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THE L p -FISHER-RAO METRIC AND AMARI-CENCOV α-CONNECTIONS

We introduce a family of Finsler metrics, called the L p -Fisher-Rao metrics Fp, for p ∈ (1, ∞), which generalizes the classical Fisher-Rao metric F2, both on the space of densities Dens+(M ) and probability densities Prob(M ). We then study their relations to the Amari-Cencov α-connections ∇ (α) from information geometry: on Dens+(M ), the geodesic equations of Fp and ∇ (α) coincide, for p = 2/(1 -α). Both are pullbacks of canonical constructions on L p (M ), in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of α-geodesics as being energy minimizing curves. On Prob(M ), the Fp and ∇ (α) geodesics can still be thought as pullbacks of natural operations on the unit sphere in L p (M ), but in this case they no longer coincide unless p = 2. Using this transformation, we solve the geodesic equation of the α-connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman-Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of Fp, and study their relation to ∇ (α) .

Introduction

Information geometry is concerned with the study of spaces of probability densities as differentiable manifolds. Its first developments were mostly about the finite-dimensional geometry of parametric statistical models, for which the space of distributions can be identified with the parameter space. In 1945, Rao [START_REF] Rao | Information and the accuracy attainable in the estimation of statistical parameters[END_REF] showed that the Fisher information could be used to define a Riemannian metric on this space, and in 1982, Cencov [START_REF] Cencov | Statistical decision rules and optimal inference[END_REF] proved that it was the only metric invariant with respect to sufficient statistics, for families with finite sample spaces. The Fisher-Rao metric was also shown to induce well-known geometries on certain important statistical models, such as hyperbolic geometry on normal distributions [START_REF] Atkinson | Rao's distance measure[END_REF].

Encompassing the Fisher-Rao metric, a richer geometric structure was introduced by Cencov [START_REF] Cencov | Statistical decision rules and optimal inference[END_REF] and Amari [START_REF] Amari | Methods of information geometry[END_REF] on spaces of parametric probability distributions. The Amari-Cencov structure relies on a family of affine connections called the α-connections, denoted by ∇ (α) , that are dual with respect to the Fisher-Rao metric, and such that the 0-connection is the Levi-Civita connection.

Date: July 30, 2023.

The α-connections arise naturally as an interpolating family between the so-called exponential and mixture connections ∇ (1) and ∇ (-1) , for which exponential and mixture families are (dually) flat manifolds. These geometric tools relate to natural information-theoretic quantities such as the Kullback-Leibler divergence, and have been used in statistical inference, e.g. to express conditions for existence of consistent and efficient estimators, or to obtain a purely geometric interpretation of the famous Expectation-Maximization (EM) algorithm in the presence of hidden variables [START_REF] Amari | Information geometry and its applications[END_REF].

In parallel, infinite-dimensional information geometry tools have also been developed in the nonparametric setting, although arguably to a lesser extent. The non-parametric Fisher-Rao metric was introduced by Friedrich in 1991 [START_REF] Friedrich | Die Fisher-information und symplektische strukturen[END_REF] on the space of all probability densities. He showed that it yields the historical Fisher information metric when restricted to finite-dimensional submanifolds representing parametric statistical models, and that the geometry is spherical with constant curvature 1/4. More than two decades later, it was proved to be the only metric (up to a multiplicative factor) invariant with respect to the action of sufficient statistics, namely diffeomorphic change of the support, just like in the finite-dimensional case [START_REF] Ay | Information geometry and sufficient statistics[END_REF][START_REF] Bauer | Uniqueness of the Fisher-Rao metric on the space of smooth densities[END_REF]. In the infinite-dimensional setting, it is possible to work with diffeomorphisms of the support instead of the densities themselves, since the space of smooth densities on a compact manifold M with respect to a volume form λ can be obtained as the quotient Diff(M )/ Diff λ (M ) of diffeomorphisms modulo diffeomorphisms preserving λ. Using this representation Khesin, Lenells, Misiolek and Preston [START_REF] Khesin | Geometry of diffeomorphism groups, complete integrability and geometric statistics[END_REF] have shown in 2013 that the Fisher-Rao metric can be obtained as the quotient of a right-invariant homogeneous Sobolev Ḣ1 -metric on Diff(M ), see also [START_REF] Modin | Generalized Hunter-Saxton equations, optimal information transport, and factorization of diffeomorphisms[END_REF] and the recent overview article [START_REF] Khesin | Information geometry of diffeomorphism groups[END_REF].

The Amari-Cencov structure induced by the α-connections also received interest in the nonparametric setting. Giblisco and Pistone [START_REF] Gibilisco | Connections on non-parametric statistical manifolds by Orlicz space geometry[END_REF] defined the exponential and mixture connections in this case, and showed that for α ∈ (-1, 1), the interpolating connections can be defined through a p-root mapping to an L p sphere, for p = 2 1-α . Divergences and dualistic structures are investigated in the monograph of Ay, Jost, Lê and Schwachhöfer [START_REF] Ay | Information geometry[END_REF], although the α-connections themselves are not directly considered there in the infinite-dimensional setting. See also [START_REF] Newton | An infinite-dimensional statistical manifold modelled on Hilbert space[END_REF] for a definition of the α-divergences and α-connections in a Hilbert manifold settings. In [START_REF] Lenells | Amari-Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups[END_REF], Lenells and Misio lek study the α-connections on diffeomorphisms and relate their geodesic equations to a well-known equation, the generalized Proudman-Johnson equation. Very recently, three authors of the present paper showed that these Proudman-Johnson equations, on the real line, could alternatively be seen as the geodesic equations of right-invariant Finsler metrics on the diffeomorphism group [START_REF] Bauer | A geometric view on the generalized Proudman-Johnson and r-Hunter-Saxton equations[END_REF], which were first introduced in [START_REF] Cotter | The r-Hunter-Saxton equation, smooth and singular solutions and their approximation[END_REF]. This led to making a first link between α-connections and a family of Finsler metrics, which we investigate further here.

1.1. Main contributions. The aim of the present paper is three-fold. First, to introduce and study the L p -Fisher-Rao metrics on (probability) densities

F p (a) := F p (µ, a) = a µ p µ 1 p
, for p ∈ (1, ∞) and any density µ and tangent vector a. Note, that is a family of Finsler metrics that conincides with the Fisher-Rao metric when p = 2. Second, to give a precise and rigorous review of the Amari-Cencov α-connections in the infinite-dimensional setting, a new variational formulation of their corresponding geodesics, and explicit solution formulas for them. Finally, to make links between the two, distinguishing between the space of densities, the space of probability densities, and parametric statistical models. Next we will describe the main contributions in more details: we study the L p -Fisher-Rao geometry of (probability) densities through a mapping to the set of positive functions,

Φ p (µ) = µ λ 1/p
, where λ is some background probability measure. Just like the Fisher-Rao metric is the pullback of the standard L 2 -metric via the square-root transform [START_REF] Khesin | Geometry of diffeomorphism groups, complete integrability and geometric statistics[END_REF][START_REF] Bruveris | Geometry of the Fisher-Rao metric on the space of smooth densities on a compact manifold[END_REF][START_REF] Gibilisco | l p unit spheres and the α-geometries: Questions and perspectives[END_REF], we show that the L p -Fisher-Rao metric is the pullback of the L p -norm via the mapping Φ p , that we call by analogy the p-root transform (Theorems 3.12 and 4.10). The L p -Fisher-Rao geometry on the space of densities is therefore that of a flat space, as described in Corollary 3.13, and on the space of probability densities that of the L p -sphere (Theorem 4.10). The p-root transform (for p = 2 1-α ) also presents an alternative way to define the α-connections as pullbacks of the trivial connection of the vector space of functions (Theorems 3.12 and 4.10), as first shown by Gibilisco and Pistone [START_REF] Gibilisco | Connections on non-parametric statistical manifolds by Orlicz space geometry[END_REF] for probability distributions, albeit with a slightly different construction. The geometric differences between these constructions for the L p -Fisher-Rao metric and the α-connections, which we systematically study in this paper, are summarized in Figure 1.

Towards this aim, we show that the geodesic equations of F p and ∇ (α) coincide on Dens + (M ) (for α = 1 -2/p), but not on Prob(M ) (see Theorems 3.3, 3.7, 4.2 and 4.4); similarly, on Dens + (M ) the Chern connection induced by F p coincides with the α-connection, while this no longer holds on Prob(M ) (Theorem 3.10 and Remark 4.8). This provides the novel variational formulation of these α-connection geodesics.

We further use the p-root transform to obtain explicit solution formulas for α-geodesics on densities and on probability densities: for densities, we show in Corollary 3.13 that geodesics are pullbacks of straight lines in L p space, whereas for probability densities we show in Theorem 4.11 that they are pullbacks of projections of straight lines in L p onto the L p -sphere. In the latter case the projection involves a time rescaling that is obtained as a solution of an ordinary differential equation. Similar solutions of the geodesic equation of the α-connection were obtained for finite sample space [5, pp. 50-51]. In the infinite-dimensional case with a one-dimensional base manifold M , it gives an explicit solution (modulo a solution to an ODE) of the generalized Proudman-Johnson equation, for a certain range of parameters, and to the generalization to higher-dimensional base manifolds by Lenells and Misio lek [START_REF] Lenells | Amari-Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups[END_REF]. There, they proved the complete integrability of these equations for the flat case α = ±1 by providing an explicit solution formula. Similarly, the integrability for the case α = 0 was shown in [START_REF] Khesin | Geometry of diffeomorphism groups, complete integrability and geometric statistics[END_REF]. Our results can thus be interpreted as complete integrability of the α-geodesic equation for the whole range α ∈ (-1, 1).

The results in the one-dimensional situation are in correspondence with the analysis of [START_REF] Kogelbauer | On the global well-posedness of the inviscid generalized Proudman-Johnson equation using flow map arguments[END_REF][START_REF] Sarria | Blow-up of solutions to the generalized inviscid Proudman-Johnson equation[END_REF], where a similar p-root transform was used to study the generalized Proudman-Johnson equation. In these articles it was used as an ad-hoc simplification of some auxiliary equations; here we expose the geometry behind it, which also simplifies some of the authors' calculations, and generalize it to higher dimensions. These connections are summarized in Section 5.

Throughout this paper we work in the smooth category, i.e., all densities are assumed to be smooth, and the underlying space M is assumed to be a smooth manifold. This is mainly in order to avoid some technicalities, and most results work in much lower regularity. For example, for all results not involving the action of Diff(M ), the underlying space M can be simply a measurable space, and in many cases densities only need to be integrable. 1.2. Outline. The rest of the paper is organized as follows. We start by describing some background on spaces of densities and the Fisher-Rao metric in Section 2. Then we investigate the geometries induced by the α-connections and the L p -Fisher-Rao metrics as well as their links, on the space of smooth densities in Section 3 and on the space of probability densities in Section 4. In Section 5 we discuss the relations of the various geodesic equations obtained in Sections 3-4 to some known PDEs, as well as the relation between the L p -Fisher-Rao metric to Finsler metrics on diffeomorphism groups. The different notions of geodesics are compared numerically on an example in Section 6. Finally, we consider the finite-dimensional setting of parametric statistical models in Section 7, illustrated by the special case of normal distributions. In Appendix A we present a short overview of infinite-dimensional Finsler geometry. 
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Spaces of densities and the Fisher-Rao metric

In all of this article let M be a closed manifold of dimension dim(M ) < ∞. We denote by Dens + (M ) the space of smooth positive densities and by Prob(M ) the subspace of smooth probability densities, i.e.,

Dens + (M ) := {µ ∈ Ω n (M ) : µ > 0} Prob(M ) := µ ∈ Dens + (M ) : µ = 1 .
Since Dens + (M ) is an open subset of the Fréchet space Ω n (M ) it carries the structure of a Fréchet manifold with tangent space T µ Dens(M ) = Ω n (M ). Similarly, as a linear subspace of a Fréchet manifold, the space of probability densities is a Fréchet manifold, where the tangent space is given by

T µ Prob(M ) = a ∈ Ω n (M ) : a = 0 .
On both the space of densities and probability densities we can consider the pushforward action of the diffeomorphism group Diff(M ). On Dens + (M ) it is given by ( 1)

Diff(M ) × Dens + (M ) (ϕ, µ) → ϕ * µ ∈ Dens + (M )
and, since the pushforward by a diffeomorphism is volume preserving, this action restricts to an action on the space of probability densities. By a result of Moser [START_REF] Moser | On the volume elements on a manifold[END_REF] this action is transitive, which allows us to identify the space of probability densities with the quotient

(2) Prob(M ) ≡ Diff(M )/ Diff λ (M ),
where Diff λ (M ) is the group of volume preserving diffeomorphisms of some fixed probability density λ. Thus, constructions (metrics, connections, geodesics) on Prob(M ) can be pulled back to Diff(M ) via the map ϕ → ϕ * λ.

For a ∈ Ω n (M ) and µ ∈ Dens + (M ), we denote by a µ the Radon-Nikodym derivative of a with respect to µ. In particular, the map µ → µ λ allows us to identify Dens + (M ) with positive smooth functions on M , and Prob(M ) with the positive smooth functions that integrate to one. For the proof of the local wellposedness results in Sections 3 and 4 we will also need the Sobolev completions of these spaces, which can be defined using their Radon-Nikodym derivative w.r.t. to λ, i.e., for k > dim(M )/2 we consider

Dens k + (M ) := µ : µ λ ∈ H k (M ), and µ > 0 Prob k (M ) := µ ∈ Dens k + (M ) : µ = 1 .
Note, that the assumption k > dim(M )/2 is necessary to make sense of the positivity condition. A central object in information geometry is the Fisher-Rao metric, which we introduce now: 

G FR µ (a, b) = a µ b µ µ . (3) 
Via restriction G FR induces a Riemannian metric on Prob(M ), which we denote by the same letter.

3. The L p -Fisher-Rao metric and α-connections on the space of densities

In this section we will introduce the L p -Fisher-Rao metric on the space of densities, which will allow us to obtain a new interpretation of the family of α-connections.

3.1. The Amari-Cencov α-connections on Dens + (M ). First we will introduce the family of αconnections on the space Dens + (M ). In the finite-dimensional case, i.e., when M is a finite set, the below definitions coincide with the classical ones, see e.g. [START_REF] Amari | Methods of information geometry[END_REF][START_REF] Ay | Information geometry and sufficient statistics[END_REF]. Definition 3.1 (α-divergence). For α ∈ (-1, 1), define the α-divergence D (α) : Dens + (M )×Dens + (M ) → R, by

D (α) (µ||ν) = p M ν + p * M µ -p * p M µ λ 1/p ν λ 1/p * λ,
where p = 2 1-α and p * = 2 1+α is its Hölder conjugate.

Using Hölder inequality, it follows that D (α) is non-negative and vanishes if and only if µ = ν. Furthermore, a straightforward calculation shows that the negative of its second derivative defines a positive bilinear form, which is exactly the Fisher-Rao metric, i.e.,

-∂ µ ∂ ν D (α) (µ||ν)| ν=µ [a, b] = M a µ b µ µ = G FR µ (a, b), a, b ∈ T µ Dens + (M ).
Here ∂ µ and ∂ ν refer to derivatives with respect to the µ and ν variables, respectively. Thus, for any α ∈ (-1, 1), D (α) is a divergence in the sense of [START_REF] Ay | Information geometry and sufficient statistics[END_REF]Section 4.4], and induces a connection ∇ (α) on Dens + (M ) via the relation

(4) G FR µ (∇ (α) a b, c) = -∂ µ (∂ µ ∂ ν D (α) (µ||ν)[b, c])[a]| ν=µ = M Db.a µ c µ µ - 1 p * M a µ b µ c µ µ,
where a, b, c ∈ T µ Dens + (M ). Since Dens + (M ) is a Fréchet manifold, G FR is merely a weak Riemannian metric, and as such, (4) does not necessarily define ∇ (α) uniquely. However, in our case it does, yielding the following formulae:

Lemma 3.2 (α-connection). For any α ∈ (-1, 1) the α-connections ∇ (α) on Dens + (M ) are given by

(5) ∇ (α) a b = Db.a - 1 p * a µ b, a, b ∈ T µ Dens + (M ), p * = 2 1 + α .
Here Db.a| µ := D µ b(a µ ) denotes the directional derivative of the vector field b in the direction given by a µ .

The easiest way to read this lemma (and similar formulae below) is to consider again the identification of densities and positive functions via µ → µ/λ.

Proof. This follows directly from formula (4).

In the following result we will study the local wellposedness of the corresponding geodesic equations. Therefore we will first consider these equations on a Banach space of Sobolev densities, where it will be easy to obtain the local wellposedness using the theorem of Picard-Lindelöff. The result in the smooth category will then follow from an Ebin-Marsden type no-loss-no-gain result [START_REF] Ebin | Groups of diffeomorphisms and the motion of an incompressible fluid[END_REF]:

Theorem 3.3. A path µ : [0, 1] → Dens + (M ) is a geodesic with respect to ∇ (α) if (6) µ tt = 1 p * µ t µ µ t .
For any k > dim(M )/2 the geodesic equations are locally wellposed on the space of Sobolev densities

Dens k + (M ), i.e., given initial conditions µ(0) ∈ Dens k + (M ), µ t (0) ∈ T µ(0) Dens k + (M )
there exists an unique solution to equation (6) defined on a maximal interval of existence [0, T ). The maximal interval of existence is uniform in the Sobolev order k and thus the local wellposedness continues to hold in the limit, i.e., on the space of smooth densities Dens + (M ).

Proof. The formula for the geodesic equation follows directly from Lemma 3.2. To show the local well-posedness we view the geodesic equation ( 6) as a flow equation on T Dens k + (M ). Therefore let F (µ t ) denote the right hand side of the geodesic equation, i.e., [START_REF] Bauer | Smooth perturbations of the functional calculus and applications to Riemannian geometry on spaces of metrics[END_REF] F (µ,

µ t ) = µ -1 µ 2 t
where we use the identification of Dens k + (M ) with the space of positive, Sobolev functions H k + (M ) and T µ Dens k + (M ) with all of H k (M ). Using the Sobolev module properties and the positivity of µ it follows that F is a smooth map from H k + (M ) × H k (M ) and thus the local well-posedness follows by the theorem of Picard-Lindelöff. Next, we observe that F is equivariant under the action of the diffeomorphism group Diff(M )(M ), i.e., F (ϕ * µ, ϕ * µ t ) = ϕ * F (µ, µ t ). Thus the result on the uniformness of the maximal interval of existence follows by an adaption of the Ebin-Marsden noloss-no-gain theorem [START_REF] Ebin | Groups of diffeomorphisms and the motion of an incompressible fluid[END_REF]Lemma 12.2] to the present setting, i.e., the diffeomorphism group acting on densities. This can be achieved by following the proof in [START_REF] Bauer | Smooth perturbations of the functional calculus and applications to Riemannian geometry on spaces of metrics[END_REF], where the no-loss-no-gain result has been extended to the action of diffeomorphisms on the space of all Riemannian metrics. The key ingredient for this result is the fact that, in a chart, Lie derivatives along coordinate vector fields coincide with ordinary derivatives. 

F p (a) := F p (µ, a) = a µ p µ 1 p . ( 8 
)
Remark 3.5. It is easy to see that the L p -Fisher-Rao metric satisfies the axioms of a Finsler metric, as defined in Definition A.1, for any p ∈ (1, ∞). We will, however, see in Lemma 3.8, that it is not strongly convex if p = 2. First we will show, that the family of L p -Fisher-Rao metrics shares an important property with the Fisher-Rao metric: they are invariant under the action of the diffeomorphism group as defined in (1). Lemma 3.6. For any p ∈ (1, ∞), the L p -Fisher-Rao metric on the space of Dens + (M ) is invariant under the action of the diffeomorphism group Diff(M ), i.e., (9)

F p (µ, a) = F p (ϕ * µ, ϕ * a), a ∈ T µ Dens + (M ), ϕ ∈ Diff(M ).
Proof. This result follows by direct computation using the transformation formula for integrals.

Next we calculate the geodesic equations of this family of Finsler metrics on Dens + (M ).

Theorem 3.7 (Geodesic equation on Dens + (M )). For any p ∈ (1, ∞), the geodesic equation of the L p -Fisher-Rao metric on the space of densities Dens + (M ) is given by

d dt µ t µ + 1 p µ t µ 2 = 0, ( 10 
)
which coincides with the geodesic equation of the α-connection for α = 1 -2 p . Thus the local wellposedness result of Theorem 3.3 also hold for the geodesic equation of the L p -Fisher-Rao metric.

Proof. The length functional of the L p -Fisher-Rao metric on Dens + (M ) is given by

L(µ) = 1 0 µ t µ p µ 1 p dt,
where µ : [0, 1] → Dens + (M ) such that µ(0) = µ 0 , µ(1) = µ 1 and where µ t denotes its (time) derivative. A geodesic is a path that locally minimizes the length functional; since L is invariant to reparametrization, we can restrict ourselves to paths of constant speed. By the Hölder inequality, it follows that constant speed geodesics are equivalently the local minimizers of the q-energy

E q (µ) = 1 q 1 0 µ t µ p µ q p dt,
for any q > 1. In our case the most convenient choice is to consider the q-Energy with q = p. The corresponding energy functional reads as

E p (µ) = 1 p 1 0 µ t µ p µ dt.
Calculating the variation of the p-energy functional in direction δµ leads to [START_REF] Bauer | A geometric view on the generalized Proudman-Johnson and r-Hunter-Saxton equations[END_REF] 

δE p (µ)(δµ) = 1 p 1 0 p µ t µ p-2 µ t µ δµ t -(p -1) µ t µ p δµ dλ dt = - 1 p 1 0 p d dt µ t µ p-2 µ t µ + (p -1) µ t µ p δµ dλ dt,
where we used integration by parts in time t and that the variational direction vanishes at the end points, i.e., δµ(0) = δµ(1) = 0. From here we can immediately read off the geodesic equation

p d dt µ t µ p-2 µ t µ + (p -1) µ t µ p = 0.
which can be simplified to the desired formula. That this equation coincides with the geodesic equation of the α-connection can be seen by comparing it to the equation of Theorem 3.3. 

I(a, b) := I ν µ (a, b) := ν µ p-2 a µ b µ µ, J(a, b, c) := J ν µ (a, b, c) := ν µ p-4 a µ b µ c µ µ. (15) 
Proof. This formula can be derived similarly as the formula for the Hessian by computing

C ν (a, b, c) = ∂ r ∂ s ∂ t | r=s=t=0 F p (µ, ω)
where ω(r, s, t) = ν + ra + sb + tc.

3.3.

The α-connection as Chern connection of the L p -Fisher-Rao metric. Next we will show that the Chern connection associated to the L p -Fisher-Rao metric on Dens + (M ) is an α-connection, when two entries are taken to be the same.

Theorem 3.10 (The Chern connection on Dens + (M )). Let α = 1 -2 p . For every nowhere vanishing vector field ν on Dens + (M ) and any a ∈ T µ Dens + (M ), we have

(16) ∇ ν a ν = ∇ (α) a ν,
where ∇ ν is the Chern connection induced by the L p -Fisher-Rao metric and ∇ (α) is the α-connection on Dens + (M ) defined by [START_REF] Ay | Information geometry[END_REF].

Proof. Formula ( 16) defines the Chern connection if and only if it verifies the generalized Koszul formula (see Lemma A.8)

2g ν (∇ ν a ν, b) = ag ν (ν, b) + νg ν (b, a) -bg ν (a, ν) + g ν ([a, ν], b) -g ν ([ν, b], a) + g ν ([b, a], ν) -2C ν (∇ ν a ν, ν, b) -2C ν (∇ ν ν ν, b, a) + 2C ν (∇ ν ν b, a, ν).
Since the Cartan tensor verifies

C ν (ν, •, •) = 0 this formula reduces to (17) 2g ν (∇ ν a ν, b) = ag ν (ν, b) + νg ν (b, a) -bg ν (a, ν) + g ν ([a, ν], b) -g ν ([ν, b], a) + g ν ([b, a], ν) -2C ν (∇ ν ν ν, b, a).
To compute the first terms of the right hand-side of this equality, we will need

cI(a, b) = I(Da.c, b) + I(a, Db.c) -(p -1)K(a, b, c) + (p -2)J(ν, a, b, Dν.c),
where I and J are defined by [START_REF] Cencov | Statistical decision rules and optimal inference[END_REF], and

K(a, b, c) := K ν µ (a, b, c) = ν µ p-2 a µ b µ c µ µ.
Using this we get and

ag ν (ν, b) = - p -2 p I(ν, ν) 2/p-2 I(ν
νg ν (a, b) = - (p -1)(p -2) p I(ν, ν) 2/p-2 I(a, b) (pI(ν, Dν.ν) -(p -1)K(ν, ν, ν)) + (p -1)I(ν, ν) 2/p-1 (I(Da.ν, b) + I(a, Db.ν) -(p -1)K(ν, a, b) + (p -2)J(ν, a, b, Dν.ν)) + 2(p -1)(p -2) p I(ν, ν) 2/p-3 I(ν, a)I(ν, b) (pI(ν, Dν.ν) -(p -1)K(ν, ν, ν)) -(p -2)I(ν, ν) 2/p-2 I(ν, b) (I(ν, Da.ν) -(p -1)K(ν, ν, a) + (p -1)I(a, Dν.ν)) -(p -2)I(ν, ν) 2/p-2 I(ν, a) (I(ν, Db.ν) -(p -1)K(ν, ν, b) + (p -1)I(b, Dν.ν)) .
The following terms of the right hand-side of the generalized Koszul formula [START_REF] Chern | Riemann-Finsler geometry[END_REF] Finally there remains to compute the two terms involving the Chern connection, i.e. the term on the left hand-side and the last term of the right hand-side. With the chosen value of α, we have

∇ ν a ν = Dν.a - p -1 p a µ ν µ µ,
and so

I(∇ ν a ν, b) = I(Dν.a, b) - p -1 p K(ν, a, b) J(ν, a, b, ∇ ν ν ν) = J(ν, a, b, Dν.ν) - p p -1 K(ν, a, b).
This yields, using [START_REF] Cartan | Les espaces de Finsler[END_REF], 

2C ν (∇ ν ν ν, b, a) = (p -1)(p -2)I(ν, ν) 2/p-3 • 2I(ν,
+ I(ν, ν) 2 J(ν, a, b, Dν.ν) - p -1 p K(ν, a, b) .
Putting all the terms together yields the left hand-side of the generalized Koszul formula [START_REF] Chern | Riemann-Finsler geometry[END_REF], i.e.

2g ν (∇ ν a ν, b) = 2(p -1)I(ν, ν) 2/p-1 I(Dν.a, b) - p -1 p K(ν, a, b) -2(p -2)I(ν, ν) 2/p-2 I(ν, b) I(Dν.a, ν) - p -1 p K(ν, ν, a) .
As a direct consequence of the above characterization of the α-connections as a Chern connection we obtain that these connections have an interpretation as describing energy minimizing curves: Corollary 3.11. Let α ∈ (-1, 1). Geodesic curves of the α-connection describe locally minimizing curves of the 2 1-α -Energy

E 2 1-α (µ) = 1 -α 2 1 0 µ t µ 2 1-α µ dt.
3.4. The p-root transform. Next, we will isometrically map the space of densities to a simpler space, which will allow us to obtain explicit expressions for solutions to the geodesic equation; we call this construction, which is a direct generalization of the square-root transform for the Fisher-Rao metric, the p-root transform. At the same time the p-root transform presents an alternative way to define the α-connection. This has been first proposed by Gibilisco and Pistone [START_REF] Gibilisco | Connections on non-parametric statistical manifolds by Orlicz space geometry[END_REF], who considered this construction specifically for the space Prob(M ) albeit with slightly different notations and a different identification of a tangent vector with a function. Theorem 3.12. Endow the space C ∞ (M ) of smooth functions with the standard L p -norm and with the trivial vector space connection ∇ tr , i.e., for two vector fields ξ, η : (c) The pullback of Φ * p ∇ tr coincides with ∇ (α) up to a constant depending only on the footpoint:

C ∞ (M ) → C ∞ (M ),
(Φ * p ∇ tr ) a b| µ = 1 p µ λ 1 p -1 ∇ (α) a b| µ , µ ∈ Dens + (M ), a, b ∈ X(Dens + (M ))
In particular, the geodesics of Φ * p ∇ tr and ∇ (α) coincide.

Note that geodesics of the trivial connection on a vector space are always straight lines; in particular, this proposition allows us to obtain geodesics of the L p -Fisher-Rao metric (of the α-connection, resp.) by pulling-back straight lines in C ∞ (M ) using Φ p . We will use this in Corollary 3.13 below to explicitly describe the resulting formulas on Dens + (M ). First we present the proof of the above theorem, which is a fairly straightforward calculation:

Proof of Theorem 3.12. The characterization of the image of Φ p follows directly from the definition of Dens + (M ). To show item (b) we calculate for µ ∈ Dens + (M ) and a ∈ T µ Dens + (M ) the differential of Φ p :

D µ Φ p (a) = 1 p a λ µ λ 1/p-1
.

Therefore the pullback of the L p -norm via the embedding Φ p is given by

D µ Φ p (a) L p = 1 p M |D µ Φ p (a)| p dλ 1/p = 1 p M a µ p µ 1/p = 1 p F p (µ, a),
which implies that the embedding Φ p is indeed an isometry.

Similarly we calculate for item (c)

(Φ * p ∇ tr ) a b| µ = (T Φ p ) -1 ∇ tr T Φp(a) T Φ p (b)| Φp(µ) = (T Φ p ) -1 1 p 2 µ λ 1 p -1 ∇ tr a/λ ν λ 1 p -1 b λ µ=ν = 1 p ∇ tr a/λ ν λ 1 p -1 b λ µ=ν λ = 1 p µ λ 1 p -1 D(b/dx).(a/dx) + 1 p -1 µ λ -1 a λ b λ λ = 1 p µ λ 1 p -1 Db.a + 1 p -1 a µ b = 1 p µ λ 1 p -1 ∇ (α) a b| µ .
The above theorem allows us to explicitly solve for geodesics on Dens + (M ), which in turn leads to a proof of metric and geodesic incompleteness of the L p -Fisher-Rao metric for any p > 1. By the equivalence of geodesics for the α-connections and for the L p -Fisher-Rao metric the formulas for geodesics also hold for the former. In the finite dimensional setting this solution formula (via the p-root mapping) for the α-geodesics is known albeit without any geometric interpretation, cf. (a) The space Dens + (M ) equipped with the L p -Fisher-Rao metric (the α-connection resp.) is geodesically convex and, even more, there exists an explicit formula for all minimizing geodesics: given any µ 0 , µ 1 ∈ Dens + (M ) the unique geodesic µ : [0, 1] → Dens + (M ) connecting µ 0 to µ 1 is given by

µ(t) = t p µ 1 λ + (1 -t) p µ 0 λ p λ.
(b) Given any µ 0 , µ 1 ∈ Dens + (M ) the geodesic distance of the L p -Fisher-Rao metric is given by

d(µ 0 , µ 1 ) = M p µ 1 λ -p µ 0 λ λ 1/p
In particular, the geodesic distance of the L p -Fisher-Rao metric on Dens + (M ) is nondegenerate. (c) For any initial conditions µ 0 ∈ Dens + (M ) and a ∈ T µ Dens + (M ) the unique L p -Fisher-Rao geodesic (α-connection geodesic, resp.) µ : [0, T ) → Dens + (M ) defined on its maximal interval of existence [0, T ) is given by

µ(t) = p µ 0 λ + t a λ µ λ 1/p-1 p λ.
The geodesic µ(t) exists for all time t, i.e., T = ∞, if and only if a λ (x) ≥ 0 for all x ∈ M . Thus the space Dens + (M ) equipped with the L p -Fisher-Rao metric is geodesically incomplete since the solution to the geodesic equation (10) leaves the space in finite time for any initial condition with a λ (x) < 0 for some x. (d) The space Dens + (M ) equipped with the geodesic distance of the L p -Fisher-Rao metric is metrically incomplete. (e) The metric completion of the space Dens + (M ) with respect to the geodesic distance of the L p -Fisher-Rao metric is the space of all non-negative L 1 -densities:

Dens L 1 (M ) = µ : µ λ ∈ L 1 (M ), µ λ ≥ 0 a.e.
Proof. Statements (a)-(d) follow directly from the isometry of Theorem 3.12, the fact that geodesics on the vector space (C ∞ (M ), L p ) are straight lines and the characterization of the image of Φ p as an open, convex subset of C ∞ (M ). To see the statement regarding the metric completion we observe that the metric completion of the image is exactly the set of a.e. non-negative L p -functions and thus the statement on the metric completion follows by applying Φ -1 p .

4. The L p -Fisher-Rao metric and α-connections on the space of probability densities

The L p -Fisher-Rao metric F p and the α-divergence D α define, via restriction, corresponding objects on Prob(M ), which we study in this section. In particular, we will see that Prob(M ) equipped with the L p -Fisher-Rao metric corresponds geometrically to an infinite dimensional L psphere. In addition we will see that the equivalence to the α-connection, that has been established for the space of all densities in the previous section, does not hold on the space of probability densities. Consequently we obtain three different notions of p-geodesics on this space:

(1) geodesics of the restriction of the L p -Fisher-Rao metric to Prob(M );

(2) geodesics of the α-connections on Prob(M );

(3) projections of L p -Fisher-Rao geodesic curves (or equivalently, the α-connection ones) on Dens + (M ). In addition, if we allow to leave the space of probability densities, we obtain a fourth notion:

(4) L p -Fisher-Rao geodesics in Dens + (M ). In analogy to the L 2 case, the induced geodesic distance between probability densities defines an L p version of the Hellinger distance.

We will show that (2) and (3) coincide, thereby providing an explicit formula for α-geodesics on Prob(M ). For a graphic summary of these constructions we refer to Figure 1. In the next section we will compare the remaining three notions of geodesics numerically.

4.1. The Amari-Cencov α-connections on Prob(M ). The restriction of the α-divergences D α to the space Prob(M ) induces again a family of α-connections, which we will denote by ∇ (α) . Note, that this connection is not simply the restriction of the α-connections on Dens + (M ), which is the reason for choosing a different notation for it. We start by deriving an explicit formula for the α-connections on Prob(M ): For finite sample spaces this result is well-known (e.g., [5, Section 2.5.2]); in infinite dimensions formula [START_REF] Ebin | Groups of diffeomorphisms and the motion of an incompressible fluid[END_REF] agrees with the formula ( 22) in [START_REF] Lenells | Amari-Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups[END_REF], under the identification of Prob(M ) = Diff(M )/ Diff λ (M ).

Proof. To derive the formula for the α-connection ∇ (α) we calculate the second derivative of the restriction of D α , which is given again by formula (4) with the only difference being that a, b, c ∈ T µ Prob(M ). Thus we have determined ∇ 

µ tt - 1 p * µ -1 µ 2 t = - 1 p * µ t µ 2 µ µ.
For any k > dim(M )/2 the geodesic equations are locally wellposed on the space of Sobolev probability densities Prob k (M ), i.e., given initial conditions µ(0) ∈ Prob k (M ), µ t (0) ∈ T µ(0) Prob k (M ) there exists an unique solution to equation (6) defined on a maximal interval of existence [0, T ).

The maximal interval of existence is uniform in the Sobolev order k and thus the local wellposedness continues to hold in the limit, i.e., on the space of smooth, probability densities Prob(M ).

Proof. The proof of the local wellposedness follows exactly as in Theorem 3.3.

4.2.

The L p -Fisher-Rao metric on Prob(M ). Next, we study the restriction of the L p -Fisher-Rao metric to the space Prob(M ).

Remark 4.3 ( Cencov's theorem). Note that Lemma 3.6 on the invariance of the L p -Fisher-Rao metric continues to hold on the space Prob(M ). For the Riemannian case and dim(M ) > 1 Cencov's theorem states that the Fisher-Rao metric is the only Riemannian metric on Prob(M ) that is invariant under the action of the diffeomorphism group Diff(M ), cf. [START_REF] Cencov | Statistical decision rules and optimal inference[END_REF][START_REF] Ay | Information geometry and sufficient statistics[END_REF][START_REF] Bauer | Uniqueness of the Fisher-Rao metric on the space of smooth densities[END_REF]. In the Finslerian case there is a significant amount of additional flexibility, and one can indeed construct metrics beyond the L p -Fisher-Rao metric that satisfy this property. In future work it would be interesting to obtain a complete characterization of all such Finsler metrics.

We start by computing the geodesic equation of the (restriction) of the L p -Fisher-Rao metric F p on Prob(M ): Putting all these together, and noticing that k 2 (ν, ν) = -p p-2 k 1 (ν), we obtain

2g ν k 1 (ν) ν µ -p a µ ν + k 2 (ν, a) ν µ 2-p µ, b + 2C ν k 1 (ν) ν µ -p ν µ ν + k 2 (ν, ν) ν µ 2-p µ, b, a = (pk 1 (ν) + (p -2)k 2 (ν)) (p -1)I(ν, ν) 2 p -1 ν µ -1 a µ b µ µ = 0,
and so condition ( 23) is satisfied.

4.3.

The p-root transform on Prob(M ). In the previous section we have seen that the α-connection and the L p -Fisher-Rao metric induce different geodesics on the space Prob(M ). In this section we will investigate the geometric reasons behind this, by connecting both of these objects to the p-root transform. In order to state this result we will need to define an appropriate connection on the sphere

S p := {f ∈ C ∞ (M ) : f L p = 1}
, as the image of Prob(M ) under Φ p is in this set. To this end, we define: Definition 4.9 (p-projection and p-connection). The p-projection map π p : T C ∞ | Sp → T S p is defined by

π p f (ξ) = ξ - M ξf |f | p-2 dλ f, f ∈ S p , ξ ∈ T C ∞ | Sp .
The induced p-connection on S p is defined by

∇ p ξ η = π p ∇ tr ξ η . Note, that π p is the projection with respect to the splitting T f C ∞ = T f S p ⊕ span{f }.
The geodesic equation ∇ p γ γ = 0 can therefore be written as:

(24) γ γ M γ p dλ = 1 Note that from a metric point of view, this splitting is natural since f ∈ T f C ∞ is the unique direction from which straight lines (i.e., geodesics in C ∞ ) emanating from f gets the fastest away from S p with respect to the L p norm (since for p ∈ (1, ∞) the space L p is strictly convex). Similarly,

π p f (ξ) satisfies ξ -π p f (ξ) L p = dist L p (ξ, T f S p ).
For a more general viewpoint on projections on a sphere in uniformly convex Banach spaces whose dual is also uniformly convex, see [START_REF] Gibilisco | Connections on statistical manifolds of density operators by geometry of noncommutative lp-spaces[END_REF] and [START_REF] Gibilisco | l p unit spheres and the α-geometries: Questions and perspectives[END_REF]Prop. 2].

We are now able to formulate the analogous statement of Theorem 3.12, which will demonstrate the geometric differences between the α-connections and the L p -Fisher-Rao metric: Theorem 4.10. Let α ∈ (-1, 1) and, as before, denote p = 2 1-α . Consider the restriction of the map Φ p , as defined in [START_REF] Cotter | The r-Hunter-Saxton equation, smooth and singular solutions and their approximation[END_REF], to the space Prob(M ). We have: 

(Φ * p ∇ p ) a b| µ = 1 p µ λ 1 p -1 ∇ (α) a b| µ , µ ∈ Prob(M ), a, b ∈ X(Prob(M )).
In particular, the geodesics of Φ * p ∇ p and ∇ (α) coincide.

Proof. The proof follows by the same calculation as the proof of Theorem 3.12.

On S p , geodesics are no longer straight lines, and we do not have an explicit solution for the geodesic equations of either the α-connection or the L p -Fisher-Rao metric. However, by projecting straight lines on the sphere and rescaling time, one can obtain geodesics for the α-connection (cf. [START_REF] Ay | Information geometry and sufficient statistics[END_REF]Section 2.5.2] where this result has been shown in the finite dimensional situation): Theorem 4.11. Let f ∈ S p and ξ ∈ T f S p . Let I ⊂ R be an interval containing 0, and let τ :

I → R satisfy the ODE τ (t) = 2 M |f + τ (t)ξ| p-2 (f + τ (t)ξ)ξ dλ M |f + τ (t)ξ| p dλ τ (t) 2 τ (0) = 0 τ (0) = 1
Then γ : I → S p defined by

γ(t) = f + τ (t)ξ f + τ (t)ξ L p is a geodesic of ∇ p , with initial condition γ(0) = f , γ(0) = ξ.
A boundary value problem between f, g ∈ S p can be similarly addressed by putting ξ = g -f and I = [0, 1], and replacing the initial conditions for τ by the boundary conditions τ (0) = 0, τ (1) = 1.

Geodesics of ∇ (α) are obtained by pulling back these geodesics using Φ p . They all cease to exist (i.e., leave the space Prob(M )) after finite time. Since the geodesic equation is locally well-posed (Proposition 4.2), this procedure induces all the α-connection geodesics, i.e., the exponential map of ∇ (α) .

Proof. Using [START_REF] Gibilisco | Connections on non-parametric statistical manifolds by Orlicz space geometry[END_REF], we need to show that γ γ; all the other assumptions are satisfied by construction. We have

γ = τ (t) f + τ (t)ξ -1 L p ξ + 2 τ (t) d dt f + τ (t)ξ -1 L p ξ + d 2 dt 2 f + τ (t)ξ -1 L p (f + τ (t)ξ).
The last addend is clearly parallel to γ. Hence it is sufficient to require that

τ (t) f + τ (t)ξ -1 L p + 2 τ (t) d dt f + τ (t)ξ -1 L p = 0,
which is equivalent to the wanted ODE.

In order to prove that the pullback of the solutions leaves Prob(M ) after a finite time, we need to show that γ(t) stops being positive, i.e., that for some t > 0, f (x) + τ (t)ξ(x) ≤ 0 for some x ∈ M . From the equivariance under the action of Diff(M ), cf. Remark 4.3, it is sufficient to consider the case f ≡ 1 (which corresponds to µ(0) = λ). In this case ξ is a non-zero function satisfying M ξ λ = 0, and thus in particular ξ(x) < 0 for some x. Therefore, in order to prove that 1 + τ (t)ξ(x) ≤ 0 for some t, it is sufficient to prove that τ is unbounded as t → ∞. Note that we can write the equation for τ as [START_REF] Jerrard | Vanishing geodesic distance for right-invariant sobolev metrics on diffeomorphism groups[END_REF] τ (t) = 2 1 -1

M |1 + τ (t)ξ| p dλ τ (t) 2 τ .
Now, since s → 1 + sξ is a tangent line to the unit sphere at f = 1 in the strictly convex space L p , it follows that 1 + sξ L p ≥ 1, and equality holds if and only if s = 0. Thus, the term in the parentheses in ( 25) is non-negative, and vanishes if and only if τ (t) = 0. Since we also have that τ (0) = 0 and τ (0) = 1, it follows that τ (t) > 0 for t ∈ (0, t 0 ) for some t 0 small enough, and thus for any positive t. It follows therefore that τ > t for all t > 0, and in particular, it is unbounded.

Remark 4.12. In fact, the estimate τ > t implies that 1 + τ (t)ξ hits zero at some point for the first time at t * < 1 -min ξ . Pulling back to Prob(M ), we obtain that a geodesic from λ with initial condition a ∈ T λ Prob(M ) blows up at time [START_REF] Khesin | Geometry of diffeomorphism groups, complete integrability and geometric statistics[END_REF] t * < p -min(a/λ) .

In principle, better estimates on the blowup can be obtained by more careful analysis of [START_REF] Jerrard | Vanishing geodesic distance for right-invariant sobolev metrics on diffeomorphism groups[END_REF]. The estimate ( 26) is exactly the estimate obtained in [29, Formula (78)] (there, the parameter a is equivalent to -1 -2 p in our notation). Example 4.13 (Fisher-Rao geodesics). For the case p = 2, assuming that ξ is a unit vector (which is, by definition, perpendicular to f ), we obtain that the ODE takes a simpler form

τ = 2τ 1 + τ 2 τ 2 ,
whose solution is τ (t) = tan t, yielding the known solution of the Fisher-Rao geodesics [26, Remark 4.4].

Summary of relations to known PDEs and metrics on diffeomorphism groups

We now summarize how the L p -Fisher-Rao metric relates to (degenerate) right-invariant Finsler metric on the group of diffeomorphisms, in a similar spirit as in [START_REF] Khesin | Geometry of diffeomorphism groups, complete integrability and geometric statistics[END_REF] who studied this for the L 2case. Furthermore, we will see how the geodesics equations described in this paper relate to other previously studied equations in hydrodynamics and mathematical physics:

• On the diffeomorphism group of a closed manifold M one can consider the family of, rightinvariant (degenerate) Ẇ 1,p -Finsler metrics of the form

Fp (ϕ, X • ϕ) = M | div(X)| p dλ 1/p , X ∈ T ϕ Diff(M ).
These metrics were useful for proving that the diameter of Diff(M ) with respect to some critical Sobolev Riemannian metrics is infinite [START_REF] Bauer | Can we run to infinity? the diameter of the diffeomorphism group with respect to right-invariant sobolev metrics[END_REF]. Note that the kernel of the Finsler metric Fp consists exactly of all divergence free vector fields, and thus Fp is only a "true" Finsler metric on the quotient space Diff(M )/ Diff λ (M ). The relation to the L p -Fisher-Rao metric, as studied in the present article, becomes clear by considering the mapping ϕ → Jac(ϕ)λ, which gives rise to an isometry

(Diff(M )/ Diff λ (M ), Fp ) → (Prob(M ), F p ).
Note, that this result is a direct generalization of the case p = 2 treated in Khesin et al. [START_REF] Khesin | Geometry of diffeomorphism groups, complete integrability and geometric statistics[END_REF]. For this case Modin [START_REF] Modin | Generalized Hunter-Saxton equations, optimal information transport, and factorization of diffeomorphisms[END_REF] constructed an extension of the metric F2 to obtain a non-degenerate, right invariant Riemannian metric on the full group of diffeomorphisms Diff(M ), that still descends to the Fisher-Rao metric F 2 on Prob(M ). In future work it would be interesting to consider a similar extension for the case p = 2. • Similarly, the α-connections on Prob(M ) can be pulled back to Diff(M )/ Diff λ (M ); the corresponding geodesic equation (which is equivalent to the one in Theorem 4.2) was first considered in [START_REF] Lenells | Amari-Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups[END_REF]. Theorem 4.11 shows their integrability and finite-time blowup. • For the special case M = S 1 , where the group of volume preserving diffeomorphisms is given by the group of rotations Rot(S 1 ), the α-connections on Prob(S 1 ) can thus be pulled back to Diff(S 1 )/ Rot(S 1 ), where the associated geodesic equation, when presented on the Lie algebra, is the generalized periodic inviscid Proudman-Johnson equation

u txx + (2 -α)u x u xx + uu xxx = 0,
as was first shown in [START_REF] Lenells | Amari-Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups[END_REF]. See [START_REF] Sarria | Blow-up of solutions to the generalized inviscid Proudman-Johnson equation[END_REF][START_REF] Kogelbauer | On the global well-posedness of the inviscid generalized Proudman-Johnson equation using flow map arguments[END_REF] and the references therein for analysis of this equation, also beyond the range α ∈ (-1, 1). • Similarly, the L p -Fisher-Rao metric on Prob(S 1 ) can be considered as a Finsler metric on Diff(S 1 )/ Rot(S 1 ). The resulting geodesic equation is the periodic r-Hunter-Saxton equation for r = 1/p, as considered in [START_REF] Cotter | The r-Hunter-Saxton equation, smooth and singular solutions and their approximation[END_REF][START_REF] Bauer | A geometric view on the generalized Proudman-Johnson and r-Hunter-Saxton equations[END_REF]. As shown in this paper, this is not the same equation as the one of the α-connections on Prob(S 1 ) (i.e., the generalized periodic invicid Proudman-Johnson equation), unlike what we erroneously stated in [START_REF] Bauer | A geometric view on the generalized Proudman-Johnson and r-Hunter-Saxton equations[END_REF].

• For M = R, the geodesic equations of α-connections (equiv., of the L p -Fisher-Rao metric)

on Dens(R) can be considered as equations of an appropriate subgroup of Diff(R), defined in [START_REF] Bauer | A geometric view on the generalized Proudman-Johnson and r-Hunter-Saxton equations[END_REF]. The resulting equation is the generalized non-periodic invicid Proudman-Johnson equation, or equivalently, the non-periodic r-Hunter-Saxton equation (for r = 1/p) [START_REF] Cotter | The r-Hunter-Saxton equation, smooth and singular solutions and their approximation[END_REF]. Moreover, the metric Fp described above on this subgroup of Diff(R) yields a similar isometry to (Dens + (M )(R), F p ), as follows from [START_REF] Bauer | A geometric view on the generalized Proudman-Johnson and r-Hunter-Saxton equations[END_REF]. It is interesting whether (Dens + (M )(R), F p ) can be similarly interpreted on compact manifolds as well, maybe in a similar way to the "simple unbalanced optimal transport" extension, introduced recently in [28].

6.

A numerical comparison of geodesics on Dens + (M ) and Prob(M )

In this section we aim to numerically compare the different notions of geodesics that we have encountered in this article. Given two probability densities we consider three notions of geodesics:

(1) The geodesic for the L p -Fisher-Rao metric and the α-connection on Dens + (M ), which is simply obtained as the pullback by the p-root transform Φ p of the straight line in L p . This geodesic leaves the space Prob(M ). ( 2) The geodesic for the α-connection on Prob(M ), which is the pullback by the p-root transform of the projection of the straight line on the L p sphere, as described in Theorem 4.11. (3) The geodesic for the L p -Fisher-Rao geodesic on Prob(M ), which is the pullback by the p-root transform of the geodesic of the L p -metric restricted to the L p -sphere. Specifically we consider the example of probability densities on the one-dimensional base space M = [0, 1]. Note, that we have an explicit formula for the first two notions of geodesics (geodesics on Dens + (M ) and α-connection geodesics on Prob(M )), but that the calculation of the L p -Fisher-Rao geodesic between two probability distributions µ 0 and µ 1 requires us to solve an optimization problem: the geodesic boundary value problem on the L p -sphere. Namely, we minimize the p-energy for the L p metric on smooth functions

(27) E p (f ) = 1 p 1 0 |f t | p dλ dt,
where f : [0, 1] → C ∞ (M ) is a path constrained to belong to the L p -sphere, such that f (0) = Φ p (µ 0 ), f (1) = Φ p (µ 1 ) and f t denotes its time derivative. This is equivalent to minimizing the length functional, as explained in the proof of Theorem 3.7. We then obtain the wanted geodesic µ : [0, 1] → Prob(M ) by applying Φ -1 p . In Figure 2 we show the three types of geodesics obtained for different values of p (p = 2, 3, 5, 10 from top to bottom), and the corresponding values of α = 1-2/p. The constrained minimization of [START_REF] Khesin | Information geometry of diffeomorphism groups[END_REF] was performed in Python using the Sequential Least Squares Programming (SLSQP) method provided by the Scipy minimization solver, with a discretization of 30 time points and 100 sampling points, in a straightforward implementation that was not aimed for computational efficiency. As expected, the L p -Fisher-Rao metric and the α-connection yield different geodesics on Prob(M ), except for the special case p = 2 corresponding to the Fisher-Rao metric and its Levi-Civita connection. 

Finite-dimensional geometry of parametric statistical models

In this section we make the link with the finite-dimensional setting of parametric statistical models. Let us consider a finite-dimensional submanifold of Prob(R n ) corresponding to a family of probability distributions on R n that are absolutely continuous with respect to the Lebesgue measure, and whose densities are parametrized by a parameter θ belonging to an open subset Θ of R d :

P Θ = {µ(dx) = f (x, θ) dx : θ ∈ Θ} ⊂ Prob(R n ).
Here x ∈ R n is the sample variable and dx denotes the Lebesgue measure on R n . Then a tangent vector of P Θ at a given µ = f (•, θ)dx is of the form a = d dt t=0 µ t , where µ t = f (•, θ t )dx with t → θ t a curve in Θ such that θ 0 = θ and θ0 = u ∈ T θ Θ. Thus the tangent space at µ is

T µ P Θ = {a = ∇ θ f, u dx : u ∈ T θ Θ R d } = span{e 1 , . . . , e d }, (28) 
where e i = ∂f ∂θ i dx. Here ∇ θ denotes the gradient with respect to θ and •, • the Euclidean scalar product on R d . In all the sequel, we identify P Θ Θ and T µ P Θ T θ Θ R d via the one-to-one maps [START_REF] Kogelbauer | On the global well-posedness of the inviscid generalized Proudman-Johnson equation using flow map arguments[END_REF] φ : Θ → P Θ , θ → f (•, θ)dx,

(φ * ) θ : T θ Θ → T φ(θ) P Θ , u → ∇ θ f, u dx.
7.1. The Fisher-Rao metric and the α-connection. The Fisher-Rao metric on the parameter space Θ is the Riemannian metric whose metric matrix is the Fisher information matrix

G(θ) = E ∇ θ (X, θ) ∇ θ (X, θ) .
Here E denotes the expectation taken with respect to the random variable X of density f (•, θ), and (x, θ) = log f (x, θ) is the log-likelihood.

Definition 7.1. Given θ ∈ Θ and u, v ∈ T θ Θ R d , the Fisher-Rao metric is G FR θ (u, v) = u G(θ)v = E [ ∇ θ , u ∇ θ , v ] , where •, • denotes the Euclidean scalar product on R d .
The Fisher-Rao metric on the parameter space Θ is the pullback of the Fisher-Rao metric on the infinite-dimensional space Prob(R n ) by the bijection φ defined by (29), i.e. for any θ ∈ Θ and u

, v ∈ T θ Θ, G FR φ(θ) (φ * u, φ * v) = G FR θ (u, v)
, and so both are denoted the same way.

Just like in the infinite-dimensional setting, the α-connection on the parameter space can be defined using the α-divergence. Definition 7.2. The α-connection on Θ is defined by its Christoffel symbols of the first kind ([39], Eqn 2.9)

Γ(α) ij,k θ = G FR θ (∇ (α) ∂ i ∂ j , ∂ k ) = - ∂ 3 ∂u i ∂u j ∂v k D (α) (θ + u, θ + v) u=v=0 where D (α) (θ, θ ) = 4 1 -α 2 1 -f (x, θ) 1-α 2 f (x, θ ) 1+α 2 dx
is the α-divergence. This yields the following formula in local coordinates, where

∂ i denotes ∂/∂θ i , (30) Γ(α) ij,k = E (∂ i ∂ j + 1 -α 2 ∂ i ∂ j )∂ k .
The following result is well-known in the literature, and stated e.g. in [START_REF] Amari | Methods of information geometry[END_REF] for spaces of probability distributions on a finite set. Theorem 7.3 (α-connection on Θ). For any u, v ∈ T θ Θ, we have

∇(α) u v = Proj FR ∇ (α) φ * u φ * v ,
where ∇(α) and ∇ (α) denote the α-connections on P Θ Θ and Prob(R n ) respectively, and Proj FR :

T φ(θ) Prob(R n ) → T θ Θ
is the orthogonal projection with respect to the Fisher-Rao metric. Remark 7.6. Like in infinite dimensions (see Remark 4.8), when all entries are the same, the Chern connection on P Θ Θ is the orthogonal projection of the α-connection ∇ (α) on Dens + (R n ), for α = 1 -2 p , with respect to g φ * v , the Riemannian metric [START_REF] Bauer | Can we run to infinity? the diameter of the diffeomorphism group with respect to right-invariant sobolev metrics[END_REF] induced by the L p -Fisher-Rao metric

(37) ∇v v v = Proj φ * v ∇ (α) ψ * v φ * v = v(v m ) + (g v ) mk g φ * v (ω(v, v), e k ) ∂ m .
Theorem 7.7 (Geodesic equation on Θ). The geodesic equation of the L p -Fisher-Rao metric on the space P Θ is given by θm + (g θ) mk g φ * θ(ω( θ, θ), e k ) = 0, [START_REF] Sarria | Blow-up of solutions to the generalized inviscid Proudman-Johnson equation[END_REF] where (e i ) i are the basis vectors [START_REF] Khesin | Simple unbalanced optimal transport[END_REF] and ω is defined by [START_REF] Moser | On the volume elements on a manifold[END_REF].

Proof. This results directly from Lemma A.9 in Appendix A and writing ∇ θ θ θ = 0 in local coordinates using [START_REF] Rao | Information and the accuracy attainable in the estimation of statistical parameters[END_REF]. 

v (m,σ) = 1 σ 2 g v 0
where g v 0 does not depend on m and σ. In order to compute geodesics for the L p -Fisher-Rao metric, one can solve the geodesic equation [START_REF] Sarria | Blow-up of solutions to the generalized inviscid Proudman-Johnson equation[END_REF], using the following densities with respect to a given µ

(dx) = 1 √ 2πσ exp(-(x-m) 2 2σ 
2 )dx: the basis vectors of the tangent plane T µ P Θ are given by

e 1 µ = 1 σ z, e 2 µ = 1 σ (z 2 -1) with z := x -m σ and for a given curve t → θ(t) = (m(t), σ(t)), θ µ = 1 σ ( ṁz + σ(z 2 -1)) ω( θ, θ) µ = 1 σ 2 (-1 + 1 p z 2 ) ṁ2 + (1 -3z 2 + 1 p (z 2 -1) 2 ) σ2 + 2(-2z + 1 p z(z 2 -1)) ṁ σ .
The L p -Fisher-Rao geodesic can be compared to the solutions of the geodesic equation of the α-connection for α = 1 -2/p:

m -2 1 + α σ ṁ σ = 0, σ + 1 -α 2σ ṁ2 - 1 + 2α σ σ2 = 0.
In both cases, we solve the geodesic ODE with boundary constraints in Python for a discretization of 50 time steps, using the dedicated function in Scipy 1 , which implements a fourth order collocation algorithm. We plot in Figure 7.8 the L p -Fisher-Rao geodesics for several values of p as well as the α-geodesics for the corresponding values of α. As expected, these geodesics do not coincide, except for p = 2, where we retrieve the Fisher-Rao metric.

Appendix A. Infinite dimensional Finsler geometry

In this appendix we will present several key definitions of Finsler geometry in the infinite dimensional setting. We will base our definitions on their counterparts from classical finite dimensional Finsler geometry, see eg. [START_REF] Bao | An introduction to Riemann-Finsler geometry[END_REF][START_REF] Chern | Riemann-Finsler geometry[END_REF][START_REF] Rademacher | Nonreversible Finsler metrics of positive flag curvature. A sampler of Riemann[END_REF].

In the following let M be an infinite dimensional, Fréchet manifold with tangent bundle T M. Remark A.2. It can be shown that the strong convexity condition (d) implies the subadditivity condition (c) and several modern textbooks require strong convexity instead of subadditivity in the definition of a Finsler metric as this allows to develop several concepts of Riemannian geometry in the Finslerian setting. We choose to not assume this stronger condition as our main example, the L p -Fisher-Rao metric, is not strongly convex.

Remark A.3 (Weak and strong Finsler metrics). For each x ∈ M the Finsler metric F induces a topology on T x M and in finite dimensions this topology coincides with the original manifold topology. In infinite dimensions this is not the case and we will distinguish between two different types of Finsler metrics: strong Finsler metric, for which F x induces the locally convex topology on T x M and weak Finsler metrics, where the induced topology can be weaker than the locally convex topology. If M is not a Banach manifold then any Finsler metric on M can only be a weak Finsler metric.

Similarly as a Riemannian metric a Finsler structure F on a manifold M defines a length structure on the set of piece wise smooth curves and thus one can define a corresponding path length distance: For any pair of points x, y ∈ M we consider the induced geodesic distance function d F (p, q) := inf c L F (c), where the infimum is calculated over the set of a piece wise smooth curves that connect x to y. Similar as in Riemannian geometry one can show that minimizing the length is equivalent to minimizing the energy, which is defined as

E F (c) := b a F 2 (c(t), ċ(t))dt. ( 39 
)
Remark A.5 (Vanishing Geodesic distance). It is easy to see that the geodesic distance functions is symmetric and satisfies the triangle inequality. In general, for weak Finsler metrics, it does not satisfy the non-degenracy property -d F (x, y) = 0 if and only if x = y for Finsler metrics. Indeed, even in the Riemannian case, several examples have been encountered where the geodesic distance can be degenerate or even vanishes identically, see eg. [START_REF] Eliashberg | Bi-invariant metrics on the group of Hamiltonian diffeomorphisms[END_REF][START_REF] Michor | Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms[END_REF][START_REF] Bauer | Vanishing distance phenomena and the geometric approach to SQG[END_REF][START_REF] Jerrard | Vanishing geodesic distance for right-invariant sobolev metrics on diffeomorphism groups[END_REF].

Next we will introduce two important concepts from Finsler geometry: the Cartan tensor, which was introduced by E. Cartan [START_REF] Cartan | Les espaces de Finsler[END_REF] to evaluate the differences between Finsler metrics and Riemannian metrics, and the Chern connection, which is a generalization of the Levi-Civita connection on a Finsler manifold.

Note, that the definition of these two objects requires that the Finsler metric is strongly convex. As the L p -Fisher-Rao metric, studied in the following sections, will not satisfy this property several of the calculations in these parts have to be taken with caution and should be thus understood only formally.

Definition A.6 (Cartan Tensor and Chern connection). Let (M, F ) be a Finsler manifold, where F is assumed to satisfy the strong convexity assumption. For any nonzero tangent vector V ∈ T x M, the Cartan tensor is defined as the symmetric trilinear form C V (X, Y, Z) := 1 4

∂ 3 ∂s∂t∂r F 2 (V + sX + tY + rZ) s=t=r=0 ,
and the Chern connection, if it exists, is the unique affine, torsion-free connection ∇ V that is almost metric, that is for vector fields X, Y, Z we have

Xg V (Y, Z) = g V (∇ V X Y, Z) + g V (Y, ∇ V X Z) + 2C V (∇ V X V, Y, Z).
Remark A.7. In the above definition of the Chern-connection we have added the assumption on it's existence. This is additional assumption is not necessary in finite dimensions, but is entirely an infinite dimensional phenomenon, see eg. [START_REF] Bauer | Homogeneous Sobolev metric of order one on diffeomorphism groups on real line[END_REF] where the authors studied a Riemannian metric on a group of diffeomorphisms such that the corresponding Levi-Civita connection does not exist.

The next Lemma, which will be of importance when we show the equivalence of the Chernconnection of the L p -Fisher-Rao metric and the α-connection on Dens(M ), provides a generalized Koszul-formula for the Chern-connection: Lemma A.8. Let (M, F ) be a Finsler manifold, where F is assumed to satisfy the strong convexity assumption. For every non-zero vector field V ∈ T x M, the Chern connection, if it exists, satisfies
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  tr ξ η = Dη.ξ. Let α ∈ (-1, 1) and, as before, denote p = 2 1-α . Define the map Φ p : Dens + (M ) → C ∞ (M ) by We have: (a) The image Φ p (Dens + (M )) is the set of all positive functions in C ∞ (M ). (b) The mapping Φ p is an isometric embedding, where Dens + (M ) is equipped with a multiple of the L p -Fisher-Rao metric and where C ∞ (M ) is viewed as a vector space equipped with the standard L p -norm.
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  (α) up to a function in the G FR orthogonal complement of T µ Prob(M ), which are exactly the constant multiples of µ. Thus the formula follows by ensuring that ∇ (α) a b ∈ Prob(M ). This argument also proves that ∇ (α) a b is the Fisher-Rao projection of ∇ (α) a b. Theorem 4.2. A path µ : [0, 1] → Prob(M ) is a geodesic with respect to ∇ (α) if

  (a) The image Φ p (Prob(M )) is the set of all positive functions in the L p -sphere S p . (b) The mapping Φ p is an isometric embedding, where Prob(M ) is equipped with a multiple of the L p -Fisher-Rao metric and where S p is equipped with the restriction of the standard L p -norm. (c) The pullback of Φ * p ∇ p to Prob(M ) coincides with the connection ∇ (α) up to a constant depending only on the footpoint:
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 2 Figure 2. Different notions of geodesics between two probability distributions on [0, 1], for p = 2, 3, 5, 10 from top to bottom, and corresponding values of α = 1 -2/p. On the left: geodesics of Dens + (M ) for the L p -Fisher-Rao metric and the corresponding α-connection. In the middle: α-geodesics on Prob(M ). On the right: L p -Fisher-Rao geodesics on Prob(M ). The last two notions coincide only for p = 2.
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 3 Figure 3. Comparison of the geodesics between two normal distributions shown in the parameter space for the L p -Fisher-Rao metric (left) and for the α-connection (right), for different values of p and the corresponding values of α = 1 -2/p. The geodesics all start at the normal distribution of parameters m 0 = -2, σ 0 = 1, and end at the normal distribution of parameters m 1 = 2, σ 1 = σ 0 = 1.
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Next we will study the Finslerian geometry induced by the L p -Fisher-Rao metric (see Appendix A for a short overview of the main definitions). We will see in the next Lemma, that the L p -Fisher-Rao metric is, in general, not strongly convex and thus some of the calculations in this and the next sections have to be understood formally.

Lemma 3.8 (The Hessian matrix). Let µ ∈ Dens + (M ) and ν, a, b ∈ T µ Dens + (M ). The Hessian matrix g ν of the squared L p -Fisher-Rao metric at ν is given by [START_REF] Bauer | Can we run to infinity? the diameter of the diffeomorphism group with respect to right-invariant sobolev metrics[END_REF] g ν µ (a, b) = (p -1)I(ν, ν) If ν is nowhere zero than g ν is positive definite and thus a Riemannian metric. If ν vanishes on an open set U ⊂ M then, for p > 2, g ν is degenerate as it vanishes for all a, b ∈ T µ Dens + (M ) with support contained in U, and for p < 2 it is not well-defined.

Proof. We introduce the notations ω = ω(r, s)

To compute the Hessian matrix of F 2 p (µ, ν) we need to calculate the second derivative in r and s of F 2 p (µ, ω). We have

For the second derivative we get

Evaluating at r = s = 0 yields the desired formula for g ν µ . For ν = 0 we can use the Cauchy-Schwarz inequality to prove the positive-definiteness of the Hessian:

Then we get the inequality

Thus for ν being a nowhere vanishing vector field, g ν (a, a) = 0 implies that a µ = 0.

Theorem 4.4 (Geodesic equation on Prob(M )). For any p ∈ (1, ∞), the geodesic equation of the L p -Fisher-Rao metric on the space of densities Prob(M ) is given by

where C(t) is a constant depending only on time t, that is chosen such that M µ(t) = 1.

This equation coincides with the geodesic equation of the α-connection if and only if p = 2 (α = 0, resp.). Remark 4.5 (Existence of solutions). In the previous section we showed that the geodesic equation of the α-connections is locally wellposed on the space Prob(M ). One would be tempted to expect a similar result for the geodesic equation of the L p -Fisher-Rao metric; recall that this statement was true on the space Dens + (M ). It turns out that the above equation is analytically much worsebehaved: the problem arises from the vanishing of the quantity µt µ which leads to singularities of the geodesic equation. As a consequence we conjecture that the geodesic equation does not admit any classical solutions. This behavior can also be observed in the numerical simulations (Figure 2), where the obtained (approximate) solutions show a singular behavior.

Proof of Theorem 4.4. To derive this equation, we proceed as for the geodesic equation on the space Dens + (M ). We then obtain again

for the variation of the p-Energy with the only difference being that δµ now has to integrate to zero. Thus we do not get that Ψ = 0 as we had on the space Dens + (M ), but only that Ψ has to be orthogonal to all such δµ. This is equivalent to Ψ being a constant for each fixed time t, which is determined by the condition that M µ(t) = 1.

The above result suggests that the equivalence between the α-connection and the Chern-connection of the L p -Fisher-Rao metric cannot hold in this setting. We will make this formal in the following theorem:

Theorem 4.6 (The Chern connection on Prob(M )). For a vector field ν on Prob(M ) the Chern connection is given by, for all a ∈ T µ Prob(M ), ( 21)

with the constants

Remark 4.7. As any vector field ν ∈ T µ Prob(M ) has zeros the above formula has to be taken with caution and should be understood formally only.

Remark 4.8. In particular, when all entries are the same, the Chern connection on Prob(M ) is the orthogonal projection of the α-connection ∇ (α) on Dens + (M ), for α = 1 -2 p , with respect to g ν , the Riemannian metric [START_REF] Bauer | Can we run to infinity? the diameter of the diffeomorphism group with respect to right-invariant sobolev metrics[END_REF] induced by the L p -Fisher-Rao metric [START_REF] Gibilisco | l p unit spheres and the α-geometries: Questions and perspectives[END_REF] ∇

where p * is the Hölder conjugate of p and

Indeed, the correction term k ν µ 2-p µ is orthogonal to T Prob(M ) and makes the integral zero.

Proof of Theorem 4.6. We start by noticing that, since Dν(a) integrates to zero, the integral of the right hand-side of ( 21) is zero and so it defines a tangent vector of Prob(M ). The formula [START_REF] Friedrich | Die Fisher-information und symplektische strukturen[END_REF] defines the Chern connection if and only if it verifies the generalized Koszul formula [START_REF] Chern | Riemann-Finsler geometry[END_REF].

Letting α = 1 -2 p and ∇ (α) be the corresponding α-connection on Dens + (M ), we can decompose the candidate for the Chern connection as

Since ∇ (α) is the Chern connection on Dens + (M ) for this choice of α, the candidate (21) verifies the generalized Koszul formula if and only if ( 23)

Noticing that, for all b ∈ T µ Prob(M ),

This also means that all terms in the Cartan tensor ( 14) but one vanish, leaving

Finally there remains to compute

Proof. First notice that at any µ = φ(θ) ∈ P Θ , the orthogonal projection of a tangent vector a ∈ T µ Prob(R n ) onto T θ Θ with respect to the Fisher-Rao metric G FR is given by

where (G ij ) ij is the inverse of the Fisher matrix. Indeed, the tangent space T µ P Θ is a d-dimensional vector space spanned by the tangent vectors e i = ∂ i f dx for i = 1, . . . , d, and so the orthogonal projection of a ∈ T µ Prob(R n ) onto T µ P Θ is given by u i e i where for j = 1, . . . , d, G FR (a -u i e i , e j ) = 0 i.e. G FR (a, e j ) = u i G FR (e i , e j ) = u i G ij .

The α-connection on Prob(R n ) is given by

where D µ b(a) is the directional derivative of the vector field b in the direction of the vector a µ . Let ∂ i denote partial derivative with respect to θ i for all i = 1, . . . , d. For vector fields on the finite-dimensional manifold P Θ ,

and at µ = φ(θ), we get since

where in the last equality we used the equality

Remembering that G FR (hdx, kdx) = E(hk/f 2 ) and since E(∂ m ) = 0, we obtain using [START_REF] Lenells | Amari-Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups[END_REF],

Finally, using [START_REF] Lu | The L p -Fisher-Rao metric and information geometry[END_REF], we see that

which concludes the proof.

7.2. The L p -Fisher-Rao metric. We now introduce a finite-dimensional version of the Finsler L p -Fisher-Rao metric.

Definition 7.4. Given θ ∈ Θ and v ∈ T θ Θ we define the L p -Fisher-Rao metric on Θ as

Here •, • denotes the Euclidean scalar product on R d , E denotes the expectation taken with respect to the random variable X of density f (•, θ), and (x, θ) = log f (x, θ) is the log-likelihood.

The metric [START_REF] Michor | Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms[END_REF] on the parameter space Θ coincides with the Finsler metric induced on P Θ by the L p -Fisher-Rao metric (8) through the identification P Θ Θ, which is why they are denoted the same way. Indeed, for any (θ, v) ∈ T Θ,

Lemma 7.5 (Induced Chern connection on Θ). The Chern connection associated to the L p -Fisher-Rao metric on Θ is given by

where g and C respectively denote the Riemannian metric [START_REF] Bauer | Can we run to infinity? the diameter of the diffeomorphism group with respect to right-invariant sobolev metrics[END_REF] and Cartan tensor (14) induced by the L p -Fisher-Rao metric, (g v ) ij = g φ * v (e i , e j ) and (e i ) i are the basis vectors (28) of T µ P Θ and

Proof. Let a = φ * u, ν = φ * v, α = 1 -2/p, and ∇ (α) be the α-connection on Dens + (R n ). Similarly to the orthogonal projection with respect to the Fisher-Rao metric [START_REF] Lu | The L p -Fisher-Rao metric and information geometry[END_REF], the orthogonal projection on T Θ with respect to g ν is given by

Let us denote

We define the connection ∇ by [START_REF] Rademacher | Nonreversible Finsler metrics of positive flag curvature. A sampler of Riemann[END_REF] φ * ( ∇u v) := (∇ (α) a ν) + (g v ) mk C ν (∇ (α) ν ν) ⊥ , a, e k e m .

Let us show that ∇ is the Chern connection ∇v on Θ, by showing once again that it verifies the generalized Koszul formula (40). Using the notations g v (u, w) = g φ * v (φ * u, φ * w), C v (u, w, z) = C φ * v (φ * u, φ * w, φ * z) and the fact that C v (v, •, •) = 0, the generalized Koszul formula can be written

Recalling that ∇ (α) is the Chern connection on Dens + (M ) and noticing that φ

ν ν) , the previous equation is satisfied if and only if

which is easily checked to be true using the fact that g ν (e i , e j ) = (g v ) ij . To obtain the desired formula for ∇v , we write the α-connection in coordinates, through the same computations as in the proof of Theorem 7.3

Using [START_REF] Newton | An infinite-dimensional statistical manifold modelled on Hilbert space[END_REF] we obtain (∇ (α) a ν) = u(v m )e m + (g v ) mk g ν (ω(u, v), e k )e m (∇ (α) ν ν) ⊥ = w(v, v) -(g v ) ij g ν (ω(v, v), e i )e j which injected into [START_REF] Rademacher | Nonreversible Finsler metrics of positive flag curvature. A sampler of Riemann[END_REF] gives the desired result.

the generalized Koszul formula

The proof of this result follows exactly as in the finite dimensional situation, see eg. [START_REF] Chern | Riemann-Finsler geometry[END_REF].

The next results shows that the Chern-connection, similarly to the Levi-Civita connection in Riemannian geometry, describes the locally minimizing curves.

Lemma A.9. Let (M, F ) be a Finsler manifold, where F is assumed to satisfy the strong convexity assumption. Assume in addition that the Chern connection ∇ exists. Then the critical points of the energy functional [START_REF] Zhang | Divergence function, duality, and convex analysis[END_REF] are describe by the geodesic equation

∇ ct ct c t = 0. Proof. Assuming the existence of the Chern connection, this follows exactly as in finite dimensions, see eg. [START_REF] Chern | Riemann-Finsler geometry[END_REF][START_REF] Rademacher | Nonreversible Finsler metrics of positive flag curvature. A sampler of Riemann[END_REF].