LCD.
A projective code is a linear code which has a dual distance of at least three. Equiv-

alently, any generator matrix of such a code has no zero columns or columns that are
multiples of one another. For example, the longest binary projective LCD code [14, 4] will
be obtained by puncturing the simplex code [15, 4] at any column so that one could consider
a 4× 14 binary matrix as a generator matrix with all the possible non-zero columns except
for (1, . . . , 1)t. We shall learn more about this in the next section.

4. Constructions and Numbers of Projective Binary LCD Codes

Since the main applications have, so far, been in the binary case, we will continue to
consider binary LCD codes here. Suppose C is an LCD code over a characteristic two field
with generator matrix A. We can assume that A has no zero or repeated columns because
of the following:
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Lemma 1. If a zero column is deleted from or appended to the matrix A, or if a pair of identical
binary columns are deleted from or appended to it, then the product AAt is unchanged.

Proof. The first part is elementary, and the second part uses the fact that 2 = 0 in the field.

Once we assume the simplification of non-zero or repeated columns in a generator
matrix, and also the equivalence of codes under permutations of the element positions, we
can make a geometrical leap and consider sets of points in projective space PG(k− 1, 2) of
dimension k− 1 over the finite field GF(2). Every point of PG(k− 1, 2) has homogeneous
coordinates, a non-zero vector in GF(2)k. A subset of n points of PG(k− 1, 2) then corre-
sponds to a k× n matrix A. There are no zero or repeated columns in this matrix. Thus, it
is the generator matrix for some binary code of length n that has a dimension of at most k.
The property of this code being LCD, self-orthogonal or similar is an inherent property of
the set of points, as is the code’s distance. Equivalent codes will be related by non-singular
(row) transformations; that is, collineations of the space PG(k− 1, 2).

When considering LCD codes for which AAt is non-singular, the product AAt is
important. It can be any symmetric binary k× k matrix. Any set S of n points of PG(k− 1, 2)
gives a k× n matrix A(S) with the columns as point coordinates of the set. This, in turn,
gives the symmetric binary matrix A(S)A(S)t. If its determinant is 1, then the code
generated by the rows of A is LCD.

Suppose we have two sets of points S and T such that their corresponding symmetric
matrices A(S)A(S)t = A(T)A(T)t. Then, the symmetric difference S∆T will be another set
of points with A(S∆T).A(S∆T)t = A(S).A(S)t + A(T)A(T)t = 0. Note that by Lemma 1,
columns which are the same in both matrices do not contribute because they are repeated
in the join of the two matrices and are deleted in the symmetric difference. Thus, A(S∆T)
is a generator matrix for a self-orthogonal code.

We need the following result of MacWilliams [15].

Lemma 2. The number of non-singular k× k symmetric matrices over GF(2) is

k/2

∏
i=1

(2k+1 − 22i) if k is even, and

(k−1)/2

∏
i=0

(2k − 22i) if k is odd.

Note that enlarging the size of the matrix by one (from an even size to an odd size
k) multiplies the number of non-singular matrices by the number 2k − 1 (in the term with
i = 0) of non-zero vectors in the larger space.

There is an interesting relationship between self-orthogonal binary codes (all the
codewords are pairwise orthogonal) and certain punctured Reed–Muller codes. A binary
Reed–Muller code RM(i, k) has parameters [2k, (k

0) + · · · + (k
i)], where each position in

a word corresponds to a vector in GF(2)2), and each word corresponds to evaluations
of a polynomial in k variables of a degree at most i over GF(2). We consider punctured
(projective) codes so that evaluations at the zero vector are neglected, trimming the code
length 2k − 1.

Theorem 7. Every k× n matrix A, 3 ≤ k with no zero or repeated columns that satisfy AAt = 0
(the rows generating a self-orthogonal code) can be formed from a set of planes under symmetric
difference (giving a set of points) in the projective space PG(k− 1, 2). Each symmetric difference
corresponds to a unique word of the punctured Reed–Muller code RM(k− 3, k).

Proof. Note that each plane consists of seven points, and if we write these points as the
columns of a 3× 7 generator matrix, the code is the simplex code [7, 3, 4], which is self-
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orthogonal, contained in its dual, the Hamming [7, 4, 3] code. In the general case, we form
a generator matrix G for the simplex code [2k − 1, k], which is self-orthogonal for k ≥ 3. We
then append it to (k

2) rows, each row corresponding to a polynomial xixj, 1 ≤ i < j ≤ k and,
for a column c1, . . . , ck of G, we insert the value cicj into the row with label xixj. This makes
a (k + (k

2))× (2k − 1) binary matrix H. This method of creating longer vectors is called
Veronese mapping in geometry, so the columns of H are coordinates of points on a certain
Veronesean variety. If we added the entire ones row to H, we would have a generator
matrix for the quadratic punctured RM(2, k) code. However, we do not follow that. We
consider the dual code C(H)⊥ to the code C(H) generated by H.

If v is any word of C(H)⊥ of weight n, it is easily checked that the corresponding
columns where the ones are form a submatrix A of H that is self-orthogonal. What, however,
is C(H)⊥? It is the punctured RM(k− 3, k) made from polynomial functions in k variables
of a degree at most k− 3 (including the constant 1 function of degree 0).

The connection with planes of P(k − 1, 2) follows from the Fundamental Theorem
of Geometric Codes as found in [16,17]. In the binary case, the characteristic functions
of the planes of the projective space PG(k− 1, 2) generate a binary code, and a basis for
this code is precisely the set of all functions from GF(2)k to GF(2) given by the mappings
(x1, . . . , xk) 7→ p(x1, . . . , xk), a polynomial of degree at most k− 3 in the k variables. This
code is called the subspace code C⊥2 in [17]. In general, the geometric codes and the
subspace codes are classified for any finite field GF(q), but a more general polynomial
degree has to be specified that is related to the automorphisms of the field: mindeg for
the geometric codes and maxdeg for their dual subspace codes. In the binary case (or any
prime case), mindeg = maxdeg = deg, so it corresponds to Reed–Muller codes.

Note that the matrix A in Theorem 7 may have a rank less than k, but, if it has full
rank, then it is a generator matrix for a self-orthogonal code. The case where A has k rows
but no columns happens when the symmetric difference of the planes is empty, such as
when there are no planes.

Corollary 4. Every self-orthogonal binary code can be constructed from a set of planes of PG(k−
1, 2) or, equivalently, from the punctured RM(k− 3, 2) code.

Since the all ones’ words are in the punctured RM code, or, equivalently, the whole
set of points of PG(k− 1, 2) is the symmetric difference of the characteristic functions of a
number of planes, we have the following:

Corollary 5. There is a different kind of complement for any LCD code. Assuming that the columns
of a (projective) generator matrix G are non-zero and are not repeated (equivalent to saying that the
dual code has a distance of at least 3), we now form a new generator matrix from all the non-zero
columns that do not appear in G. Thus, from a projective [n, k] LCD code, we obtain a projective
[2k − 1− n, k′] LCD code with k′ ≤ k. In most cases, k′ = k.

Theorem 8. When k is even, k ≥ 4, the number of sets of points of PG(k− 1, 2) that correspond
to projective LCD codes is given by:

22k−1−k(k+1)/2
k/2

∏
i=1

(2k+1 − 22i).

When k is odd, k ≥ 3, the number of sets of points of PG(k− 1, 2) that correspond to projective
LCD codes is given by:

22k−1−k(k+1)/2
(k−1)/2

∏
i=0

(2k − 22i).
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Proof. A binary simplex code is self-orthogonal if its dimension is at least 3. In this smallest
case k = 3, a corresponding generator matrix, is the 3× 23 − 1 = 7 matrix of all possible
non-zero binary columns. This being the coordinates of the 7 points of PG(2, 2). This is
a special plane in PG(k − 1, 2), but using collineations (non-singular linear mappings),
one sees that any plane π of PG(k− 1, 2) (if k ≥ 3) gives a generator matrix A(π) for a
self-orthogonal code. By using the closure of all planes under symmetric differences, we
obtain the “subspace code” on the points of PG(k − 1, 2), isomorphic to an elementary
abelian group over Z2 of dimension 2k − (k

0)− (k
1)− (k

2) = 2k − (k2 + k + 2)/2, and each of
these sets of points gives a self-orthogonal code, also counting the empty set which gives
the trivial code {0}. Note that when k = 3, the smallest case, the subspace code has a
dimension of 1 with two words, which is the whole plane PG(2, 2) and the empty set.

We check that every (projective) self-orthogonal code contained as a truncation by
deleting columns from the simplex code of dimension k is obtained that way because the
planes are the subsets of a minimal size 7. There are no self-orthogonal codes of a length
less than 7 with no zero or repeated columns when considering all cases.

Each k × k binary symmetric matrix B will correspond to a coset of the above self-
orthogonal code subgroup because we can always write B = AAt for some A; for example,
forming an incidence matrix (vertices versus edges) of the graph with B as (vertex) adja-
cency matrix and appending appropriate unit columns to ensure that the number of ones
in each row is even. Any set of points that gives B as its AAt will then be the symmetric
difference of a self-orthogonal set of points with a fixed set (e.g., corresponding to the
columns of the (appended) incidence matrix just mentioned). Hence, we count the number
of symmetric non-singular matrices B using Lemma 2 to finish the proof.

In [18], it is shown that a (binary) LCD code with a non-singular symmetric matrix
AAt = B with a 1 on the leading diagonal (equivalently, the code is “odd-like”, having
odd-weight words) has a normalised generator matrix with AAt = I (the rows then form
an orthonormal basis). In the case of k being even, C can be “even-like”, and then the
generator matrix can be normalised so that AAt is the symmetric permutation matrix with
k/2 transpositions. If k is odd, then C must be odd-like, since a skew-symmetric matrix
(with zero diagonal) of an odd size k is always singular (from the Pfaffian formula).

Let us connect this with finite geometry. See [19] for the theory of polarities over
finite fields. In general, a non-singular symmetric matrix B corresponds to an orthogonal
polarity (having the absolute points of a quadric) and a non-singular skew-symmetric
matrix corresponds to a symplectic (or null) polarity having every point absolute (lying on
its image hyperplane). B is used to bijectively map a point (column vector) x ∈ PG(k− 1, 2)
to the hyperplane with dual (row) coordinates xtB. Similarly, any hyperplane yt 7→ B−1y.
Repeating the polarity twice, x 7→ xtB 7→ B−1Btx = ±x so that the polarity has order two
(meaning it is an involution).

The (linear) polarities of PG(k− 1, q) (for any prime power q) are of these two standard
types. There is also the Hermitian polarity, but this is non-linear depending on a square
root subfield not existing in the binary case. The orthogonal (ordinary) type of polarity has
the absolute points of a quadric, the set of points {x | xtBx = 0}. This is non-degenerate
in general, but, in the characteristic two case (e.g., binary), the quadric degenerates into a
hyperplane (squared) if B has a non-zero main diagonal. If k is even, there can be symplectic
polarities such that any point is absolute, lying on its image. Thus, xtBx = 0, ∀x, meaning
that B has zero diagonal. Note that the standard skew-symmetric condition for symplectic
changes in characteristic two to symmetric and zero diagonal.

From the reduction to just two kinds of symmetric matrices (or linear polarities) we
have this:

Proposition 1. When k is even, k ≥ 4, the number of sets of points of PG(k− 1, 2) that correspond
to non-equivalent LCD codes is at most:

22k−k(k+1)/2.
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When k is odd, k ≥ 3, the number of sets of points of PG(k − 1, 2) that correspond to
non-equivalent LCD codes is at most:

22k−1−k(k+1)/2.

To reduce these numbers much more, one could investigate the groups of collineations
of PG(k− 1, 2) similar to [18] because sets of points that are mapped to each other by a
collineation will give equivalent LCD codes.

The number of LCD codes has been counted in other ways, e.g., in [20], with mass
formulae for T2(n, k). The number of non-equivalent LCD codes is harder but has also been
calculated there for smaller cases.

Given a binary code with a k× n generator matrix A, we construct the matroid M(C)
which has the column vectors of A as a set of n points. A basis of M(C) is a linearly
independent set of k columns over the binary field GF(2). The property of no zero or
repeated columns in A means that M(C) is a simple matroid. Note that the matroid is the
same no matter what generator matrix is used because multiplying on the left of A by a
non-singular matrix does not change the dependence properties of the columns of A.

M(C) is called a representable matroid since it corresponds to a set of n points in binary
projective space PG(k− 1, 2), where each column of C forms the homogeneous coordinates
for the corresponding point. Any non-zero codeword of C can be seen in the geometry
of M(C) by considering a hyperplane of PG(k− 1, 2). Then, the positions with non-zero
values (ones) in the codeword are those points of M(C) that are not in that hyperplane.
Thus, the distance of C is given by the complement in M(C) of the largest intersection of C
with a hyperplane. This gives a word of the smallest Hamming weight in the code.

Theorem 9. A binary code C is an LCD code if and only if the number of bases of M(C) is odd.

Proof. This follows directly from the fact that for a binary matrix A, AAt is the sum of the
k× k subdeterminants of A, as seen when taking square roots in Corollary 1.

The number of bases of a matroid has been well studied, and, in particular, it is related
to the Tutte polynomial invariant. Here, we discuss some of the ideas which can be found
in [21].

The Tutte polynomial of a matroid M is defined as

TM(x, y) := ΣS (x− 1)z(S)(y− 1)n(S),

where z(S) is the rank r(M) of the whole matroid minus the rank r(S) of the subset S,
and where n(S), the nullity of S, is the number of points |S| in S minus r(S). Note that
0 ≤ z(S) ≤ r, and 0 ≤ n(S) ≤ |S|. Furthermore, x(S) = 0 if and only if S is a basis of M,
while z(S) = r(M) if and only if S is a set of loops of M (points of rank 0). n(S) = 0 if and
only if S is a subset of a basis of M (an “independent” set). n(S) = |S| if and only if S is a
set (perhaps empty) of loops of M.

Another important property for coding theory is that the Tutte polynomial T(M⊥) of
the dual matroid satisfies TM⊥(x, y) = TM(y, x). If the matroid M comes from the columns
of a generator matrix of a linear code C, then the dual matroid comes from a generator
matrix for the dual code C⊥. In general, the dual M⊥ of a matroid M is defined on the
same (ordered) set of points, with the bases being the complements M \ B of the bases B
in the original matroid. The dual concept of a loop is an isthmus, which is a point of M
contained in every basis of M. Thus, adding a loop to a set S never increases its rank, while
adding an isthmus always increases the rank of S by one.

The Tutte polynomial can be calculated recursively by the operations of matrioid
deletion and contraction, which for generator matrices correspond essentially to the oper-
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ations of deleting a column or deleting a row of a generator matrix. The main relation is
the following:

TM(x, y) = TM\e(x, y) + TM/e(x, y),

where e is a point (neither a loop nor isthmus) of M, M\e is the deletion of e from M, while
M/e is the projection (or contraction) of M from e. The recursion in the case where f is a
loop is

TM(x, y) = yTM\ f (x, y) = yTM/ f (x, y),

and, if g is an isthmus, then

TM(x, y) = xTM\g(x, y) = xTM/g(x, y).

Of course, with all these recursions, it turns out that the Tutte polynomial in the
general case has a high complexity of calculation. However, we note that it is known that
the evaluation at the point (1, 1) gives the number of bases of M.

Theorem 10. TM(1, 1) is the number of bases of the matroid M.

Corollary 6. The matroid M(C) of a binary code has an odd TM(C)(1, 1) if and only if C is an LCD.

Since the number of maximal non-singular submatrices determines whether a gener-
ator matrix gives an LCD code or not, we have the following easy fact which also comes
from the evaluation of the Tutte invariant as above.

Corollary 7. Given any (pivot) position with the value 1 of a k × n LCD generator matrix A,
either we can delete the column with the pivot to obtain a smaller LCD generator matrix or we can
use row operations to make all zeros below the pivot, and then the minor of A will be a k− 1× n− 1
LCD generator matrix. One of these cases will occur but not both.

Proof. This follows immediately from the permanent function description of |AAt| in
Theorem 3 because the (odd) number of permutations in A is counted by going through
the pivot or not.

5. Conclusions

We have elucidated some facets of the theory of LCD codes, counting them in vari-
ous ways and connecting them with other types of codes: self-orthogonal, Reed–Muller,
subspace and geometric. Invariants, or more generally, quasi-invariants, have been shown
to determine the binary LCD codes; notably, the permanent of a generator matrix and an
evaluation of the Tutte polynomial of an associated matroid. We have also explained how
the classification of polarities leads to two basic kinds of LCD code in the characteristic
two case.
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11. Radić, M.; Sus̆anj, R. On determinants of rectangular matrices which have Laplace’s expansion along the rows. Glasnik Mat. 2012,
47, 175–180. [CrossRef]

12. Glynn, D.G. An invariant for matrices and sets of points in prime characteristic. Des. Codes Cryptogr. 2011, 58, 155–172. [CrossRef]
13. Glynn, D.G. The permanent of a square matrix. Europ. J. Combin. 2010, 31, 1887–1891. [CrossRef]
14. Hodge, W.V.D.; Pedoe, D. Methods of Algebraic Geometry; Cambridge University Press: Cambridge, UK, 1968; Volume 1.
15. MacWilliams, J. Orthogonal matrices over finite fields. American Math. Monthly 1969, 76, 152–164. [CrossRef]
16. Glynn, D.G.; Hirschfeld, J.W.P. On the classification of geometric codes by polynomial functions. Des. Codes Cryptogr. 1995,

6, 189–204. [CrossRef]
17. Glynn, D.G. On the orthogonality of geometric codes. Des. Codes Cryptogr. 2004, 31, 43–50. [CrossRef]
18. Carlet, C.; Mesnager, S.; Tang, C.; Qi, Y. New characterization and parameterization of LCD codes. IEEE Trans. Inf. Theory 2018,

65, 39–49.
19. Hirschfeld, J.W.P. Projective Geometries over Finite Fields; Oxford University Press: Oxford, UK, 1979.
20. Araya, M.; Harada, J. On the classification of linear complementary dual codes. Discrete Math. 2019, 342, 270–278.
21. Oxley, J.G. Matroid Theory, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA; Tokyo, Japan, 2006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s12095-019-00364-8
http://dx.doi.org/10.1016/0012-365X(92)90563-U
http://dx.doi.org/10.1007/s12095-018-0319-0
http://dx.doi.org/10.1137/S0895480195294027
http://dx.doi.org/10.1016/j.disc.2004.05.005
http://dx.doi.org/10.1007/s12095-017-0271-4
http://dx.doi.org/10.3336/gm.47.1.15
http://dx.doi.org/10.1007/s10623-010-9392-x
http://dx.doi.org/10.1016/j.ejc.2010.01.010
http://dx.doi.org/10.1080/00029890.1969.12000160
http://dx.doi.org/10.1007/BF01388474
http://dx.doi.org/10.1023/A:1027334503048

	Introduction and Some Definitions
	Quasi-Invariants of Matrices
	Grassmannian Varieties and Geometrical Considerations
	Constructions and Numbers of Projective Binary LCD Codes
	Conclusions
	References

