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Ship Air-Wake Identification from Experimental Data for Automatic Deck Landing and Takeoff Antonio Vitale, * Gianluca Corraro, † and Federico Corraro ‡ Italian Aerospace Research Centre, 81043 Capua, Italy and Quentin Gallas § ONERA-University of Toulouse, F-31410 Mauzac, France Ship air-wake modeling is a critical task needed to support the design and validation of algorithms that can assist a helicopter's pilot during shipboard launch and recovery operations. In fact, these operations are often carried out in challenging conditions and impose a significant workload on the pilot. In this framework, the paper presents an airwake model applicable for flight mechanics analyses and real-time simulations. The definition of the model is based on system identification methodologies applied to wind-tunnel experimental data. The main innovation of the approach consists of the definition of a modular structure of the model that allows setting up a multistep identification strategy and exploiting the most suitable technique for the estimation of each set of the model's parameters. The validation of the obtained model highlighted a good capability to reproduce the air-wake flowfield in several flow conditions. The model was applied to test trajectory generation and tracking algorithms for helicopter automatic takeoff and landing on a ship deck. T HE take off and landing of a helicopter on a moving ship at sea are highly complex and demanding operations. This is mainly due to the own motion of the platform, the weather, and the visibility conditions, which are often impoverished in comparison to ground situations, and the singular fluid perturbations provoked by the wake behind the ship superstructures (hangar, chimneys, etc.). Even with the most recent systems for increasing the handling qualities of the rotorcraft, the pilot has to stay in permanent contact with the landing officer on board the ship, and he must withstand a high workload in order to maintain a stable approach, descent, and touchdown in conformity with the safety requirements. Guidance algorithms for trajectory generation and tracking can significantly reduce pilot workload while improving the safety level of the operations [START_REF] Padfield | The Making of Helicopter Flying Qualities: A Requirements Perspective[END_REF][START_REF] Lee | Simulation and Control of a Helicopter Operating in a Ship Airwake[END_REF]. Suitable simulation environments are essential to develop these algorithms in order to reduce the flight test time and cost, as well as to establish safe operating envelopes. These simulation environments shall be able to model all the relevant phenomena, such as the helicopter dynamics (including onboard sensors and actuators), the motion of the ship for the given sea state, and the influence on the helicopter of the ship air-wake and of the atmosphere in general. Standard approaches exist to model the motions of the helicopter and ship with different levels of detail and the dynamics of the sensors and actuators, whereas a significant body of research has been conducted and is still ongoing with the aim to define accurate models for the prediction of ship air-wake flowfields. Indeed, the ship air-wake is characterized by sudden variations of the airflow velocity generated by complex mechanisms of vortex dynamics near the ship deck, which greatly impair controllability of the flying vehicle and require additional control efforts to avoid accidents and to compensate for abrupt changes in the thrust level.

Several approaches are proposed in the literature to consider the ship air-wake in rotorcraft shipboard operations; most of them exploit computational fluid dynamics (CFD) techniques. In this framework, the air-wake computation can be defined as one-way coupled if it accounts only for the effect of the ship wake onto the rotor in an open-loop fashion, or as two-way coupled if it includes both the ship air-wake on the rotor and the rotor on ship air-wake effects [START_REF] Crozon | Numerical Study of Helicopter Rotors in a Ship Airwake[END_REF]. The one-way coupled computation usually consists of applying CFD solvers offline to compute a database of air-wake velocities defined on a spatial grid as a function of time. The precomputed database is then integrated into the flight dynamics simulation environment to provide an external flow disturbance affecting the rotorcraft motion [START_REF] Sharma | Helicopter Shipboard Landing Simulation Including Wind, Deck Motion and Dynamic Ground Effect[END_REF][START_REF] Lee | Simulation of Helicopter Shipboard Launch and Recovery with Time-Accurate Airwakes[END_REF][START_REF] Thedin | Coupled Simulations of Atmospheric Turbulence-Modified Ship Airwakes and Helicopter Flight Dynamics[END_REF][START_REF] Hodge | Time-Accurate Ship Airwake and Unsteady Aerodynamic Loads Modeling for Maritime Helicopter Simulation[END_REF][START_REF] Watson | Piloted Flight Simulation of Helicopter Recovery to the Queen Elizabeth Class Aircraft Carrier[END_REF][START_REF] Yuan | Combined Numerical and Experimental Simulations of Unsteady Ship Airwakes[END_REF][START_REF] Kääriä | Investigating the Impact of Ship Superstructure Aerodynamics on Maritime Helicopter Operations[END_REF]. Different assumptions, CFD simulations, and solvers are used, depending on the desired tradeoff between computational burden and solution fidelity. However, the characterization of the unsteady flowfield of the air-wake requires CFD computation with dense grids in space and time, with a timeframe lasting as long as the helicopter approach time, and is performed for various ship configurations, wind speeds, and angles. Indeed, only the flight conditions analyzed through CFD could be reproduced in the flight mechanics simulations. This process produces a huge amount of data, which are not easily manageable. This issue was tackled in Ref. [START_REF] Wang | Modeling-Based Hyper-Reduction of Multidimensional Computational Fluid Dynamics Data: Application to Ship Airwake Data[END_REF], where a method for significant storage reduction of multidimensional CFD data, denoted as progressive proper orthogonal decomposition, was proposed. It is coupled with an autoregressive modeling-based strategy to lowpass filter the data in the frequency range of the helicopter dynamics. Two-way coupling CFD simulations of the ship/helicopter dynamic interface [START_REF] Forsythe | Coupled Flight Simulator and CFD Calculations of Ship Airwake Using HPCMP CREATE-AV Kestrel[END_REF][START_REF] Rajmohan | A VPM/CFD Coupling Methodology to Study Rotor/Ship Aerodynamic Interaction[END_REF][START_REF] Oruc | Coupled Flight Dynamics and Computational Fluid Dynamics Simulations of Rotorcraft/Terrain Interactions[END_REF][START_REF] Bunnell | An Integrated Time-Varying Airwake in a UH-60 Black Hawk Shipboard Landing Simulation[END_REF][START_REF] Polsky | Computational Analysis for Air/Ship Integration: 1st Year Report[END_REF] are much more challenging because, in the same simulation, a wide range of flow conditions is taken into account: low-speed incompressible and high-speed compressible flows, steady and unsteady behaviors, and complex geometries [START_REF] Polsky | Progress Towards Modeling Ship/Aircraft Dynamic Interface[END_REF]. The two-way coupling simulations provide better predictions of the air wake, although with higher associated computational costs [START_REF] Bridges | Coupled Flight Dynamics and CFD Analysis of Pilot Workload in Ship Airwakes[END_REF]. An attempt to overcome this drawback was proposed in Ref. [START_REF] Oruc | Towards Real-Time Pilot-in-the-Loop CFD Simulations of Helicopter/Ship Dynamic Interface[END_REF], where a simulation framework for two-way coupled pilot-in-the-loop flight dynamics/CFD was carried out by exploiting a parallel computation running on 352 processors. Although a simplified shedding wake was computed, only near real-time performance was demonstrated. In conclusion, the CFD-based simulation approach requires enormous computational resources and produces a huge amount of data, making it not suited for intensive flight mechanics simulations; guidance, navigation, and control design and validation; and real-time applications [START_REF] Lee | Simulation and Control of a Helicopter Operating in a Ship Airwake[END_REF][START_REF] Watson | Piloted Flight Simulation of Helicopter Recovery to the Queen Elizabeth Class Aircraft Carrier[END_REF][START_REF] Bridges | Coupled Flight Dynamics and CFD Analysis of Pilot Workload in Ship Airwakes[END_REF][START_REF] Oruc | Towards Real-Time Pilot-in-the-Loop CFD Simulations of Helicopter/Ship Dynamic Interface[END_REF][START_REF] Gaonkar | Extracting Stochastic Models of Airwake-Downwash Turbulence from a Database for Simulation[END_REF].

A different approach to assess the effect of air-wake on the helicopter dynamics is based on the use of atmospheric disturbance models, such as stochastic turbulence and gust. In Ref. [START_REF] Lee | Simulation and Control of a Helicopter Operating in a Ship Airwake[END_REF], Lee applied shaping filters driven by white noise to simulate the airwake disturbance. The spectral properties of the filters were extracted from the analysis of data computed through CFD simulations. Similar approaches were presented in Refs. [START_REF] Sparbanie | A Stochastic Model of Unsteady Ship Airwake Disturbances on Rotorcraft[END_REF][START_REF] Rigsby | Ship Airwake Turbulence Modeling Using Moving Stochastic Spectral Filters[END_REF]. The stochastic filters described by Sparbanie et al. in Ref. [START_REF] Sparbanie | A Stochastic Model of Unsteady Ship Airwake Disturbances on Rotorcraft[END_REF] are derived from the vehicle response and pilot control activity when hovering at a particular location relative to the ship deck. Rigsby et al. [START_REF] Rigsby | Ship Airwake Turbulence Modeling Using Moving Stochastic Spectral Filters[END_REF] computed the value of the stochastic filter parameters by applying system identification techniques to the air velocity time history. Both Sparbanie et al. [START_REF] Sparbanie | A Stochastic Model of Unsteady Ship Airwake Disturbances on Rotorcraft[END_REF] and Rigsby et al. [START_REF] Rigsby | Ship Airwake Turbulence Modeling Using Moving Stochastic Spectral Filters[END_REF] exploited a CFD database to design the filters. The resulting velocities compare favorably with the CFD data in both the time and frequency domains. In Ref. [START_REF] Gaonkar | Extracting Stochastic Airwake Models from a Database for Engineering Analysis and Simulation[END_REF], the coupled flowfield of the ship air-wake and main-rotor downwash of a helicopter approaching the ship was modeled as nonlinearly transformed atmospheric boundary-layer (ABL) turbulence. Classical homogenous turbulence theory, along with frozen turbulence hypothesis, was adapted to describe ABL turbulence; and perturbation theory was used to account for the nonlinear transformation. The same approach was applied in Ref. [START_REF] Gaonkar | Extracting Stochastic Models of Airwake-Downwash Turbulence from a Database for Simulation[END_REF], where an experimental database was exploited to extract a simple structure of the stochastic model. The use of stochastic filters represents a substantial increase in computational efficiency over the method of preloading the CFD data, and it allows broadening (with respect to the original CFD or experimental data) of the envelope in which the air-wake model can be applied with suitable accuracy. Therefore, this approach can be exploited to design and optimize the flight control system in order to improve disturbance rejection properties of the aircraft.

The air-wake modeling is a topic of common interest to the European Research Establishments in Aeronautics (EREA) partners. They established the cooperation project titled "Helicopter Safety During Ship Landing" (HSSL) in the framework of the Future Sky Safety initiative, which is focused on the prediction of the aerodynamic disturbances during the helicopter landing on the ship deck. In this framework, the Italian Aerospace Research Centre developed a model to simulate the air-wake effects applicable for flight mechanics analyses, which is aimed to support the design and validation of algorithms for helicopter trajectory generation and tracking during takeoff and landing maneuvers carried out on the deck of a moving ship carrier. The definition of the model's structure and parameters is based on the application of system identification methodologies to experimental aerodynamic data collected through wind-tunnel tests performed by the French National Aerospace Research Centre (ONERA) [START_REF] Gallas | Experimental Flow Control on a Simplified Ship Helideck[END_REF]. The main innovation of the proposed approach with respect to other similar works proposed in the literature consists of the definition of a modular air-wake's model that represents the airflow velocity behind the ship superstructure as the summation of a time constant mean value and a stochastic fluctuation in time, and both of these contributions are computed by assembling different simpler components. This model structure allows the application of a multistep identification strategy that exploits the most suitable technique for each estimation step and independently computes the parameters of each model's component. The obtained air-wake model has been integrated in a detailed flight mechanics simulation environment and exploited to tune and validate some helicopter guidance algorithms for assisting or replacing the pilot during shipboard operations.

The paper is structured as follows. First, the proposed air-wake model is described in Sec. II. Next, the identification strategy and techniques are defined in Sec. III, the exploited experimental data are presented in Sec. IV, and the obtained identification results are discussed in Sec. V. Then, the description of the concept of operations implemented in the algorithms for the automatic helicopter landing on and taking off from the deck of a moving frigate is given in Sec. VI, which also presents the results of some numerical simulations performed by using the developed simulation environment. Section VII offers conclusions and ends the paper.

II. Air-Wake Model

The effect of the ship's air-wake is a highly unsteady airflow over and around the flight decks of naval vessels due to the ship forward speed and the prevailing wind conditions. The flow separates from the sharp edges of the superstructure, creating features typical of bluff-body wakes (such as shear layers and large coherent vortices), with aerodynamic conditions that are often characterized by large spatial and temporal velocity gradients [START_REF] Kääriä | Investigating the Impact of Ship Superstructure Aerodynamics on Maritime Helicopter Operations[END_REF]. To simulate this complex aerodynamic flow, the model proposed in the present work represents the air velocity in each point of the field behind the ship superstructure as composed by two contributions:

1) The first contribution is the mean velocity, which is constant in time for a given condition (ship-wind relative speed and orientation).

2) The second contribution is the stochastic fluctuation of the velocity in time, which is characterized as a turbulent phenomenon.

In each point of the field, the mean velocity is modeled through a polynomial function of the normalized coordinates of the spatial point where the computation is performed. It is evaluated as the summation of two contributions, proportional to the components of the velocity of the free airstream with respect to the ship, along the ship's longitudinal and lateral axes, respectively. The components of the mean velocity with respect to the ship fixed reference frame are

V x V x-lon V x-lat (1) 
V y V y-lon V y-lat (2) 
V z V z-lon V z-lat (3) 
All the longitudinal and lateral contributions have the same structure given by

V l-lon V as-lon ⋅ X N j0 X j i0 X j-i m0 h k l pi;j;m ⋅ x i nx ⋅ y m nx ⋅ z j-i-m nx i (4) V l-lat V as-lat ⋅ X N j0 X j i0 X j-i m0 h h l pi;j;m ⋅ x i ny ⋅ y m ny ⋅ z j-i-m ny i (5) 
where l fx; y; zg, N is the order of the polynomial function, and the subscript p is computed through the following function:

pi; j; m 1 m X j i 1 1 X i1 i 2 1 i 2 X i i 3 1 j -i 3 2 (6) 
The order of the polynomial N is selected as a tradeoff between model complexity and accuracy: the identification is performed for different polynomial orders, and the value of N is selected as the minimum order that results in a modeling error (with respect to the experimental measurements) below a given threshold. This threshold is set based on engineering considerations. The spatial coordinates in the previous equations are normalized with respect to the ship's characteristic lengths:

x nx X l x ∕l z (7) 
y nx Y∕l z (8) 
z nx Z∕l z (9) 
x ny X l x ∕l y (10)

y ny Y∕l y ( 11 
)
z ny Z∕l y ( 12 
)
The characteristic lengths l x , l y , and l x ; the freestream airspeed V as ; the incidence angle ϑ; the generic point P having spatial coordinates X, Y, and Z; and the ship body reference frame (to which the spatial coordinates X, Y, and Z refer) are shown in Fig. 1. The longitudinal l z and lateral l y lengths represent the heights of the obstacles (ship superstructure) that the wind encounters along the longitudinal and lateral ship axes, respectively, and that generate the disturbance to the freestream. The length l x is an offset representing the distance between the rear vertical wall of the ship deck hangar and the origin of the ship body reference frame, which has been chosen as coincident with the one used for measuring the windtunnel experimental data described in Sec. IV. The aerodynamic flow in a spatial point behind the ship depends on the distance of the point from the obstacle that produces the disturbance to the freestream (that is, from the rear vertical wall of the ship deck hangar); therefore, the offset l x shall be included in Eqs. ( 7) and ( 10) to compute the normalized spatial coordinate along the X axis that is relevant for the air-wake modeling.

The disturbance due to the air-wake described by the previous equations is assumed as not negligible in a bounded three-dimensional region behind the ship superstructure. The dimensions of this region are proportional to the characteristic dimensions of the ship and are determined through the analysis of experimental data, whereas its orientation is aligned to the direction of the free airstream with respect to the ship. The model also includes some nonlinear functions, which perform a saturation on each computed air-wake speed component and a limitation on the velocity component variation at the boundary of the air-wake region; these functions are introduced to avoid the air-wake model being able to provide (due to numerical problems or data extrapolation) velocity values that are too high and have no physical meaning, and to prevent the presence of significant discontinuities in the transition between the air-wake and the undisturbed regions.

In each spatial point, the fluctuation in time of the air-wake velocity is modeled as a stochastic turbulent flow. Its components, denoted by u; v; w, are calculated by passing band-limited white noise through appropriate forming filters and multiplying the filters' output for a gain factor. The forming filters approximate the von Kármán velocity spectra, as specified by military handbook MIL-HDBK-1797 [START_REF]Flying Qualities of Piloted Aircraft[END_REF]. The transfer functions of these linear filters in the Laplace domain are where σ u , σ v , σ w and L u , L v , L w shall be tuned through the analysis of the experimental data, as will be described in the next sections; the values of the constants n i and d i were provided in Ref. [START_REF]Flying Qualities of Piloted Aircraft[END_REF] and are listed in Table 1.

X u σ u 2L u πV as s ⋅ 1 n 1 L u V as s 1 d 1 L u V as s d 2 L u V as s 2 ( 13 
)
X v σ v L v πV as s ⋅ 1 n 2 L v V as s n 3 L v V as s 2 1 d 3 L v V as s d 4 L v V as s 2 d 5 L v V as s 3 (14) X w σ w L w πV as s ⋅ 1 n 2 L w V as s n 3 L w V as s 2 1 d 3 L w V as s d 4 L w V as s 2 d 5 L w V as s 3 (15)
The output of the filter along each axis is multiplied by a gain G i , which is proportional to the freestream speed relative to the ship. It is provided as a tabular function depending on the spatial coordinates and the freestream incidence angle:

G i P; ϑ; V as V as ⋅ f i P; ϑ i fu; v; wg (16) 
The values of this tabular function shall be determined through the analysis of the experimental data.

III. Identification Methodology

The model of the air wake defined in the previous section includes several parameters and functions that shall be estimated by analyzing CFD or experimental (wind-tunnel or flight test) data. The estimation is carried out by exploiting system identification techniques. Each contribution to the model (that is, each component of mean value and stochastic fluctuation of the air-wake velocity) is identified independently using a multistep identification strategy that allows simplifying the estimation problem and selecting the most suitable estimation method for each identification step. The objective and the estimation methodology applied in each step are detailed in the following subsections.

A. Identification of the Mean Velocity

The model of the mean air-wake velocity is defined by Eqs. [START_REF] Padfield | The Making of Helicopter Flying Qualities: A Requirements Perspective[END_REF][START_REF] Lee | Simulation and Control of a Helicopter Operating in a Ship Airwake[END_REF][START_REF] Crozon | Numerical Study of Helicopter Rotors in a Ship Airwake[END_REF][START_REF] Sharma | Helicopter Shipboard Landing Simulation Including Wind, Deck Motion and Dynamic Ground Effect[END_REF][START_REF] Lee | Simulation of Helicopter Shipboard Launch and Recovery with Time-Accurate Airwakes[END_REF]. This model is static and linear in the unknown parameters k x i ; k y i ; k z i ; h x i ; h y i , and h z i ; therefore, the least-square (LS) estimation technique could be applied.

The LS technique provides the estimation of parameters by minimizing the sum of square differences between measured data and corresponding values provided by the parametric model [START_REF] Ljung | System Identification: Theory for the User[END_REF]. The technique has the advantage of being simple, and it does not require a starting guess for the unknowns. Let us consider the following model structure:

N A ⋅ Θ LS ( 17 
)
where N and A (denoted as the vector of known terms and the regressors' matrix, respectively) are measured, and Θ LS is the vector collecting the unknown parameters. If the number of available equations (that is, the dimension of the vector N) is bigger than the number of the unknowns (that is, the dimension of the vector Θ LS ), the leastsquare solution ΘLS is provided by Eq. ( 18), which minimizes the cost function defined by Eq. ( 19):

ΘLS A T ⋅ A -1 ⋅ A T ⋅ N (18) J 1 2 N -A ⋅ Θ LS T ⋅ N -A ⋅ Θ LS ( 19 
)
where the apex T denotes the matrix transpose operation.

The model defined by Eqs. (1-5) can be put in the form of Eq. ( 17). Indeed, each component of the mean velocity can be rearranged as follows:

V i M lon ⋅ K i p M lat ⋅ H i p ( 20 
)
where V i is the vector of the measurements of the ith component of the mean velocity in the spatial points (P 1 ; P 2 ; : : : ; P M ), with i fx; y; zg; the value of V i along each axis and in each considered spatial point shall be included in the experimental dataset that is an input to the identification process. K i p and H i p are the vectors of the longitudinal and lateral unknown parameters of the model [that is, they collect all the parameters of Eqs. ( 4) and [START_REF] Lee | Simulation of Helicopter Shipboard Launch and Recovery with Time-Accurate Airwakes[END_REF], respectively] for the ith component of the mean velocity, and M lon and M lat are the matrices of the measurements of the regressors. Each row of the regressors matrices includes all the terms of the polynomial functions defined by Eqs. ( 4) and (5), i.e., the individual spatial coordinate powers and the spatial coordinates product terms (both up to order N) evaluated in one measurement spatial point (P 1 ; P 2 ; : : : ; P M ) with unknown parameters set to one. These matrices are the same for V x , V y , and V z ; and they are computed as

M lon V as-lon 2 6 6 6 4 
1 z nx P 1 y nx P 1 • • • x i nx P 1 ⋅ y m nx P 1 ⋅ z j nx P 1 • • • x N nx P 1 . . . 1 z nx P M y nx P M • • • x i nx P M ⋅ y m nx P M ⋅ z j nx P M • • • x N nx P M 3 7 7 7 5 (21) 
M lat V as-lat 2 6 6 6 4

1 z ny P 1 y ny P 1 • • • x i ny P 1 ⋅ y m ny P 1 ⋅ z j ny P 1 • • • x N ny P 1 . . . 1 z ny P M y ny P M • • • x i ny P M ⋅ y m ny P M ⋅ z j ny P M • • • x N ny P M 3 7 7 7 5 ( 22 
)
Model identification is performed independently for the mean speed components along each body axis. Let us assume that the following assumptions hold:

Assumption 1: Two measurement datasets are available, which are collected at different incidence angles of the freestream speed with respect to the ship longitudinal axis, and one of them corresponds to null incidence (that is, freestream flow aligned to the ship).

Assumption 2: Each dataset includes the measurements of the mean velocity component in M spatial points (P 1 ; P 2 ; : : : ; P M ), with M bigger than the number of unknown parameters in the equation of each velocity component. In these hypotheses, Eq. ( 20) is first evaluated using the measurements gathered at null wind incidence, and Eq. ( 18) is applied. In that case, V as-lat is null, as well as the whole second term on the right-hand side of Eq. ( 20), leading to the following simplified equation:

V i M lon ⋅ K i p (23)
The resolution of Eq. ( 23) allows computation of the estimation of the unknown longitudinal parameters c K i p . Next, the second set of measurements is used, and Eq. ( 20) is rearranged as

V i -M lon ⋅ c K i p M lat ⋅ H i p ( 24 
)
All the terms on the left-hand side are now known [they represent the N term in Eq. ( 17)]; indeed, V i and M lon are measured, whereas c K i p has been already estimated. M lat is also measured. Then, the unknown lateral parameters H i p can be estimated by again applying Eq. ( 18).

B. Identification of the Stochastic Fluctuations

The identification of the model of the stochastic fluctuation requires the estimation of the von Kármán gains (σ u , σ v , and σ w ) and characteristic lengths (L u , L v , and L w ), which are included in Eqs. [START_REF] Rajmohan | A VPM/CFD Coupling Methodology to Study Rotor/Ship Aerodynamic Interaction[END_REF][START_REF] Oruc | Coupled Flight Dynamics and Computational Fluid Dynamics Simulations of Rotorcraft/Terrain Interactions[END_REF][START_REF] Bunnell | An Integrated Time-Varying Airwake in a UH-60 Black Hawk Shipboard Landing Simulation[END_REF], the characterization of the tabular functions f u , f v , and f w defined by Eq. ( 16).

The von Kármán model is dynamic, and the estimation of its parameters is performed by applying the maximum likelihood estimation (MLE) technique. The MLE computes the unknown parameters, denoted as Θ MLE , by maximizing the likelihood function that gives the probability to realize a measurement vector, given a set of values for the unknown parameters:

J 1 2 X n k1 m k -o k Θ MLE T R -1 m k -o k Θ MLE n 2 ln jRj (25)
where the vector of outputs o k (correspondent to the measurements m k ) is provided by the model to be identified for a given value of the unknown parameter vector Θ MLE . There is not any closed-form analytical solution for this optimization problem, which also requires an initial guess for the unknown parameters; therefore, numerical methods are applied. The proposed approach uses a constrained second-order Gauss-Newton optimization to carry out the estimation:

min Θ MLE JΘ MLE with Θ MLE min ≤ Θ MLE ≤ Θ MLE max ( 26 
)
This problem is solved by means of the active set strategy proposed in Ref. [START_REF] Jategaonkar | Flight Vehicle System Identification: A Time Domain Methodology[END_REF]. The parameters satisfying the constraints, denoted by subscript fr, are iteratively updated until convergence is reached using the relations

Θi1 MLE fr Θi MLE fr -F -1 fr E fr ( 27 
)
F fr ∂ 2 J ∂ 2 ΘMLE fr ≈ X n k1 ∂o k ΘMLE ∂ ΘMLE fr T R -1 ∂o k ΘMLE ∂ ΘMLE fr (28) 
E fr ∂J ∂ ΘMLE fr X n k1 ∂o k ΘMLE ∂ ΘMLE fr T R -1 m k -o k ΘMLE (29)
Parameters outside the allowable range, named constrained parameters, are set equal to the nearest allowable value (that is, minimum or maximum bound). The set of free parameters is updated after each iteration. If one of the parameters belonging to the free set hits the bounds, it is dropped from the free set and made constrained. On the other hand, if the following Kuhn-Tucker optimality conditions are not satisfied for one of the constrained parameters, then that parameter is dropped from the constrained set and made free:

E j < 0; for ΘMLE j Θ MLE j-max orE j > 0; for ΘMLE j Θ MLE j-min (30)
In Eq. ( 30), E j , ΘMLE j , Θ MLE j-min , and Θ MLE j-max are the jth component of gradient E, the current estimation of the unknown vector, and its lower and upper bounds, respectively.

The estimation is performed independently for the fluctuation along each ship body axis. Depending on the experimental dataset available, a different information content is exploitable to estimate the unknowns. Specifically, the estimation of the von Kármán gains and characteristic lengths requires the information about the turbulent energy and the frequency spectrum of the velocity components fluctuation, respectively. The turbulent energy can be computed by the time-averaged values of the square velocity, whereas the frequency spectrum computation requires the measurement of the time histories of the speed in a given spatial point. If this last information is not available in the experimental dataset, the MLE can be applied for the estimation of the von Kármán gains only, whereas values equal or proportional to the lengths of the ship's superstructure can be selected for L u , L v , and L w .

Concerning the functions f u , f v , and f w in Eq. ( 16), their values strongly depend on the ship geometry and the incidence direction of the wind. Because their representation through a simple analytical formulation is not easy, the functions are expressed in tabular form. For each incidence angle in which experimental data are available, the functions are computed as the normalized components along the ship axes of the mean turbulent energy. Then, Eq. ( 16) can be reformulated as

G i P; ϑ V as ⋅ K norm i P; ϑ (31) 
K norm i P; ϑ K i P; ϑ∕max P K i P; ϑ (32) 
K i P; ϑ 1 q X q j1 T i P; ϑ; t j ( 33 
)
where T i is the diagonal element of the Reynolds stress tensor [that is, T u 2 ; v 2 ; w 2 , and q is the number of available experimental samples collected during time in the same spatial point. It is worth noting that the computation of the gains G i requires as input the measurements of the turbulent energy for just one value of V as and for different values of the incidence angle ϑ. Indeed, K norm i is assumed independent of the freestream velocity, and thus it can be measured for just one value of V as and applied to all its values. Linear interpolation is applied when G i shall be evaluated for values of P and ϑ not used in the identification process.

It is worth noting that the tabular gains G i and the von Kármán gains σ i are both related to the turbulent energy component. Future work will investigate the possibility to further simplify the model structure and the identification procedure by incorporating these two unknowns into just one parameter.

IV. Experimental Data

The application of the proposed approach requires the availability of experimental data to estimate the unknown parameters of the airwake model. In the framework of the EREA HSSL project, a windtunnel campaign was conducted by ONERA into its L2 low-speed large-size wind tunnel at Lille [START_REF] Gallas | Experimental Flow Control on a Simplified Ship Helideck[END_REF]. Obtained data are exploited in the present work. The test ship used for the campaign is a 1/100-scale model of a simplified frigate shape composed of a pyramidal nose; a central cuboid, modeling the ship's superstructure; and a backward smaller one put behind. This latter parallelepiped, of the same width but of lower height than the central one, represents the flight deck. The simplified frigate model is shown in Fig. 2.

The flowfield behind the ship superstructure was studied quantitatively by means of stereoscopic particle image velocimetry (SPIV) measurements and a hot-wire survey in the shear-layer regions. Static pressure was recorded on the helideck surface, with both timeaveraged and time-variant transducers. Several measurements were gathered for 12 flow conditions, corresponding to two apparent wind speeds and six flow incidence angles. In the work presented in this paper, the SPIV measurements of the component of the mean velocity and turbulent energy are specifically used to estimate the parameters of the mean speed and stochastic fluctuation of the air-wake model, respectively, and to validate the estimation results. These measurements are available only in the spatial points of a grid in the vertical plane along the centerline of the ship. Nevertheless, the air-wake model can be identified within this vertical plane, and the capability of the model to reproduce the experimental phenomena can be assessed. Moreover, the time histories of the turbulent fluctuation of the velocity are not available. Therefore, the MLE allows the computation of only the gains of the von Kármán filters, whereas the characteristic lengths of the filters are assumed equal to the dimensions of the ship's superstructure, as was already said before. The suitability of this assumption cannot be assessed with the available data, and it will be subject of future investigations in which the identification methodology will be applied to high-fidelity CFD datasets for ship air-wake simulations that will make available a larger parameter space (full three-dimensional domain surrounding the ship model, and the velocity time history at each point in the domain). It will allow a full validation of the proposed modeling approach.

V. Identification Results

A subset of the available data has been exploited to estimate the model parameters. The other available data have been used to carry out some acid tests, which consist of comparing the outputs of the identified model with the correspondent measurements gathered in the wind-tunnel tests. These tests allow the assessment of the capability of the model to also work properly in conditions different from the ones experienced during the estimation of the model's parameters. Table 2 lists the examined datasets and how they have been exploited in the present work. Model identification and validation results are shown in the following subsections.

A. Model Identification

The model selected to represent the mean velocity is a fourth-order polynomial, in which the Y spatial position is set to zero (that is, the model is assumed constant along the Y axis) because, as said earlier in this paper, the experimental data are only available in the vertical plane passing through the ship centerline. The estimation of the parameters is performed independently for each component of the velocity. Tables 3 and4 show the estimated longitudinal and lateral parameters, respectively. Figure 3 shows the comparison between the mean speed flowfield measured in the wind tunnel and computed by 
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15.89 ------X Fig. 2 Simplified frigate model, reprinted in part with permission from Gallas et al. [START_REF] Gallas | Experimental Flow Control on a Simplified Ship Helideck[END_REF]. Copyright by ONERA. For what concerns the velocity fluctuations, estimation is carried out independently for each component of the velocity. In the first step, the following values for the von Kármán filter gains are obtained: σ u 0.176; σ u 0.131, and σ u 0.128; next, the tabular functions G i are computed. Figure 4 shows the comparison between the turbulent energy field measured in the wind tunnel and computed by the identified model for configuration 8. Similar results hold for the other configurations used for this identification step.

The results for both the identification steps highlight that the identified model is able to reproduce the experimental flowfield, in terms of the range of variation of the speed and the characteristics of the air-wake phenomenon, for the configurations exploited in the estimation of the model's parameters.

B. Model Validation

Model validation results for flow configurations 3 and 10 (not used for the identification) are presented in the following figures. Specifically, Figs. 5 and6 show the mean velocity, whereas Figs. 7 and8 present the turbulent energy (related to velocity fluctuation intensity). Similar results are obtained for other flow conditions, which are not reported for the sake of brevity. The figures point out that some minor differences exist between measured and modeled mean speeds; however, the model catches the characteristics of the flowfield and the fitting of the data is generally good. These results could be further improved if a more complex structure of the polynomial function is applied. Indeed, the polynomials used in the present work have been selected as a tradeoff between model complexity and accuracy. It is worth remarking that, although the model's parameters have been estimated by analyzing freestream incidence angles from 0 to 10 deg, the obtained results highlight that the model works properly for In general, the validation results confirm that the obtained model accurately represents the main phenomena of the flowfield and can be extrapolated to a wider envelope with respect to the data used for the identification. If the extrapolation is extended to a freestream incidence angle too far from the ones used in the identification process, then the performance of the model degrades. In this case, a scheduling of the model's parameters could be necessary. In conclusion, if the operative envelope of the model is suitably selected, the obtained results are very satisfactory for flight mechanics purposes.

VI. Automatic Deck Landing and Takeoff

The identified model has been implemented in MATLAB/Simulink and integrated into a complete simulation environment [START_REF] Vitale | Simulation Environment for Development of Unmanned Helicopter Automatic Take-Off and Landing on Ship Deck[END_REF], which comprehends the models of 1) the helicopter dynamics [including onboard sensors, the flight management system (FMS), and autopilot (AP)], 2) the ship kinematics (including the sea wave disturbance on the ship, represented as a stochastic process); and 3) the atmosphere (air density and temperature, static and dynamic pressure, wind shear, gust, turbulence, and air wake).

This environment was used to perform several simulations of automatic landing and takeoff of the helicopter onto/from the ship deck, with the aim to support the design and validation of the guidance algorithms for helicopter trajectory generation and tracking that will assist or replace the pilot during takeoff and landing operations.

A. Concept of Operations

Landing and takeoff procedures are defined in Figs. 9 and 10, respectively. The landing trajectory starts from a final approach fix (FAF) waypoint aligned to the ship at a given altitude and distance. The FAF location is determined on the base of a prediction of the ship trajectory that is supposed to have a constant-velocity motion and direction. After achieving the FAF, the helicopter moves toward the waiting point (WP) that is a waypoint at a constant distance from the ship landing deck (i.e., helicopter-to-ship relative velocity is almost null) at a fixed altitude. It first executes a descending segment at a constant vertical rate and ground speed, starting at Top Of Descent (TOD) point, followed by a leg with a linearly decreasing relative vertical speed up to 0 m∕s, which brings the helicopter to the WP altitude. Finally, a segment with a linearly decreasing relative ground speed up to 0 m∕s is performed in order to reach the WP horizontal position (Fig. 9). Once the WP is caught, the helicopter holds in a hover condition, waiting for an acknowledgment signal from the ground control station in order to move to the overspot point (OSP); finally, when the landing conditions are met, vertical touchdown is executed to reach the touchdown point (TDP). The takeoff trajectory starts if the ship movements (roll, pitch, and heave) are within the desired thresholds. Then, the helicopter moves from the TDP to the OSP through a vertical maneuver and hovers on the OSP for a definite time. After an acknowledgment command from the ground control station, the helicopter moves from the OSP to the WP, holding the OSP altitude, and hovers on the WP for a definite time. Finally, after an acknowledgment command, the helicopter turns starboard/port toward a desired direction and then accelerates and climbs along a leg fixed in the ship reference frame. The takeoff is completed when the helicopter reaches a safety height at a desired velocity. The FMS and AP automatically perform these procedures. Indeed, the FMS generates the waypoints with the related attributes (i.e., fly by/fly to mode, and vertical and horizontal catching errors) that identify the trajectory of the mission, computes the steering commands and the tracking errors step by step, and sends them to the AP. The autopilot executes the trajectory by relying on the input provided by the FMS.

B. Simulation Results

The results of two simulations are discussed in this section. In the first scenario, the ship is moving at 5 m∕s with a direction of 45 deg in the north-east-down (NED) reference frame, whereas the helicopter is flying at 100 m of altitude with a ground speed of 37 m∕s at a distance of about 5 km from the ship deck. The wind field is evaluated with respect to a refence frame fixed to the ship, and the wind direction is opposite to the ship one. Figure 11 presents the landing vertical trajectory performed by the helicopter and the related FMS reference. The effects of the air wake appear after 159 s of simulation, when the helicopter approaches the ship; they are also highlighted in Fig. 12, which shows the vertical component of the helicopter acceleration in the body reference frame. Different from what happens for the vertical trajectory, the ship wake has a negligible effect on the cross-track error along the execution of the horizontal trajectory, which is not shown for the sake of brevity.

In the second simulation scenario, the ship is moving at 5 m∕s with a track of 30 deg in the NED reference frame. The helicopter, positioned with a slight offset with respect to the TDP, takes off from the ship deck with a generic heading (60 deg in this case) and moves to the WP, changing its heading to that of the "exit angle" fixed with respect to the ship direction. After that, the helicopter starts accelerating on the exit direction, keeping the altitude up to 24 m∕s. At this point, it continues accelerating and starts climbing after the first horizontal accelerating phase in order to avoid overtorque issues. The takeoff procedure ends when the helicopter reaches a safe altitude at a desired ground speed. The helicopter altitude and ground speed trajectories are shown in Fig. 13. The ship wake influences the helicopter (HC) dynamics up to the start of the "exit path" leg, as shown in Fig. 14.

These simulations highlighted that the air wake affects the helicopter dynamics; however, the tracking algorithm is robust to these disturbances. The performed tests allowed us to tune and successfully prove the automatic takeoff and landing algorithms in several environmental conditions, thus supporting their design and validation process.

VII. Conclusions

A model for the simulation of the air-wake effects applicable to flight mechanics analyses was presented in this paper. The definition of the model's structure and parameters is based on the application of system identification methodologies to experimental aerodynamic data collected through dedicated wind-tunnel tests.

The main innovation of the proposed approach consists of the definition of a modular structure for the air wake's model, which represents the airflow velocity in each spatial point behind the ship superstructure as composed by a time constant mean value plus a stochastic fluctuation in time. In turn, both these contributions to the airflow velocity are computed, starting from simpler components, which can be calculated independently. This model structure allows transformation of the original complex model identification problem in simplified subproblems, which are solved by applying a multistep identification strategy that exploits the most suitable technique for each estimation step and independently computes the parameters of each model's component. Moreover, the mathematical formulation of each module is defined with the aim of catching the main flowfield phenomena that are relevant to flight mechanics while keeping the computational burden low in order to make the model suitable for real-time simulations too.

The proposed modeling approach was applied to available experimental data. The obtained results highlighted that the model accurately fits the experimental data on a flight envelope wider than the one used as input to the identification process. Indeed, although the model's parameters were estimated by analyzing freestream incidence angles from 0 to 10 deg, the model works properly for freestream incidence angles from -20 to 20 deg. However, if a greater incidence angle is considered (45 deg), the performance of the identified model degrades. This drawback could be overcome by performing several estimations at different incidence angles of the freestream and introducing in the model the scheduling of the parameter value with respect to the freestream incidence. Further investigations should also be performed on the mathematical formulations of the model's modules. In fact, in the present work, they were selected as a tradeoff between model complexity and accuracy, and only one mathematical structure for each module has been applied for all the freestream incidence angles. In principle, the scheduling approach could be applied to the structure of the modules too in order to fit different flow characteristics that appear at different freestream incidence angles and to improve the performance of the model on a wider envelope. However, it requires the definition of suitable strategies for the transition between different module structures, which will be a subject for future work.

The obtained air-wake model was integrated into a detailed flight mechanics simulation environment, which includes helicopter and onboard sensors' dynamics, ship kinematics, sea wave disturbances, and an atmosphere model. This environment was used to support the design and validation of guidance algorithms for helicopter shipboard launch and recovery operations. Indeed, these algorithms could assist (or even replace) the helicopter's pilot during critical phases of flight. The performed simulations confirmed that the air wake affects the helicopter dynamics when it is close to the ship. However, the algorithms under test, after a suitable tuning, demonstrated robustness to the air-wake disturbances and were successfully proved in several environmental conditions. The obtained simulation environment could also be applied to a pilot-in-the-loop flight simulation, and it could make very large contributions to pilot training and the identification of safe launch and recovery envelopes for manned and unmanned aircraft. It will be a subject for future work.

In future work, the availability of wider and more complete datasets, provided by high-fidelity CFD datasets for ship air-wake simulations or possibly including actual flight trial data, will allow removing some approximations introduced into the current release of the model (that is, to introduce the dependence of the air-wake velocity on the lateral spatial position and to estimate the characteristic lengths of the velocity fluctuations) and then fully assessing the performance of the proposed modeling approach. 
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 1 Fig. 1 Views from a) the left and b) the top of the ship model.
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 3 Fig. 3 Mean speed flowfields for configuration 6 (V as 15.97 m∕s, ϑ 0 deg): a) measured, and b) modeled.
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 45 Fig. 4 Turbulent energy for configuration 8 (V as 15.93 m∕s, ϑ 10 deg): a) measured, and b) modeled.

  freestream incidence angles from -20 to 20 deg. If a greater incidence angle is considered (45 deg), the performance of the identified model degrades. Probably, the estimated parameters are not able to represent the flowfield in this condition. To overcome this limitation and improve the fitting of the experimental data, several identifications can be performed at different incidences of the freestream and the polynomial parameters can be scheduled with respect to this incidence angle. The identified model reproduces the turbulent energy field quite accurately too. The model's performance again degrades for the configuration at a high angle of incidence (45 deg), and the same considerations as for mean velocity model hold.
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 6 Fig. 6 Mean airspeeds for configuration 10 (V as 15.99 m∕s, ϑ 20 deg): a) measured, and b) modeled.
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 7 Fig. 7 Turbulent energy for configuration 3 (V as 10.01 m∕s, ϑ -10 deg): a) measured, and b) modeled.
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 8 Fig. 8 Turbulent energy for configuration 10 (V as 15.99 m∕s, ϑ 20 deg): a) measured, and b) modeled.
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 9 Fig. 9 Landing maneuver in the ship reference frame: altitude (top), horizontal speed (middle), and vertical speed (bottom) profiles.

Fig. 11 FMS

 11 Fig. 11 FMS reference altitude and helicopter altitude profiles during landing: the effects of the air wake start after 159 s.
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 13 Fig. 13 FMS reference (Ref.) altitude and ground speed versus helicopter altitude and ground speed.
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 14 Fig. 14 Components of the air wake in the helicopter body reference frame.

Table 1

 1 Model constants[START_REF]Flying Qualities of Piloted Aircraft[END_REF] 

	Constant	Value
	n 1	0.25
	n 2	2.7478
	n 3	0.3398
	d 1	1.357
	d 2	0.1987
	d 3	2.9958
	d 4	1.9754
	d 5	0.1539

Table 2

 2 Experimental dataset exploited for model identifier and validations

	Flow condition		Model identification	
	Configuration	Wind	Wind	Mean	Fluctuations	Model
	number	speed, m/s	angle, deg	speed		validation

Table 3

 3 Estimated longitudinal parameters of the mean velocity model the identified model for configuration 6. Similar results hold for configuration 7, which is the other configuration used for the estimation of the model's parameters.

		Estimated parameters
	Coefficient	V x	V y	V z
	x 4	0.00226	0.00089 -0.00292
	x 3 ⋅ z	0.04251 -0.00829 0.00032
	x 2 ⋅ z 2	0.02648 -0.01184 -0.04708
	x ⋅ z 3	-0.08556 0.04045 -0.03638
	z 4	-0.53288 -0.49806 0.25165
	1	0.22968	0.05085 -0.01958
	z 3	1.645	1.2418	-0.66995
	z 2 ⋅ x	-0.19189 -0.08180 0.36671
	z ⋅ x 2	-0.41755 0.10513	0.06540
	x 3	-0.06364 -0.00305 0.02857
	x 2	0.42973 -0.04550 -0.09857
	x ⋅ z	1.2286	-0.20756 -0.41666
	z 2	-0.50015 -0.61499 0.27153
	x	-0.80384 0.18602	0.12284
	z	-0.63925 -0.19491 0.12693
	Table 4 Estimated lateral parameters of
		the mean velocity model	
		Estimated parameters
	Coefficient	V x	V y	V z
	x 4	-0.00240 -0.00099 0.01206
	x 3 ⋅ z	0.11592	0.10153 -0.00992
	x 2 ⋅ z 2	-0.07821 -0.55613 0.02817
	x ⋅ z 3	-1.1691	2.035	0.49457
	z 4	1.1734	-5.13	-1.1264
	1	-0.26	-0.12436 0.10879
	z 3	0.67854	2.7757	0.58754
	z 2 ⋅ x	2.1072	0.42059 -0.77818
	z ⋅ x 2	-0.29695 0.00898 -0.00821
	x 3	-0.00240 -0.03867 -0.10541
	x 2	-0.06990 0.10096	0.32465
	x ⋅ z	-1.4634 -1.4483	0.41378
	z 2	-2.269	0.08732	0.77191
	x	0.49848	0.24866 -0.36696
	z	1.4877	0.28965 -0.52929